/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/flow_estimation/corner_detect.h" #include "aom_dsp/flow_estimation/flow_estimation.h" #include "aom_dsp/pyramid.h" #include "av1/common/warped_motion.h" #include "av1/encoder/encoder.h" #include "av1/encoder/ethread.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/global_motion_facade.h" // Range of model types to search #define FIRST_GLOBAL_TRANS_TYPE ROTZOOM #define LAST_GLOBAL_TRANS_TYPE ROTZOOM // Computes the cost for the warp parameters. static int gm_get_params_cost(const WarpedMotionParams *gm, const WarpedMotionParams *ref_gm, int allow_hp) { int params_cost = 0; int trans_bits, trans_prec_diff; switch (gm->wmtype) { case AFFINE: case ROTZOOM: params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[2] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[3] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[3] >> GM_ALPHA_PREC_DIFF)); if (gm->wmtype >= AFFINE) { params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[4] >> GM_ALPHA_PREC_DIFF), (gm->wmmat[4] >> GM_ALPHA_PREC_DIFF)); params_cost += aom_count_signed_primitive_refsubexpfin( GM_ALPHA_MAX + 1, SUBEXPFIN_K, (ref_gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS), (gm->wmmat[5] >> GM_ALPHA_PREC_DIFF) - (1 << GM_ALPHA_PREC_BITS)); } AOM_FALLTHROUGH_INTENDED; case TRANSLATION: trans_bits = (gm->wmtype == TRANSLATION) ? GM_ABS_TRANS_ONLY_BITS - !allow_hp : GM_ABS_TRANS_BITS; trans_prec_diff = (gm->wmtype == TRANSLATION) ? GM_TRANS_ONLY_PREC_DIFF + !allow_hp : GM_TRANS_PREC_DIFF; params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[0] >> trans_prec_diff), (gm->wmmat[0] >> trans_prec_diff)); params_cost += aom_count_signed_primitive_refsubexpfin( (1 << trans_bits) + 1, SUBEXPFIN_K, (ref_gm->wmmat[1] >> trans_prec_diff), (gm->wmmat[1] >> trans_prec_diff)); AOM_FALLTHROUGH_INTENDED; case IDENTITY: break; default: assert(0); } return (params_cost << AV1_PROB_COST_SHIFT); } // For the given reference frame, computes the global motion parameters for // different motion models and finds the best. static AOM_INLINE void compute_global_motion_for_ref_frame( AV1_COMP *cpi, struct aom_internal_error_info *error_info, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, MotionModel *motion_models, uint8_t *segment_map, const int segment_map_w, const int segment_map_h, const WarpedMotionParams *ref_params) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; int src_width = cpi->source->y_crop_width; int src_height = cpi->source->y_crop_height; int src_stride = cpi->source->y_stride; assert(ref_buf[frame] != NULL); int bit_depth = cpi->common.seq_params->bit_depth; GlobalMotionMethod global_motion_method = default_global_motion_method; int downsample_level = cpi->sf.gm_sf.downsample_level; int num_refinements = cpi->sf.gm_sf.num_refinement_steps; bool mem_alloc_failed = false; // Select the best model based on fractional error reduction. // By initializing this to erroradv_tr, the same logic which is used to // select the best model will automatically filter out any model which // doesn't meet the required quality threshold double best_erroradv = erroradv_tr; for (TransformationType model = FIRST_GLOBAL_TRANS_TYPE; model <= LAST_GLOBAL_TRANS_TYPE; ++model) { if (!aom_compute_global_motion(model, cpi->source, ref_buf[frame], bit_depth, global_motion_method, downsample_level, motion_models, RANSAC_NUM_MOTIONS, &mem_alloc_failed)) { if (mem_alloc_failed) { aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate global motion buffers"); } continue; } for (int i = 0; i < RANSAC_NUM_MOTIONS; ++i) { if (motion_models[i].num_inliers == 0) continue; WarpedMotionParams tmp_wm_params; av1_convert_model_to_params(motion_models[i].params, &tmp_wm_params); // Check that the generated model is warp-able if (!av1_get_shear_params(&tmp_wm_params)) continue; // Skip models that we won't use (IDENTITY or TRANSLATION) // // For IDENTITY type models, we don't need to evaluate