/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/pred_common.h" #include "av1/encoder/interp_search.h" #include "av1/encoder/model_rd.h" #include "av1/encoder/rdopt_utils.h" #include "av1/encoder/reconinter_enc.h" // return mv_diff static INLINE int is_interp_filter_good_match( const INTERPOLATION_FILTER_STATS *st, MB_MODE_INFO *const mi, int skip_level) { const int is_comp = has_second_ref(mi); int i; for (i = 0; i < 1 + is_comp; ++i) { if (st->ref_frames[i] != mi->ref_frame[i]) return INT_MAX; } if (skip_level == 1 && is_comp) { if (st->comp_type != mi->interinter_comp.type) return INT_MAX; if (st->compound_idx != mi->compound_idx) return INT_MAX; } int mv_diff = 0; for (i = 0; i < 1 + is_comp; ++i) { mv_diff += abs(st->mv[i].as_mv.row - mi->mv[i].as_mv.row) + abs(st->mv[i].as_mv.col - mi->mv[i].as_mv.col); } return mv_diff; } static INLINE int save_interp_filter_search_stat( MB_MODE_INFO *const mbmi, int64_t rd, unsigned int pred_sse, INTERPOLATION_FILTER_STATS *interp_filter_stats, int interp_filter_stats_idx) { if (interp_filter_stats_idx < MAX_INTERP_FILTER_STATS) { INTERPOLATION_FILTER_STATS stat = { mbmi->interp_filters, { mbmi->mv[0], mbmi->mv[1] }, { mbmi->ref_frame[0], mbmi->ref_frame[1] }, mbmi->interinter_comp.type, mbmi->compound_idx, rd, pred_sse }; interp_filter_stats[interp_filter_stats_idx] = stat; interp_filter_stats_idx++; } return interp_filter_stats_idx; } static INLINE int find_interp_filter_in_stats( MB_MODE_INFO *const mbmi, INTERPOLATION_FILTER_STATS *interp_filter_stats, int interp_filter_stats_idx, int skip_level) { // [skip_levels][single or comp] const int thr[2][2] = { { 0, 0 }, { 3, 7 } }; const int is_comp = has_second_ref(mbmi); // Find good enough match. // TODO(yunqing): Separate single-ref mode and comp mode stats for fast // search. int best = INT_MAX; int match = -1; for (int j = 0; j < interp_filter_stats_idx; ++j) { const INTERPOLATION_FILTER_STATS *st = &interp_filter_stats[j]; const int mv_diff = is_interp_filter_good_match(st, mbmi, skip_level); // Exact match is found. if (mv_diff == 0) { match = j; break; } else if (mv_diff < best && mv_diff <= thr[skip_level - 1][is_comp]) { best = mv_diff; match = j; } } if (match != -1) { mbmi->interp_filters = interp_filter_stats[match].filters; return match; } return -1; // no match result found } int av1_find_interp_filter_match( MB_MODE_INFO *const mbmi, const AV1_COMP *const cpi, const InterpFilter assign_filter, const int need_search, INTERPOLATION_FILTER_STATS *interp_filter_stats, int interp_filter_stats_idx) { int match_found_idx = -1; if (cpi->sf.interp_sf.use_interp_filter && need_search) match_found_idx = find_interp_filter_in_stats( mbmi, interp_filter_stats, interp_filter_stats_idx, cpi->sf.interp_sf.use_interp_filter); if (!need_search || match_found_idx == -1) set_default_interp_filters(mbmi, assign_filter); return match_found_idx; } static INLINE int get_switchable_rate(MACROBLOCK *const x, const int_interpfilters filters, const int ctx[2], int dual_filter) { const InterpFilter filter0 = filters.as_filters.y_filter; int inter_filter_cost = x->mode_costs.switchable_interp_costs[ctx[0]][filter0]; if (dual_filter) { const InterpFilter filter1 = filters.as_filters.x_filter; inter_filter_cost += x->mode_costs.switchable_interp_costs[ctx[1]][filter1]; } return SWITCHABLE_INTERP_RATE_FACTOR * inter_filter_cost; } // Build inter predictor and calculate model rd // for a given plane. static INLINE void interp_model_rd_eval( MACROBLOCK *const x, const AV1_COMP *const cpi, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int plane_from, int plane_to, RD_STATS *rd_stats, int is_skip_build_pred) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; RD_STATS tmp_rd_stats; av1_init_rd_stats(&tmp_rd_stats); // Skip inter predictor if