/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/common/blockd.h" #include "config/aom_config.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_codec.h" #include "aom/aom_encoder.h" #include "av1/common/av1_common_int.h" #include "av1/encoder/encoder.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/gop_structure.h" #include "av1/encoder/pass2_strategy.h" // This function sets gf_group->frame_parallel_level for LF_UPDATE frames based // on the value of parallel_frame_count. static void set_frame_parallel_level(int *frame_parallel_level, int *parallel_frame_count, int max_parallel_frames) { assert(*parallel_frame_count > 0); // parallel_frame_count > 1 indicates subsequent frame(s) in the current // parallel encode set. *frame_parallel_level = 1 + (*parallel_frame_count > 1); // Update the count of no. of parallel frames. (*parallel_frame_count)++; if (*parallel_frame_count > max_parallel_frames) *parallel_frame_count = 1; } // This function sets gf_group->src_offset based on frame_parallel_level. // Outputs are gf_group->src_offset and first_frame_index static void set_src_offset(GF_GROUP *const gf_group, int *first_frame_index, int cur_frame_idx, int frame_ind) { if (gf_group->frame_parallel_level[frame_ind] > 0) { if (gf_group->frame_parallel_level[frame_ind] == 1) { *first_frame_index = cur_frame_idx; } // Obtain the offset of the frame at frame_ind in the lookahead queue by // subtracting the display order hints of the current frame from the display // order hint of the first frame in parallel encoding set (at // first_frame_index). gf_group->src_offset[frame_ind] = (cur_frame_idx + gf_group->arf_src_offset[frame_ind]) - *first_frame_index; } } // Sets the GF_GROUP params for LF_UPDATE frames. static AOM_INLINE void set_params_for_leaf_frames( const TWO_PASS *twopass, const TWO_PASS_FRAME *twopass_frame, const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info, GF_GROUP *const gf_group, int *cur_frame_idx, int *frame_ind, int *parallel_frame_count, int max_parallel_frames, int do_frame_parallel_encode, int *first_frame_index, int *cur_disp_index, int layer_depth, int start, int end) { gf_group->update_type[*frame_ind] = LF_UPDATE; gf_group->arf_src_offset[*frame_ind] = 0; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->layer_depth[*frame_ind] = MAX_ARF_LAYERS; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; gf_group->max_layer_depth = AOMMAX(gf_group->max_layer_depth, layer_depth); gf_group->display_idx[*frame_ind] = (*cur_disp_index); gf_group->arf_boost[*frame_ind] = av1_calc_arf_boost(twopass, twopass_frame, p_rc, frame_info, start, end - start, 0, NULL, NULL, 0); ++(*cur_disp_index); // Set the level of parallelism for the LF_UPDATE frame. if (do_frame_parallel_encode) { set_frame_parallel_level(&gf_group->frame_parallel_level[*frame_ind], parallel_frame_count, max_parallel_frames); // Set LF_UPDATE frames as non-reference frames. gf_group->is_frame_non_ref[*frame_ind] = true; } set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); ++(*frame_ind); ++(*cur_frame_idx); } // Sets the GF_GROUP params for INTNL_OVERLAY_UPDATE frames. static AOM_INLINE void set_params_for_intnl_overlay_frames( GF_GROUP *const gf_group, int *cur_frame_idx, int *frame_ind, int *first_frame_index, int *cur_disp_index, int layer_depth) { gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE; gf_group->arf_src_offset[*frame_ind] = 0; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->layer_depth[*frame_ind] = layer_depth; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; gf_group->display_idx[*frame_ind] = (*cur_disp_index); ++(*cur_disp_index); set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); ++(*frame_ind); ++(*cur_frame_idx); } // Sets the GF_GROUP params for INTNL_ARF_UPDATE frames. static AOM_INLINE void set_params_for_internal_arfs( const TWO_PASS *twopass, const TWO_PASS_FRAME *twopass_frame, const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info, GF_GROUP *const gf_group, int *cur_frame_idx, int *frame_ind, int *parallel_frame_count, int max_parallel_frames, int do_frame_parallel_encode, int *first_frame_index, int depth_thr, int *cur_disp_idx, int layer_depth, int arf_src_offset, int offset, int f_frames, int b_frames) { gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE; gf_group->arf_src_offset[*frame_ind] = arf_src_offset; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->layer_depth[*frame_ind] = layer_depth; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; gf_group->display_idx[*frame_ind] = (*cur_disp_idx) + gf_group->arf_src_offset[*frame_ind]; gf_group->arf_boost[*frame_ind] = av1_calc_arf_boost(twopass, twopass_frame, p_rc, frame_info, offset, f_frames, b_frames, NULL, NULL, 0); if (do_frame_parallel_encode) { if (depth_thr != INT_MAX) { assert(depth_thr == 3 || depth_thr == 4); assert(IMPLIES(depth_thr == 3, layer_depth == 4)); assert(IMPLIES(depth_thr == 4, layer_depth == 5)); // Set frame_parallel_level of the first frame in the given layer to 1. if (gf_group->layer_depth[(*frame_ind) - 1] != layer_depth) { gf_group->frame_parallel_level[*frame_ind] = 1; } else { // Set frame_parallel_level of the consecutive frame in the same given // layer to 2. assert(gf_group->frame_parallel_level[(*frame_ind) - 1] == 1); gf_group->frame_parallel_level[*frame_ind] = 2; // Store the display order hints of the past 2 INTNL_ARF_UPDATE // frames which would not have been displayed at the time of the encode // of current frame. gf_group->skip_frame_refresh[*frame_ind][0] = gf_group->display_idx[(*frame_ind) - 1]; gf_group->skip_frame_refresh[*frame_ind][1] = gf_group->display_idx[(*frame_ind) - 2]; // Set the display_idx of frame_parallel_level 1 frame in // gf_group->skip_frame_as_ref. gf_group->skip_frame_as_ref[*frame_ind] = gf_group->display_idx[(*frame_ind) - 1]; } } // If max_parallel_frames is not exceeded and if the frame will not be // temporally filtered, encode the next internal ARF frame in parallel. if (*parallel_frame_count > 1 && *parallel_frame_count <= max_parallel_frames) { if (gf_group->arf_src_offset[*frame_ind] < TF_LOOKAHEAD_IDX_THR) gf_group->frame_parallel_level[*frame_ind] = 2; *parallel_frame_count = 1; } } set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); ++(*frame_ind); } // Set parameters for frames between 'start' and 'end' (excluding both). static void set_multi_layer_params_for_fp( const TWO_PASS *twopass, const TWO_PASS_FRAME *twopass_frame, GF_GROUP *const gf_group, const PRIMARY_RATE_CONTROL *p_rc, RATE_CONTROL *rc, FRAME_INFO *frame_info, int start, int end, int *cur_frame_idx, int *frame_ind, int *parallel_frame_count, int max_parallel_frames, int do_frame_parallel_encode, int *first_frame_index, int depth_thr, int *cur_disp_idx, int layer_depth) { const int num_frames_to_process = end - start; // Either we are at the last level of the pyramid, or we don't have enough // frames between 'l' and 'r' to create one more level. if (layer_depth > gf_group->max_layer_depth_allowed || num_frames_to_process < 3) { // Leaf nodes. while (start < end) { set_params_for_leaf_frames(twopass, twopass_frame, p_rc, frame_info, gf_group, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, cur_disp_idx, layer_depth, start, end); ++start; } } else { const int m = (start + end - 1) / 2; // Internal ARF. int arf_src_offset = m - start; set_params_for_internal_arfs( twopass, twopass_frame, p_rc, frame_info, gf_group, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, INT_MAX, cur_disp_idx, layer_depth, arf_src_offset, m, end - m, m - start); // If encode reordering is enabled, configure the multi-layers accordingly // and return. For e.g., the encode order for gf-interval 16 after // reordering would be 0-> 16-> 8-> 4-> 2-> 6-> 1-> 3-> 5-> 7-> 12-> 10-> // 14-> 9-> 11-> 13-> 15. if (layer_depth >= depth_thr) { int m1 = (m + start - 1) / 2; int m2 = (m + 1 + end) / 2; int arf_src_offsets[2] = { m1 - start, m2 - start }; // Parameters to compute arf_boost. int offset[2] = { m1, m2 }; int f_frames[2] = { m - m1, end - m2 }; int b_frames[2] = { m1 - start, m2 - (m + 1) }; // Set GF_GROUP params for INTNL_ARF_UPDATE frames which are reordered. for (int i = 0; i < 