anything because // all the following logic is effectively comparing the estimated model // to an identity model. // // For TRANSLATION type global motion models, gm_get_motion_vector() gives // the wrong motion vector (see comments in that function for details). // As translation-type models do not give much gain, we can avoid this bug // by never choosing a TRANSLATION type model if (tmp_wm_params.wmtype <= TRANSLATION) continue; av1_compute_feature_segmentation_map( segment_map, segment_map_w, segment_map_h, motion_models[i].inliers, motion_models[i].num_inliers); int64_t ref_frame_error = av1_segmented_frame_error( is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer, ref_buf[frame]->y_stride, cpi->source->y_buffer, src_stride, src_width, src_height, segment_map, segment_map_w); if (ref_frame_error == 0) continue; const int64_t warp_error = av1_refine_integerized_param( &tmp_wm_params, tmp_wm_params.wmtype, is_cur_buf_hbd(xd), xd->bd, ref_buf[frame]->y_buffer, ref_buf[frame]->y_crop_width, ref_buf[frame]->y_crop_height, ref_buf[frame]->y_stride, cpi->source->y_buffer, src_width, src_height, src_stride, num_refinements, ref_frame_error, segment_map, segment_map_w); // av1_refine_integerized_param() can return a simpler model type than // its input, so re-check model type here if (tmp_wm_params.wmtype <= TRANSLATION) continue; double erroradvantage = (double)warp_error / ref_frame_error; // Check that the model signaling cost is not too high if (!av1_is_enough_erroradvantage( erroradvantage, gm_get_params_cost(&tmp_wm_params, ref_params, cm->features.allow_high_precision_mv))) { continue; } if (erroradvantage < best_erroradv) { best_erroradv = erroradvantage; // Save the wm_params modified by // av1_refine_integerized_param() rather than motion index to // avoid rerunning refine() below. memcpy(&(cm->global_motion[frame]), &tmp_wm_params, sizeof(WarpedMotionParams)); } } } } // Computes global motion for the given reference frame. void av1_compute_gm_for_valid_ref_frames( AV1_COMP *cpi, struct aom_internal_error_info *error_info, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], int frame, MotionModel *motion_models, uint8_t *segment_map, int segment_map_w, int segment_map_h) { AV1_COMMON *const cm = &cpi->common; const WarpedMotionParams *ref_params = cm->prev_frame ? &cm->prev_frame->global_motion[frame] : &default_warp_params; compute_global_motion_for_ref_frame(cpi, error_info, ref_buf, frame, motion_models, segment_map, segment_map_w, segment_map_h, ref_params); } // Loops over valid reference frames and computes global motion estimation. static AOM_INLINE void compute_global_motion_for_references( AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], FrameDistPair reference_frame[REF_FRAMES - 1], int num_ref_frames, MotionModel *motion_models, uint8_t *segment_map, const int segment_map_w, const int segment_map_h) { AV1_COMMON *const cm = &cpi->common; struct aom_internal_error_info *const error_info = cpi->td.mb.e_mbd.error_info; // Compute global motion w.r.t. reference frames starting from the nearest ref // frame in a given direction. for (int frame = 0; frame < num_ref_frames; frame++) { int ref_frame = reference_frame[frame].frame; av1_compute_gm_for_valid_ref_frames(cpi, error_info, ref_buf, ref_frame, motion_models, segment_map, segment_map_w, segment_map_h); // If global motion w.r.t. current ref frame is // INVALID/TRANSLATION/IDENTITY, skip the evaluation of global motion w.r.t // the remaining ref frames in that direction. if (cpi->sf.gm_sf.prune_ref_frame_for_gm_search && cm->global_motion[ref_frame].wmtype <= TRANSLATION) break; } } // Compares the distance in 'a' and 'b'. Returns 1 if the frame corresponding to // 'a' is farther, -1 if the frame corresponding to 'b' is farther, 0 otherwise. static int compare_distance(const void *a, const void *b) { const int diff = ((FrameDistPair *)a)->distance - ((FrameDistPair *)b)->distance; if (diff > 0) return 1; else if (diff < 0) return -1; return 0; } static int disable_gm_search_based_on_stats(const AV1_COMP *const cpi) { int is_gm_present = 1; // Check number of GM models only in GF groups with ARF frames. GM param // estimation is always done in the case of GF groups with no ARF frames (flat // gops) if (cpi->ppi->gf_group.arf_index > -1) { // valid_gm_model_found is initialized to INT32_MAX in the beginning of // every GF group. // Therefore, GM param estimation is always done for all frames until // at least 1 frame each of ARF_UPDATE, INTNL_ARF_UPDATE and LF_UPDATE are // encoded in a GF group For subsequent frames, GM param estimation is // disabled, if no valid models have been found in all the three update // types. is_gm_present = (cpi->ppi->valid_gm_model_found[ARF_UPDATE] != 0) || (cpi->ppi->valid_gm_model_found[INTNL_ARF_UPDATE] != 0) || (cpi->ppi->valid_gm_model_found[LF_UPDATE] != 0); } return !is_gm_present; } // Prunes reference frames for global motion estimation based on the speed // feature 'gm_search_type'. static int do_gm_search_logic(SPEED_FEATURES *const sf, int frame) { (void)frame; switch (sf->gm_sf.gm_search_type) { case GM_FULL_SEARCH: return 1; case GM_REDUCED_REF_SEARCH_SKIP_L2_L3: return !(frame == LAST2_FRAME || frame == LAST3_FRAME); case GM_REDUCED_REF_SEARCH_SKIP_L2_L3_ARF2: return !(frame == LAST2_FRAME || frame == LAST3_FRAME || (frame == ALTREF2_FRAME)); case GM_SEARCH_CLOSEST_REFS_ONLY: return 1; case GM_DISABLE_SEARCH: return 0; default: assert(0); } return 1; } // Populates valid reference frames in past/future directions in // 'reference_frames' and their count in 'num_ref_frames'. static AOM_INLINE void update_valid_ref_frames_for_gm( AV1_COMP *cpi, YV12_BUFFER_CONFIG *ref_buf[REF_FRAMES], FrameDistPair reference_frames[MAX_DIRECTIONS][REF_FRAMES - 1], int *num_ref_frames) { AV1_COMMON *const cm = &cpi->common; int *num_past_ref_frames = &num_ref_frames[0]; int *num_future_ref_frames = &num_ref_frames[1]; const GF_GROUP *gf_group = &cpi->ppi->gf_group; int ref_pruning_enabled = is_frame_eligible_for_ref_pruning( gf_group, cpi->sf.inter_sf.selective_ref_frame, 1, cpi->gf_frame_index); int cur_frame_gm_disabled = 0; int pyr_lvl = cm->cur_frame->pyramid_level; if (cpi->sf.gm_sf.disable_gm_search_based_on_stats) { cur_frame_gm_disabled = disable_gm_search_based_on_stats(cpi); } for (int frame = ALTREF_FRAME; frame >= LAST_FRAME; --frame) { const MV_REFERENCE_FRAME ref_frame[2] = { frame, NONE_FRAME }; RefCntBuffer *buf = get_ref_frame_buf(cm, frame); const int ref_disabled = !(cpi->ref_frame_flags & av1_ref_frame_flag_list[frame]); ref_buf[frame] = NULL; cm->global_motion[frame] = default_warp_params; // Skip global motion estimation for invalid ref frames if (buf == NULL || (ref_disabled && cpi->sf.hl_sf.recode_loop != DISALLOW_RECODE)) { continue; } else { ref_buf[frame] = &buf->buf; } int prune_ref_frames = ref_pruning_enabled && prune_ref_by_selective_ref_frame(cpi, NULL, ref_frame, cm->cur_frame->ref_display_order_hint); int ref_pyr_lvl = buf->pyramid_level; if (ref_buf[frame]->y_crop_width == cpi->source->y_crop_width && ref_buf[frame]->y_crop_height == cpi->source->y_crop_height && do_gm_search_logic(&cpi->sf, frame) && !prune_ref_frames && ref_pyr_lvl <= pyr_lvl && !cur_frame_gm_disabled) { assert(ref_buf[frame] != NULL); const int relative_frame_dist = av1_encoder_get_relative_dist( buf->display_order_hint, cm->cur_frame->display_order_hint); // Populate past and future ref frames. // reference_frames[0][] indicates past direction and // reference_frames[1][] indicates future direction. if (relative_frame_dist == 0) { // Skip global motion estimation for frames at the same nominal instant. // This will generally be either a "real" frame coded against a // temporal filtered version, or a higher spatial layer coded against // a lower spatial layer. In either case, the optimal motion model will // be IDENTITY, so we don't need to search explicitly. } else if (relative_frame_dist < 0) { reference_frames[0][*num_past_ref_frames].distance = abs(relative_frame_dist); reference_frames[0][*num_past_ref_frames].frame = frame; (*num_past_ref_frames)++; } else { reference_frames[1][*num_future_ref_frames].distance = abs(relative_frame_dist); reference_frames[1][*num_future_ref_frames].frame = frame; (*num_future_ref_frames)++; } } } } // Initializes parameters used for computing global motion. static AOM_INLINE void setup_global_motion_info_params(AV1_COMP *cpi) { GlobalMotionInfo *const gm_info = &cpi->gm_info; YV12_BUFFER_CONFIG *source = cpi->source; gm_info->segment_map_w = (source->y_crop_width + WARP_ERROR_BLOCK - 1) >> WARP_ERROR_BLOCK_LOG; gm_info->segment_map_h = (source->y_crop_height + WARP_ERROR_BLOCK - 1) >> WARP_ERROR_BLOCK_LOG; memset(gm_info->reference_frames, -1, sizeof(gm_info->reference_frames[0][0]) * MAX_DIRECTIONS * (REF_FRAMES - 1)); av1_zero(gm_info->num_ref_frames); // Populate ref_buf for valid ref frames in global motion update_valid_ref_frames_for_gm(cpi, gm_info->ref_buf, gm_info->reference_frames, gm_info->num_ref_frames); // Sort the past and future ref frames in the ascending order of their // distance from the current frame. reference_frames[0] => past direction // and reference_frames[1] => future direction. qsort(gm_info->reference_frames[0], gm_info->num_ref_frames[0], sizeof(gm_info->reference_frames[0][0]), compare_distance); qsort(gm_info->reference_frames[1], gm_info->num_ref_frames[1], sizeof(gm_info->reference_frames[1][0]), compare_distance); if (cpi->sf.gm_sf.gm_search_type == GM_SEARCH_CLOSEST_REFS_ONLY) { // Filter down to the nearest two ref frames. // Prefer one past and one future ref over two past refs, even if // the second past ref is closer if (gm_info->num_ref_frames[1] > 0) { gm_info->num_ref_frames[0] = AOMMIN(gm_info->num_ref_frames[0], 1); gm_info->num_ref_frames[1] = AOMMIN(gm_info->num_ref_frames[1], 1); } else { gm_info->num_ref_frames[0] = AOMMIN(gm_info->num_ref_frames[0], 2); } } } // Computes global motion w.r.t. valid reference frames. static AOM_INLINE void global_motion_estimation(AV1_COMP *cpi) { GlobalMotionInfo *const gm_info = &cpi->gm_info; GlobalMotionData *gm_data = &cpi->td.gm_data; // Compute global motion w.r.t. past reference frames and future reference // frames for (int dir = 0; dir < MAX_DIRECTIONS; dir++) { if (gm_info->num_ref_frames[dir] > 0) compute_global_motion_for_references( cpi, gm_info->ref_buf, gm_info->reference_frames[dir], gm_info->num_ref_frames[dir], gm_data->motion_models, gm_data->segment_map, gm_info->segment_map_w, gm_info->segment_map_h); } } // Global motion estimation for the current frame is computed.This computation // happens once per frame and the winner motion model parameters are stored in // cm->cur_frame->global_motion. void av1_compute_global_motion_facade(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; GlobalMotionInfo *const gm_info = &cpi->gm_info; if (cpi->oxcf.tool_cfg.enable_global_motion) { if (cpi->gf_frame_index == 0) { for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { cpi->ppi->valid_gm_model_found[i] = INT32_MAX; #if CONFIG_FPMT_TEST if (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) cpi->ppi->temp_valid_gm_model_found[i] = INT32_MAX; #endif } } } if (cpi->common.current_frame.frame_type == INTER_FRAME && cpi->source && cpi->oxcf.tool_cfg.enable_global_motion && !gm_info->search_done && cpi->sf.gm_sf.gm_search_type != GM_DISABLE_SEARCH) { setup_global_motion_info_params(cpi); // Terminate early if the total number of reference frames is zero. if (cpi->gm_info.num_ref_frames[0] || cpi->gm_info.num_ref_frames[1]) { gm_alloc_data(cpi, &cpi->td.gm_data); if (cpi->mt_info.num_workers > 1) av1_global_motion_estimation_mt(cpi); else global_motion_estimation(cpi); gm_dealloc_data(&cpi->td.gm_data); gm_info->search_done = 1; } } memcpy(cm->cur_frame->global_motion, cm->global_motion, sizeof(cm->cur_frame->global_motion)); }