the predictor is already available. if (!is_skip_build_pred) { const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, plane_from, plane_to); } model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model ? MODELRD_LEGACY : MODELRD_TYPE_INTERP_FILTER]( cpi, bsize, x, xd, plane_from, plane_to, &tmp_rd_stats.rate, &tmp_rd_stats.dist, &tmp_rd_stats.skip_txfm, &tmp_rd_stats.sse, NULL, NULL, NULL); av1_merge_rd_stats(rd_stats, &tmp_rd_stats); } // calculate the rdcost of given interpolation_filter static INLINE int64_t interpolation_filter_rd( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_luma, RD_STATS *rd_stats, int *const switchable_rate, const BUFFER_SET *dst_bufs[2], int filter_idx, const int switchable_ctx[2], const int skip_pred) { const AV1_COMMON *cm = &cpi->common; const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; RD_STATS this_rd_stats_luma, this_rd_stats; // Initialize rd_stats structures to default values. av1_init_rd_stats(&this_rd_stats_luma); this_rd_stats = *rd_stats_luma; const int_interpfilters last_best = mbmi->interp_filters; mbmi->interp_filters = filter_sets[filter_idx]; const int tmp_rs = get_switchable_rate(x, mbmi->interp_filters, switchable_ctx, cm->seq_params->enable_dual_filter); int64_t min_rd = RDCOST(x->rdmult, tmp_rs, 0); if (min_rd > *rd) { mbmi->interp_filters = last_best; return 0; } (void)tile_data; assert(skip_pred != 2); assert((rd_stats_luma->rate >= 0) && (rd_stats->rate >= 0)); assert((rd_stats_luma->dist >= 0) && (rd_stats->dist >= 0)); assert((rd_stats_luma->sse >= 0) && (rd_stats->sse >= 0)); assert((rd_stats_luma->skip_txfm == 0) || (rd_stats_luma->skip_txfm == 1)); assert((rd_stats->skip_txfm == 0) || (rd_stats->skip_txfm == 1)); assert((skip_pred >= 0) && (skip_pred <= interp_search_flags->default_interp_skip_flags)); // When skip_txfm pred is equal to default_interp_skip_flags, // skip both luma and chroma MC. // For mono-chrome images: // num_planes = 1 and cpi->default_interp_skip_flags = 1, // skip_pred = 1: skip both luma and chroma // skip_pred = 0: Evaluate luma and as num_planes=1, // skip chroma evaluation int tmp_skip_pred = (skip_pred == interp_search_flags->default_interp_skip_flags) ? INTERP_SKIP_LUMA_SKIP_CHROMA : skip_pred; switch (tmp_skip_pred) { case INTERP_EVAL_LUMA_EVAL_CHROMA: // skip_pred = 0: Evaluate both luma and chroma. // Luma MC interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y, &this_rd_stats_luma, 0); this_rd_stats = this_rd_stats_luma; #if CONFIG_COLLECT_RD_STATS == 3 RD_STATS rd_stats_y; av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); #endif // CONFIG_COLLECT_RD_STATS == 3 AOM_FALLTHROUGH_INTENDED; case INTERP_SKIP_LUMA_EVAL_CHROMA: // skip_pred = 1: skip luma evaluation (retain previous best luma stats) // and do chroma evaluation. for (int plane = 1; plane < num_planes; ++plane) { int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist); if (tmp_rd >= *rd) { mbmi->interp_filters = last_best; return 0; } interp_model_rd_eval(x, cpi, bsize, orig_dst, plane, plane, &this_rd_stats, 0); } break; case INTERP_SKIP_LUMA_SKIP_CHROMA: // both luma and chroma evaluation is skipped this_rd_stats = *rd_stats; break; case INTERP_EVAL_INVALID: default: assert(0); return 0; } int64_t tmp_rd = RDCOST(x->rdmult, tmp_rs + this_rd_stats.rate, this_rd_stats.dist); if (tmp_rd < *rd) { *rd = tmp_rd; *switchable_rate = tmp_rs; if (skip_pred != interp_search_flags->default_interp_skip_flags) { if (skip_pred == INTERP_EVAL_LUMA_EVAL_CHROMA) { // Overwrite the data as current filter is the best one *rd_stats_luma = this_rd_stats_luma; *rd_stats = this_rd_stats; // As luma MC data is computed, no need to recompute after the search x->recalc_luma_mc_data = 0; } else if (skip_pred == INTERP_SKIP_LUMA_EVAL_CHROMA) { // As luma MC data