2; i++) { set_params_for_internal_arfs( twopass, twopass_frame, p_rc, frame_info, gf_group, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, depth_thr, cur_disp_idx, layer_depth + 1, arf_src_offsets[i], offset[i], f_frames[i], b_frames[i]); } // Initialize the start and end indices to configure LF_UPDATE frames. int start_idx[4] = { start, m1 + 1, m + 1, end - 1 }; int end_idx[4] = { m1, m, m2, end }; int layer_depth_for_intnl_overlay[4] = { layer_depth + 1, layer_depth, layer_depth + 1, INVALID_IDX }; // Set GF_GROUP params for the rest of LF_UPDATE and INTNL_OVERLAY_UPDATE // frames after reordering. for (int i = 0; i < 4; i++) { set_multi_layer_params_for_fp( twopass, twopass_frame, gf_group, p_rc, rc, frame_info, start_idx[i], end_idx[i], cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, depth_thr, cur_disp_idx, layer_depth + 2); if (layer_depth_for_intnl_overlay[i] != INVALID_IDX) set_params_for_intnl_overlay_frames( gf_group, cur_frame_idx, frame_ind, first_frame_index, cur_disp_idx, layer_depth_for_intnl_overlay[i]); } return; } // Frames displayed before this internal ARF. set_multi_layer_params_for_fp( twopass, twopass_frame, gf_group, p_rc, rc, frame_info, start, m, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, depth_thr, cur_disp_idx, layer_depth + 1); // Overlay for internal ARF. set_params_for_intnl_overlay_frames(gf_group, cur_frame_idx, frame_ind, first_frame_index, cur_disp_idx, layer_depth); // Frames displayed after this internal ARF. set_multi_layer_params_for_fp( twopass, twopass_frame, gf_group, p_rc, rc, frame_info, m + 1, end, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, depth_thr, cur_disp_idx, layer_depth + 1); } } // Structure for bookkeeping start, end and display indices to configure // INTNL_ARF_UPDATE frames. typedef struct { int start; int end; int display_index; } FRAME_REORDER_INFO; // Updates the stats required to configure the GF_GROUP. static AOM_INLINE void fill_arf_frame_stats(FRAME_REORDER_INFO *arf_frame_stats, int arf_frame_index, int display_idx, int start, int end) { arf_frame_stats[arf_frame_index].start = start; arf_frame_stats[arf_frame_index].end = end; arf_frame_stats[arf_frame_index].display_index = display_idx; } // Sets GF_GROUP params for INTNL_ARF_UPDATE frames. Also populates // doh_gf_index_map and arf_frame_stats. static AOM_INLINE void set_params_for_internal_arfs_in_gf14( GF_GROUP *const gf_group, FRAME_REORDER_INFO *arf_frame_stats, int *cur_frame_idx, int *cur_disp_idx, int *frame_ind, int *count_arf_frames, int *doh_gf_index_map, int start, int end, int layer_depth, int layer_with_parallel_encodes) { int index = (start + end - 1) / 2; gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE; gf_group->arf_src_offset[*frame_ind] = index - 1; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->layer_depth[*frame_ind] = layer_depth; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; gf_group->display_idx[*frame_ind] = (*cur_disp_idx) + gf_group->arf_src_offset[*frame_ind]; // Update the display index of the current frame with its gf index. doh_gf_index_map[index] = *frame_ind; if (layer_with_parallel_encodes) { assert(layer_depth == 4); // Set frame_parallel_level of the first frame in the given layer depth // to 1. if (gf_group->layer_depth[(*frame_ind) - 1] != layer_depth) { gf_group->frame_parallel_level[*frame_ind] = 1; } else { // Set frame_parallel_level of the consecutive frame in the same given // layer depth to 2. assert(gf_group->frame_parallel_level[(*frame_ind) - 1] == 1); gf_group->frame_parallel_level[*frame_ind] = 2; // Set the display_idx of frame_parallel_level 1 frame in // gf_group->skip_frame_as_ref. gf_group->skip_frame_as_ref[*frame_ind] = gf_group->display_idx[(*frame_ind) - 1]; } } ++(*frame_ind); // Update arf_frame_stats. fill_arf_frame_stats(arf_frame_stats, *count_arf_frames, index, start, end); ++(*count_arf_frames); } // Sets GF_GROUP params for all INTNL_ARF_UPDATE frames in the given layer // dpeth. static AOM_INLINE void set_params_for_cur_layer_frames( GF_GROUP *const gf_group, FRAME_REORDER_INFO *arf_frame_stats, int *cur_frame_idx, int *cur_disp_idx, int *frame_ind, int *count_arf_frames, int *doh_gf_index_map, int num_dir, int node_start, int node_end, int layer_depth) { assert(num_dir < 3); int start, end; // Iterate through the nodes in the previous layer depth. for (int i = node_start; i < node_end; i++) { // For each node, check if a frame can be coded as INTNL_ARF_UPDATE frame on // either direction. for (int dir = 0; dir < num_dir; dir++) { // Checks for a frame to the left of current node. if (dir == 0) { start = arf_frame_stats[i].start; end = arf_frame_stats[i].display_index; } else { // Checks for a frame to the right of current node. start = arf_frame_stats[i].display_index + 1; end = arf_frame_stats[i].end; } const int num_frames_to_process = end - start; // Checks if a frame can be coded as INTNL_ARF_UPDATE frame. If // num_frames_to_process is less than 3, then there are not enough frames // between 'start' and 'end' to create another level. if (num_frames_to_process >= 3) { // Flag to indicate the lower layer depths for which parallel encoding // is enabled. Currently enabled for layer 4 frames. int layer_with_parallel_encodes = layer_depth == 4; set_params_for_internal_arfs_in_gf14( gf_group, arf_frame_stats, cur_frame_idx, cur_disp_idx, frame_ind, count_arf_frames, doh_gf_index_map, start, end, layer_depth, layer_with_parallel_encodes); } } } } // Configures multi-layers of the GF_GROUP when consecutive encode of frames in // the same layer depth is enbaled. static AOM_INLINE void set_multi_layer_params_for_gf14( const TWO_PASS *twopass, const TWO_PASS_FRAME *twopass_frame, const PRIMARY_RATE_CONTROL *p_rc, FRAME_INFO *frame_info, GF_GROUP *const gf_group, FRAME_REORDER_INFO *arf_frame_stats, int *cur_frame_idx, int *frame_ind, int *count_arf_frames, int *doh_gf_index_map, int *parallel_frame_count, int *first_frame_index, int *cur_disp_index, int gf_interval, int layer_depth, int max_parallel_frames) { assert(layer_depth == 2); assert(gf_group->max_layer_depth_allowed >= 4); int layer, node_start, node_end = 0; // Maximum layer depth excluding LF_UPDATE frames is 4 since applicable only // for gf-interval 14. const int max_layer_depth = 4; // Iterate through each layer depth starting from 2 till 'max_layer_depth'. for (layer = layer_depth; layer <= max_layer_depth; layer++) { // 'node_start' and 'node_end' indicate the number of nodes from the // previous layer depth to be considered. It also corresponds to the indices // of arf_frame_stats. node_start = node_end; node_end = (*count_arf_frames); // 'num_dir' indicates the number of directions to traverse w.r.t. a given // node in order to choose an INTNL_ARF_UPDATE frame. Layer depth 2 would // have only one frame and hence needs to traverse only in the left // direction w.r.t the node in the previous layer. int num_dir = layer == 2 ? 1 : 2; set_params_for_cur_layer_frames(gf_group, arf_frame_stats, cur_frame_idx, cur_disp_index, frame_ind, count_arf_frames, doh_gf_index_map, num_dir, node_start, node_end, layer); } for (int i = 1; i < gf_interval; i++) { // Since doh_gf_index_map is already populated for all INTNL_ARF_UPDATE // frames in the GF_GROUP, any frame with INVALID_IDX would correspond to an // LF_UPDATE frame. if (doh_gf_index_map[i] == INVALID_IDX) { // LF_UPDATE frames. // TODO(Remya): Correct start and end parameters passed to // set_params_for_leaf_frames() once encode reordering for gf-interval 14 // is enbaled for parallel encode of lower layer frames. set_params_for_leaf_frames( twopass, twopass_frame, p_rc, frame_info, gf_group, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, 1, first_frame_index, cur_disp_index, layer, 0, 0); } else { // In order to obtain the layer depths of INTNL_OVERLAY_UPDATE frames, get // the gf index of corresponding INTNL_ARF_UPDATE frames. int intnl_arf_index = doh_gf_index_map[i]; int ld = gf_group->layer_depth[intnl_arf_index]; set_params_for_intnl_overlay_frames(gf_group, cur_frame_idx, frame_ind, first_frame_index, cur_disp_index, ld); } } } // Set parameters for frames between 'start' and 'end' (excluding both). static void