is not computed, update of luma data can be skipped *rd_stats = this_rd_stats; // As luma MC data is not recomputed and current filter is the best, // indicate the possibility of recomputing MC data // If current buffer contains valid MC data, toggle to indicate that // luma MC data needs to be recomputed x->recalc_luma_mc_data ^= 1; } swap_dst_buf(xd, dst_bufs, num_planes); } return 1; } mbmi->interp_filters = last_best; return 0; } static INLINE INTERP_PRED_TYPE is_pred_filter_search_allowed( const AV1_COMP *const cpi, MACROBLOCKD *xd, BLOCK_SIZE bsize, int_interpfilters *af, int_interpfilters *lf) { const AV1_COMMON *cm = &cpi->common; const MB_MODE_INFO *const above_mbmi = xd->above_mbmi; const MB_MODE_INFO *const left_mbmi = xd->left_mbmi; const int bsl = mi_size_wide_log2[bsize]; int is_horiz_eq = 0, is_vert_eq = 0; if (above_mbmi && is_inter_block(above_mbmi)) *af = above_mbmi->interp_filters; if (left_mbmi && is_inter_block(left_mbmi)) *lf = left_mbmi->interp_filters; if (af->as_filters.x_filter != INTERP_INVALID) is_horiz_eq = af->as_filters.x_filter == lf->as_filters.x_filter; if (af->as_filters.y_filter != INTERP_INVALID) is_vert_eq = af->as_filters.y_filter == lf->as_filters.y_filter; INTERP_PRED_TYPE pred_filter_type = (is_vert_eq << 1) + is_horiz_eq; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int pred_filter_enable = cpi->sf.interp_sf.cb_pred_filter_search ? (((mi_row + mi_col) >> bsl) + get_chessboard_index(cm->current_frame.frame_number)) & 0x1 : 0; pred_filter_enable &= is_horiz_eq || is_vert_eq; // pred_filter_search = 0: pred_filter is disabled // pred_filter_search = 1: pred_filter is enabled and only horz pred matching // pred_filter_search = 2: pred_filter is enabled and only vert pred matching // pred_filter_search = 3: pred_filter is enabled and // both vert, horz pred matching return pred_filter_enable * pred_filter_type; } static DUAL_FILTER_TYPE find_best_interp_rd_facade( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, RD_STATS *rd_stats, int *const switchable_rate, const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], const int skip_pred, uint16_t allow_interp_mask, int is_w4_or_h4) { int tmp_skip_pred = skip_pred; DUAL_FILTER_TYPE best_filt_type = REG_REG; // If no filter are set to be evaluated, return from function if (allow_interp_mask == 0x0) return best_filt_type; // For block width or height is 4, skip the pred evaluation of SHARP_SHARP tmp_skip_pred = is_w4_or_h4 ? cpi->interp_search_flags.default_interp_skip_flags : skip_pred; // Loop over the all filter types and evaluate for only allowed filter types for (int filt_type = SHARP_SHARP; filt_type >= REG_REG; --filt_type) { const int is_filter_allowed = get_interp_filter_allowed_mask(allow_interp_mask, filt_type); if (is_filter_allowed) if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, filt_type, switchable_ctx, tmp_skip_pred)) best_filt_type = filt_type; tmp_skip_pred = skip_pred; } return best_filt_type; } static INLINE void pred_dual_interp_filter_rd( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, RD_STATS *rd_stats, int *const switchable_rate, const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], const int skip_pred, INTERP_PRED_TYPE pred_filt_type, int_interpfilters *af, int_interpfilters *lf) { (void)lf; assert(pred_filt_type > INTERP_HORZ_NEQ_VERT_NEQ); assert(pred_filt_type < INTERP_PRED_TYPE_ALL); uint16_t allowed_interp_mask = 0; if (pred_filt_type == INTERP_HORZ_EQ_VERT_NEQ) { // pred_filter_search = 1: Only horizontal filter is matching allowed_interp_mask = av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.x_filter]; } else if (pred_filt_type == INTERP_HORZ_NEQ_VERT_EQ) { // pred_filter_search = 2: Only vertical filter is matching allowed_interp_mask = av1_interp_dual_filt_mask[pred_filt_type - 1][af->as_filters.y_filter]; } else { // pred_filter_search = 3: Both horizontal and vertical filter are matching int filt_type = af->as_filters.x_filter + af->as_filters.y_filter * SWITCHABLE_FILTERS; set_interp_filter_allowed_mask(&allowed_interp_mask, filt_type); } // REG_REG is already been evaluated in the beginning reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG); find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, switchable_ctx, skip_pred, allowed_interp_mask, 0); } // Evaluate dual filter type // a) Using above, left block interp filter // b) Find the best horizontal filter and // then evaluate corresponding vertical filters. static INLINE void fast_dual_interp_filter_rd( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, RD_STATS *rd_stats, int *const switchable_rate, const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], const int skip_hor, const int skip_ver) { const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ; int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID); int_interpfilters lf = af; if (!have_newmv_in_inter_mode(mbmi->mode)) { pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf); } if (pred_filter_type) { pred_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, switchable_ctx, (skip_hor & skip_ver), pred_filter_type, &af, &lf); } else { const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; int best_dual_mode = 0; int skip_pred = bw <= 4 ? interp_search_flags->default_interp_skip_flags : skip_hor; // TODO(any): Make use of find_best_interp_rd_facade() // if speed impact is negligible for (int i = (SWITCHABLE_FILTERS - 1); i >= 1; --i) { if (interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, i, switchable_ctx, skip_pred)) { best_dual_mode = i; } skip_pred = skip_hor; } // From best of horizontal EIGHTTAP_REGULAR modes, check vertical modes skip_pred = bh <= 4 ? interp_search_flags->default_interp_skip_flags : skip_ver; for (int i = (best_dual_mode + (SWITCHABLE_FILTERS * 2)); i >= (best_dual_mode + SWITCHABLE_FILTERS); i -= SWITCHABLE_FILTERS) { interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, i, switchable_ctx, skip_pred); skip_pred = skip_ver; } } } // Find the best interp filter if dual_interp_filter = 0 static INLINE void find_best_non_dual_interp_filter( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t *const rd, RD_STATS *rd_stats_y, RD_STATS *rd_stats, int *const switchable_rate, const BUFFER_SET *dst_bufs[2], const int switchable_ctx[2], const int skip_ver, const int skip_hor) { const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; int8_t i; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; uint16_t interp_filter_search_mask = interp_search_flags->interp_filter_search_mask; if (cpi->sf.interp_sf.adaptive_interp_filter_search == 2) { const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); const int ctx0 = av1_get_pred_context_switchable_interp(xd, 0); const int ctx1 = av1_get_pred_context_switchable_interp(xd, 1); int use_actual_frame_probs = 1; const int *switchable_interp_p0; const int *switchable_interp_p1; #if CONFIG_FPMT_TEST use_actual_frame_probs = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; if (!use_actual_frame_probs) { switchable_interp_p0 = (int *)cpi->ppi->temp_frame_probs .switchable_interp_probs[update_type][ctx0]; switchable_interp_p1 = (int *)cpi->ppi->temp_frame_probs .switchable_interp_probs[update_type][ctx1]; } #endif if (use_actual_frame_probs) { switchable_interp_p0 = cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx0]; switchable_interp_p1 = cpi->ppi->frame_probs.switchable_interp_probs[update_type][ctx1]; } static const int thr[7] = { 0, 8, 8, 8, 8, 0, 8 }; const int thresh = thr[update_type]; for (i = 0; i < SWITCHABLE_FILTERS; i++) { // For non-dual case, the 2 dir's prob should be identical. assert(switchable_interp_p0[i] == switchable_interp_p1[i]); if (switchable_interp_p0[i] < thresh && switchable_interp_p1[i] < thresh) { DUAL_FILTER_TYPE filt_type = i + SWITCHABLE_FILTERS * i; reset_interp_filter_allowed_mask(&interp_filter_search_mask, filt_type); } } } // Regular filter evaluation should have been done and hence the same should // be the winner assert(x->e_mbd.mi[0]->interp_filters.as_int == filter_sets[0].as_int); if ((skip_hor & skip_ver) != interp_search_flags->default_interp_skip_flags) { INTERP_PRED_TYPE pred_filter_type = INTERP_HORZ_NEQ_VERT_NEQ; int_interpfilters af = av1_broadcast_interp_filter(INTERP_INVALID); int_interpfilters lf = af; pred_filter_type = is_pred_filter_search_allowed(cpi, xd, bsize, &af, &lf); if (pred_filter_type) { assert(af.as_filters.x_filter != INTERP_INVALID); int filter_idx = SWITCHABLE * af.as_filters.x_filter; // This assert tells that (filter_x == filter_y) for non-dual filter case assert(filter_sets[filter_idx].as_filters.x_filter == filter_sets[filter_idx].as_filters.y_filter); if (cpi->sf.interp_sf.adaptive_interp_filter_search && !(get_interp_filter_allowed_mask(interp_filter_search_mask, filter_idx))) { return; } if (filter_idx) { interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, filter_idx, switchable_ctx, (skip_hor & skip_ver)); } return; } } // Reuse regular filter's modeled rd data for sharp filter for following // cases // 1) When bsize is 4x4 // 2) When block width is 4 (i.e. 4x8/4x16 blocks) and MV in vertical // direction is full-pel // 3) When block height is 4 (i.e. 8x4/16x4 blocks) and MV in horizontal // direction is full-pel // TODO(any): Optimize cases 2 and 3 further if luma MV in relavant direction // alone is full-pel if ((bsize == BLOCK_4X4) || (block_size_wide[bsize] == 4 && skip_ver == interp_search_flags->default_interp_skip_flags) || (block_size_high[bsize] == 4 && skip_hor == interp_search_flags->default_interp_skip_flags)) { int skip_pred = skip_hor & skip_ver; uint16_t allowed_interp_mask = 0; // REG_REG filter type is evaluated beforehand, hence skip it set_interp_filter_allowed_mask(&allowed_interp_mask, SHARP_SHARP); set_interp_filter_allowed_mask(&allowed_interp_mask, SMOOTH_SMOOTH); if (cpi->sf.interp_sf.adaptive_interp_filter_search) allowed_interp_mask &= interp_filter_search_mask; find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, switchable_ctx, skip_pred, allowed_interp_mask, 1); } else { int skip_pred = (skip_hor & skip_ver); for (i = (SWITCHABLE_FILTERS + 1); i < DUAL_FILTER_SET_SIZE; i += (SWITCHABLE_FILTERS + 1)) { // This assert tells that (filter_x == filter_y) for non-dual filter case assert(filter_sets[i].as_filters.x_filter == filter_sets[i].as_filters.y_filter); if (cpi->sf.interp_sf.adaptive_interp_filter_search && !(get_interp_filter_allowed_mask(interp_filter_search_mask, i))) { continue; } interpolation_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, rd_stats_y, rd_stats, switchable_rate, dst_bufs, i, switchable_ctx, skip_pred); // In first iteration, smooth filter is evaluated. If smooth filter // (which is less sharper) is the winner among regular and smooth filters, // sharp filter evaluation is skipped // TODO(any): Refine this gating based on modelled rd only (i.e., by not // accounting switchable filter rate) if (cpi->sf.interp_sf.skip_sharp_interp_filter_search && skip_pred != interp_search_flags->default_interp_skip_flags) { if (mbmi->interp_filters.as_int == filter_sets[SMOOTH_SMOOTH].as_int) break; } } } } static INLINE void calc_interp_skip_pred_flag(MACROBLOCK *const x, const AV1_COMP *const cpi, int *skip_hor, int *skip_ver) { const AV1_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const int num_planes = av1_num_planes(cm); const int