set_multi_layer_params( const TWO_PASS *twopass, const TWO_PASS_FRAME *twopass_frame, GF_GROUP *const gf_group, const PRIMARY_RATE_CONTROL *p_rc, RATE_CONTROL *rc, FRAME_INFO *frame_info, int start, int end, int *cur_frame_idx, int *frame_ind, int *parallel_frame_count, int max_parallel_frames, int do_frame_parallel_encode, int *first_frame_index, int *cur_disp_idx, int layer_depth) { const int num_frames_to_process = end - start; // Either we are at the last level of the pyramid, or we don't have enough // frames between 'l' and 'r' to create one more level. if (layer_depth > gf_group->max_layer_depth_allowed || num_frames_to_process < 3) { // Leaf nodes. while (start < end) { gf_group->update_type[*frame_ind] = LF_UPDATE; gf_group->arf_src_offset[*frame_ind] = 0; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->display_idx[*frame_ind] = *cur_disp_idx; gf_group->layer_depth[*frame_ind] = MAX_ARF_LAYERS; gf_group->arf_boost[*frame_ind] = av1_calc_arf_boost(twopass, twopass_frame, p_rc, frame_info, start, end - start, 0, NULL, NULL, 0); gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; gf_group->max_layer_depth = AOMMAX(gf_group->max_layer_depth, layer_depth); // Set the level of parallelism for the LF_UPDATE frame. if (do_frame_parallel_encode) { set_frame_parallel_level(&gf_group->frame_parallel_level[*frame_ind], parallel_frame_count, max_parallel_frames); // Set LF_UPDATE frames as non-reference frames. gf_group->is_frame_non_ref[*frame_ind] = true; } set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); ++(*frame_ind); ++(*cur_frame_idx); ++(*cur_disp_idx); ++start; } } else { const int m = (start + end - 1) / 2; // Internal ARF. gf_group->update_type[*frame_ind] = INTNL_ARF_UPDATE; gf_group->arf_src_offset[*frame_ind] = m - start; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->display_idx[*frame_ind] = *cur_disp_idx + gf_group->arf_src_offset[*frame_ind]; gf_group->layer_depth[*frame_ind] = layer_depth; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; if (do_frame_parallel_encode) { // If max_parallel_frames is not exceeded and if the frame will not be // temporally filtered, encode the next internal ARF frame in parallel. if (*parallel_frame_count > 1 && *parallel_frame_count <= max_parallel_frames) { if (gf_group->arf_src_offset[*frame_ind] < TF_LOOKAHEAD_IDX_THR) gf_group->frame_parallel_level[*frame_ind] = 2; *parallel_frame_count = 1; } } set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); // Get the boost factor for intermediate ARF frames. gf_group->arf_boost[*frame_ind] = av1_calc_arf_boost(twopass, twopass_frame, p_rc, frame_info, m, end - m, m - start, NULL, NULL, 0); ++(*frame_ind); // Frames displayed before this internal ARF. set_multi_layer_params(twopass, twopass_frame, gf_group, p_rc, rc, frame_info, start, m, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, cur_disp_idx, layer_depth + 1); // Overlay for internal ARF. gf_group->update_type[*frame_ind] = INTNL_OVERLAY_UPDATE; gf_group->arf_src_offset[*frame_ind] = 0; gf_group->cur_frame_idx[*frame_ind] = *cur_frame_idx; gf_group->display_idx[*frame_ind] = *cur_disp_idx; gf_group->arf_boost[*frame_ind] = 0; gf_group->layer_depth[*frame_ind] = layer_depth; gf_group->frame_type[*frame_ind] = INTER_FRAME; gf_group->refbuf_state[*frame_ind] = REFBUF_UPDATE; set_src_offset(gf_group, first_frame_index, *cur_frame_idx, *frame_ind); ++(*frame_ind); ++(*cur_frame_idx); ++(*cur_disp_idx); // Frames displayed after this internal ARF. set_multi_layer_params(twopass, twopass_frame, gf_group, p_rc, rc, frame_info, m + 1, end, cur_frame_idx, frame_ind, parallel_frame_count, max_parallel_frames, do_frame_parallel_encode, first_frame_index, cur_disp_idx, layer_depth + 1); } } static int construct_multi_layer_gf_structure( AV1_COMP *cpi, TWO_PASS *twopass, GF_GROUP *const gf_group, RATE_CONTROL *rc, FRAME_INFO *const frame_info, int baseline_gf_interval, FRAME_UPDATE_TYPE first_frame_update_type) { PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; // TODO(angiebird): Why do we need "-1" here? const int gf_interval = baseline_gf_interval - 1; int frame_index = 0; int cur_frame_index = 0; // Set the display order hint for the first frame in the GF_GROUP. int cur_disp_index = (first_frame_update_type == KF_UPDATE) ? 