is_compound = has_second_ref(mbmi); assert(is_intrabc_block(mbmi) == 0); for (int ref = 0; ref < 1 + is_compound; ++ref) { const struct scale_factors *const sf = get_ref_scale_factors_const(cm, mbmi->ref_frame[ref]); // TODO(any): Refine skip flag calculation considering scaling if (av1_is_scaled(sf)) { *skip_hor = 0; *skip_ver = 0; break; } const MV mv = mbmi->mv[ref].as_mv; int skip_hor_plane = 0; int skip_ver_plane = 0; for (int plane_idx = 0; plane_idx < AOMMAX(1, (num_planes - 1)); ++plane_idx) { struct macroblockd_plane *const pd = &xd->plane[plane_idx]; const int bw = pd->width; const int bh = pd->height; const MV mv_q4 = clamp_mv_to_umv_border_sb( xd, &mv, bw, bh, pd->subsampling_x, pd->subsampling_y); const int sub_x = (mv_q4.col & SUBPEL_MASK) << SCALE_EXTRA_BITS; const int sub_y = (mv_q4.row & SUBPEL_MASK) << SCALE_EXTRA_BITS; skip_hor_plane |= ((sub_x == 0) << plane_idx); skip_ver_plane |= ((sub_y == 0) << plane_idx); } *skip_hor &= skip_hor_plane; *skip_ver &= skip_ver_plane; // It is not valid that "luma MV is sub-pel, whereas chroma MV is not" assert(*skip_hor != 2); assert(*skip_ver != 2); } // When compond prediction type is compound segment wedge, luma MC and chroma // MC need to go hand in hand as mask generated during luma MC is reuired for // chroma MC. If skip_hor = 0 and skip_ver = 1, mask used for chroma MC during // vertical filter decision may be incorrect as temporary MC evaluation // overwrites the mask. Make skip_ver as 0 for this case so that mask is // populated during luma MC if (is_compound && mbmi->compound_idx == 1 && mbmi->interinter_comp.type == COMPOUND_DIFFWTD) { assert(mbmi->comp_group_idx == 1); if (*skip_hor == 0 && *skip_ver == 1) *skip_ver = 0; } } /*!\brief AV1 interpolation filter search * * \ingroup inter_mode_search * * \param[in] cpi Top-level encoder structure. * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during * encoding. * \param[in] x Pointer to struc holding all the data for * the current macroblock. * \param[in] bsize Current block size. * \param[in] tmp_dst A temporary prediction buffer to hold a * computed prediction. * \param[in,out] orig_dst A prediction buffer to hold a computed * prediction. This will eventually hold the * final prediction, and the tmp_dst info will * be copied here. * \param[in,out] rd The RD cost associated with the selected * interpolation filter parameters. * \param[in,out] switchable_rate The rate associated with using a SWITCHABLE * filter mode. * \param[in,out] skip_build_pred Indicates whether or not to build the inter * predictor. If this is 0, the inter predictor * has already been built and thus we can avoid * repeating computation. * \param[in] args HandleInterModeArgs struct holding * miscellaneous arguments for inter mode * search. See the documentation for this * struct for a description of each member. * \param[in] ref_best_rd Best RD found so far for this block. * It is used for early termination of this * search if the RD exceeds this value. * * \return Returns INT64_MAX if the filter parameters are invalid and the * current motion mode being tested should be skipped. It returns 0 if the * parameter search is a success. */ int64_t av1_interpolation_filter_search( MACROBLOCK *const x, const AV1_COMP *const cpi, const TileDataEnc *tile_data, BLOCK_SIZE bsize, const BUFFER_SET *const tmp_dst, const BUFFER_SET *const orig_dst, int64_t *const rd, int *const switchable_rate, int *skip_build_pred, HandleInterModeArgs *args, int64_t ref_best_rd) { const AV1_COMMON *cm = &cpi->common; const InterpSearchFlags *interp_search_flags = &cpi->interp_search_flags; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const int need_search = av1_is_interp_needed(xd); const int ref_frame = xd->mi[0]->ref_frame[0]; RD_STATS