0 : cpi->common.current_frame.frame_number; // Initialize gf_group->frame_parallel_level, gf_group->is_frame_non_ref, // gf_group->src_offset and gf_group->is_frame_dropped with 0. memset(gf_group->frame_parallel_level, 0, sizeof(gf_group->frame_parallel_level)); memset(gf_group->is_frame_non_ref, 0, sizeof(gf_group->is_frame_non_ref)); memset(gf_group->src_offset, 0, sizeof(gf_group->src_offset)); memset(gf_group->is_frame_dropped, 0, sizeof(gf_group->is_frame_dropped)); // Initialize gf_group->skip_frame_refresh and gf_group->skip_frame_as_ref // with INVALID_IDX. memset(gf_group->skip_frame_refresh, INVALID_IDX, sizeof(gf_group->skip_frame_refresh)); memset(gf_group->skip_frame_as_ref, INVALID_IDX, sizeof(gf_group->skip_frame_as_ref)); int kf_decomp = cpi->oxcf.kf_cfg.enable_keyframe_filtering > 1; // This is a patch that fixes https://crbug.com/aomedia/3163 // enable_keyframe_filtering > 1 will introduce an extra overlay frame at // key frame location. However when // baseline_gf_interval == MAX_STATIC_GF_GROUP_LENGTH, we can't // afford to have an extra overlay frame. Otherwise, the gf_group->size will // become MAX_STATIC_GF_GROUP_LENGTH + 1, which causes memory error. // A cheap solution is to turn of kf_decomp here. // TODO(angiebird): Find a systematic way to solve this issue. if (baseline_gf_interval == MAX_STATIC_GF_GROUP_LENGTH) { kf_decomp = 0; } if (first_frame_update_type == KF_UPDATE) { gf_group->update_type[frame_index] = kf_decomp ? ARF_UPDATE : KF_UPDATE; gf_group->arf_src_offset[frame_index] = 0; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = 0; gf_group->frame_type[frame_index] = KEY_FRAME; gf_group->refbuf_state[frame_index] = REFBUF_RESET; gf_group->max_layer_depth = 0; gf_group->display_idx[frame_index] = cur_disp_index; if (!kf_decomp) cur_disp_index++; ++frame_index; if (kf_decomp) { gf_group->update_type[frame_index] = OVERLAY_UPDATE; gf_group->arf_src_offset[frame_index] = 0; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = 0; gf_group->frame_type[frame_index] = INTER_FRAME; gf_group->refbuf_state[frame_index] = REFBUF_UPDATE; gf_group->max_layer_depth = 0; gf_group->display_idx[frame_index] = cur_disp_index; cur_disp_index++; ++frame_index; } cur_frame_index++; } if (first_frame_update_type == GF_UPDATE) { gf_group->update_type[frame_index] = GF_UPDATE; gf_group->arf_src_offset[frame_index] = 0; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = 0; gf_group->frame_type[frame_index] = INTER_FRAME; gf_group->refbuf_state[frame_index] = REFBUF_UPDATE; gf_group->max_layer_depth = 0; gf_group->display_idx[frame_index] = cur_disp_index; cur_disp_index++; ++frame_index; ++cur_frame_index; } // ALTREF. const int use_altref = gf_group->max_layer_depth_allowed > 0; int is_fwd_kf = rc->frames_to_fwd_kf == gf_interval; if (use_altref) { gf_group->update_type[frame_index] = ARF_UPDATE; gf_group->arf_src_offset[frame_index] = gf_interval - cur_frame_index; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = 1; gf_group->arf_boost[frame_index] = cpi->ppi->p_rc.gfu_boost; gf_group->frame_type[frame_index] = is_fwd_kf ? KEY_FRAME : INTER_FRAME; gf_group->refbuf_state[frame_index] = REFBUF_UPDATE; gf_group->max_layer_depth = 1; gf_group->arf_index = frame_index; gf_group->display_idx[frame_index] = cur_disp_index + gf_group->arf_src_offset[frame_index]; ++frame_index; } else { gf_group->arf_index = -1; } // Flag to indicate if multi-layer configuration is complete. int is_multi_layer_configured = 0; // Running count of no. of frames that is part of a given parallel // encode set in a gf_group. Value of 1 indicates no parallel encode. int parallel_frame_count = 1; // Enable parallel encode of frames if gf_group has a multi-layer pyramid // structure with minimum 4 layers. int do_frame_parallel_encode = (cpi->ppi->num_fp_contexts > 1 && use_altref && gf_group->max_layer_depth_allowed >= 4); int first_frame_index = cur_frame_index; if (do_frame_parallel_encode) { // construct_multi_layer_gf_structure() takes the input parameter // 'gf_interval' as p_rc->baseline_gf_interval - 1 . Below code computes the // actual GF_GROUP length by compensating for this offset. int actual_gf_length = ((first_frame_update_type == KF_UPDATE) || (first_frame_update_type == GF_UPDATE)) ? gf_interval : gf_interval + 1; // In order to facilitate parallel encoding of frames in lower layer depths, // encode reordering is done. Currently encode reordering is enabled only // for gf-intervals 16 and 32. NOTE: Since the buffer holding the // reference frames is of size 8 (ref_frame_map[REF_FRAMES]), there is a // limitation on the number of hidden frames possible at any given point and // hence the reordering is enabled only for gf-intervals 16 and 32. // Disabling encode reordering for gf-interval 14 since some cross-frame // dependencies related to temporal filtering for FPMT is currently not // handled. int disable_gf14_reorder = 1; if (actual_gf_length == 14 && !disable_gf14_reorder) { // This array holds the gf index of INTNL_ARF_UPDATE frames in the slot // corresponding to their display order hint. This is used while // configuring the LF_UPDATE frames and INTNL_OVERLAY_UPDATE frames. int doh_gf_index_map[FIXED_GF_INTERVAL]; // Initialize doh_gf_index_map with INVALID_IDX. memset(&doh_gf_index_map[0], INVALID_IDX, (sizeof(doh_gf_index_map[0]) * FIXED_GF_INTERVAL)); FRAME_REORDER_INFO arf_frame_stats[REF_FRAMES - 1]; // Store the stats corresponding to layer 1 frame. fill_arf_frame_stats(arf_frame_stats, 0, actual_gf_length, 1, actual_gf_length); int count_arf_frames = 1; // Sets multi-layer params for gf-interval 14 to consecutively encode // frames in the same layer depth, i.e., encode order would be 0-> 14-> // 7-> 3-> 10-> 5-> 12-> 1-> 2-> 4-> 6-> 8-> 9-> 11-> 13. // TODO(Remya): Set GF_GROUP param 'arf_boost' for all frames. set_multi_layer_params_for_gf14( twopass, &cpi->twopass_frame, p_rc, frame_info, gf_group, arf_frame_stats, &cur_frame_index, &frame_index, &count_arf_frames, doh_gf_index_map, ¶llel_frame_count, &first_frame_index, &cur_disp_index, actual_gf_length, use_altref + 1, cpi->ppi->num_fp_contexts); // Set gf_group->skip_frame_refresh. for (int i = 0; i < actual_gf_length; i++) { int count = 0; if (gf_group->update_type[i] == INTNL_ARF_UPDATE) { for (int j = 0; j < i; j++) { // Store the display order hint of the frames which would not // have been displayed at the encode call of frame 'i'. if ((gf_group->display_idx[j] < gf_group->display_idx[i]) && gf_group->update_type[j] == INTNL_ARF_UPDATE) { gf_group->skip_frame_refresh[i][count++] = gf_group->display_idx[j]; } } } } } else { // Set layer depth threshold for reordering as per the gf length. int depth_thr = (actual_gf_length == 16) ? 3 : (actual_gf_length == 32) ? 4 : INT_MAX; set_multi_layer_params_for_fp( twopass, &cpi->twopass_frame, gf_group, p_rc, rc, frame_info, cur_frame_index, gf_interval, &cur_frame_index, &frame_index, ¶llel_frame_count, cpi->ppi->num_fp_contexts, do_frame_parallel_encode, &first_frame_index, depth_thr, &cur_disp_index, use_altref + 1); } is_multi_layer_configured = 1; } // Rest of the frames. if (!is_multi_layer_configured) set_multi_layer_params(twopass, &cpi->twopass_frame, gf_group, p_rc, rc, frame_info, cur_frame_index, gf_interval, &cur_frame_index, &frame_index, ¶llel_frame_count, cpi->ppi->num_fp_contexts, do_frame_parallel_encode, &first_frame_index, &cur_disp_index, use_altref + 1); if (use_altref) { gf_group->update_type[frame_index] = OVERLAY_UPDATE; gf_group->arf_src_offset[frame_index] = 0; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS; gf_group->arf_boost[frame_index] = NORMAL_BOOST; gf_group->frame_type[frame_index] = INTER_FRAME; gf_group->refbuf_state[frame_index] = is_fwd_kf ? REFBUF_RESET : REFBUF_UPDATE; gf_group->display_idx[frame_index] = cur_disp_index; ++frame_index; } else { for (; cur_frame_index <= gf_interval; ++cur_frame_index) { gf_group->update_type[frame_index] = LF_UPDATE; gf_group->arf_src_offset[frame_index] = 0; gf_group->cur_frame_idx[frame_index] = cur_frame_index; gf_group->layer_depth[frame_index] = MAX_ARF_LAYERS; gf_group->arf_boost[frame_index] = NORMAL_BOOST; gf_group->frame_type[frame_index] = INTER_FRAME; gf_group->refbuf_state[frame_index] = REFBUF_UPDATE; gf_group->max_layer_depth = AOMMAX(gf_group->max_layer_depth, 2); set_src_offset(gf_group, &first_frame_index, cur_frame_index, frame_index); gf_group->display_idx[frame_index] = cur_disp_index; cur_disp_index++; ++frame_index; } } if (do_frame_parallel_encode) { // Iterate through the gf_group and reset frame_parallel_level to 0 in case // a frame is marked as frame_parallel_level 1 with no subsequent // frame_parallel_level 2 frame(s). int level1_frame_idx = INT_MAX; int level2_frame_count = 0; for (int frame_idx = 0; frame_idx < frame_index; frame_idx++) { if (gf_group->frame_parallel_level[frame_idx] == 1) { // Set frame_parallel_level to 0 if only one frame is present in a // parallel encode set. if (level1_frame_idx != INT_MAX && !level2_frame_count) gf_group->frame_parallel_level[level1_frame_idx] = 0; // Book-keep frame_idx of frame_parallel_level 1 frame and reset the // count of frame_parallel_level 2 frames in the corresponding parallel // encode set. level1_frame_idx = frame_idx; level2_frame_count = 0; } if (gf_group->frame_parallel_level[frame_idx] == 2) level2_frame_count++; } // If frame_parallel_level is set to 1 for the last LF_UPDATE // frame in the gf_group, reset it to zero since there are no subsequent // frames in the gf_group. if (gf_group->frame_parallel_level[frame_index - 2] == 1) { assert(gf_group->update_type[frame_index - 2] == LF_UPDATE); gf_group->frame_parallel_level[frame_index - 2] = 0; } } for (int gf_idx = frame_index; gf_idx < MAX_STATIC_GF_GROUP_LENGTH; ++gf_idx) { gf_group->update_type[gf_idx] = LF_UPDATE; gf_group->arf_src_offset[gf_idx] = 0; gf_group->cur_frame_idx[gf_idx] = gf_idx; gf_group->layer_depth[gf_idx] = MAX_ARF_LAYERS; gf_group->arf_boost[gf_idx] = NORMAL_BOOST; gf_group->frame_type[gf_idx] = INTER_FRAME; gf_group->refbuf_state[gf_idx] = REFBUF_UPDATE; gf_group->max_layer_depth = AOMMAX(gf_group->max_layer_depth, 2); } return frame_index; } static void set_ld_layer_depth(GF_GROUP *gf_group, int gop_length) { int log_gop_length = 0; while ((1 << log_gop_length) < gop_length) { ++log_gop_length; } for (int gf_index = 0; gf_index < gf_group->size; ++gf_index) { int count = 0; // Find the trailing zeros for (; count < MAX_ARF_LAYERS; ++count) { if ((gf_index >> count) & 0x01) break; } gf_group->layer_depth[gf_index] = AOMMAX(log_gop_length - count, 0); } gf_group->max_layer_depth = AOMMIN(log_gop_length, MAX_ARF_LAYERS); } void av1_gop_setup_structure(AV1_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; GF_GROUP *const gf_group = &cpi->ppi->gf_group; TWO_PASS *const twopass = &cpi->ppi->twopass; FRAME_INFO *const frame_info = &cpi->frame_info; const int key_frame = rc->frames_since_key == 0; FRAME_UPDATE_TYPE first_frame_update_type = ARF_UPDATE; if (key_frame) { first_frame_update_type = KF_UPDATE; if (cpi->oxcf.kf_max_pyr_height != -1) { gf_group->max_layer_depth_allowed = AOMMIN( cpi->oxcf.kf_max_pyr_height, gf_group->max_layer_depth_allowed); } } else if (!cpi->ppi->gf_state.arf_gf_boost_lst) { first_frame_update_type = GF_UPDATE; } gf_group->size = construct_multi_layer_gf_structure( cpi, twopass, gf_group, rc, frame_info, p_rc->baseline_gf_interval, first_frame_update_type); if (gf_group->max_layer_depth_allowed == 0) set_ld_layer_depth(gf_group, p_rc->baseline_gf_interval); } int av1_gop_check_forward_keyframe(const GF_GROUP *gf_group, int gf_frame_index) { return gf_group->frame_type[gf_frame_index] == KEY_FRAME && gf_group->refbuf_state[gf_frame_index] == REFBUF_UPDATE; } int av1_gop_is_second_arf(const GF_GROUP *gf_group, int gf_frame_index) { const int arf_src_offset = gf_group->arf_src_offset[gf_frame_index]; // TODO(angiebird): when gf_group->size == 32, it's possble to // have "two" second arf. Check if this is acceptable. if (gf_group->update_type[gf_frame_index] == INTNL_ARF_UPDATE && arf_src_offset >= TF_LOOKAHEAD_IDX_THR) { return 1; } return 0; }