rd_stats_luma, rd_stats; // Initialization of rd_stats structures with default values av1_init_rd_stats(&rd_stats_luma); av1_init_rd_stats(&rd_stats); int match_found_idx = -1; const InterpFilter assign_filter = cm->features.interp_filter; match_found_idx = av1_find_interp_filter_match( mbmi, cpi, assign_filter, need_search, args->interp_filter_stats, args->interp_filter_stats_idx); if (match_found_idx != -1) { *rd = args->interp_filter_stats[match_found_idx].rd; x->pred_sse[ref_frame] = args->interp_filter_stats[match_found_idx].pred_sse; *skip_build_pred = 0; return 0; } int switchable_ctx[2]; switchable_ctx[0] = av1_get_pred_context_switchable_interp(xd, 0); switchable_ctx[1] = av1_get_pred_context_switchable_interp(xd, 1); *switchable_rate = get_switchable_rate(x, mbmi->interp_filters, switchable_ctx, cm->seq_params->enable_dual_filter); // Do MC evaluation for default filter_type. // Luma MC interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_Y, AOM_PLANE_Y, &rd_stats_luma, *skip_build_pred); #if CONFIG_COLLECT_RD_STATS == 3 RD_STATS rd_stats_y; av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); PrintPredictionUnitStats(cpi, tile_data, x, &rd_stats_y, bsize); #endif // CONFIG_COLLECT_RD_STATS == 3 // Chroma MC if (num_planes > 1) { interp_model_rd_eval(x, cpi, bsize, orig_dst, AOM_PLANE_U, AOM_PLANE_V, &rd_stats, *skip_build_pred); } *skip_build_pred = 1; av1_merge_rd_stats(&rd_stats, &rd_stats_luma); assert(rd_stats.rate >= 0); *rd = RDCOST(x->rdmult, *switchable_rate + rd_stats.rate, rd_stats.dist); x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4); if (assign_filter != SWITCHABLE || match_found_idx != -1) { return 0; } if (!need_search) { int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); assert(mbmi->interp_filters.as_int == filters.as_int); (void)filters; return 0; } if (args->modelled_rd != NULL) { if (has_second_ref(mbmi)) { const int ref_mv_idx = mbmi->ref_mv_idx; MV_REFERENCE_FRAME *refs = mbmi->ref_frame; const int mode0 = compound_ref0_mode(mbmi->mode); const int mode1 = compound_ref1_mode(mbmi->mode); const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], args->modelled_rd[mode1][ref_mv_idx][refs[1]]); if ((*rd >> 1) > mrd && ref_best_rd < INT64_MAX) { return INT64_MAX; } } } x->recalc_luma_mc_data = 0; // skip_flag=xx (in binary form) // Setting 0th flag corresonds to skipping luma MC and setting 1st bt // corresponds to skipping chroma MC skip_flag=0 corresponds to "Don't skip // luma and chroma MC" Skip flag=1 corresponds to "Skip Luma MC only" // Skip_flag=2 is not a valid case // skip_flag=3 corresponds to "Skip both luma and chroma MC" int skip_hor = interp_search_flags->default_interp_skip_flags; int skip_ver = interp_search_flags->default_interp_skip_flags; calc_interp_skip_pred_flag(x, cpi, &skip_hor, &skip_ver); // do interp_filter search restore_dst_buf(xd, *tmp_dst, num_planes); const BUFFER_SET *dst_bufs[2] = { tmp_dst, orig_dst }; // Evaluate dual interp filters if (cm->seq_params->enable_dual_filter) { if (cpi->sf.interp_sf.use_fast_interpolation_filter_search) { fast_dual_interp_filter_rd(x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats, switchable_rate, dst_bufs, switchable_ctx, skip_hor, skip_ver); } else { // Use full interpolation filter search uint16_t allowed_interp_mask = ALLOW_ALL_INTERP_FILT_MASK; // REG_REG filter type is evaluated beforehand, so loop is repeated over // REG_SMOOTH to SHARP_SHARP for full interpolation filter search reset_interp_filter_allowed_mask(&allowed_interp_mask, REG_REG); find_best_interp_rd_facade(x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats, switchable_rate, dst_bufs, switchable_ctx, (skip_hor & skip_ver), allowed_interp_mask, 0); } } else { // Evaluate non-dual interp filters find_best_non_dual_interp_filter( x, cpi, tile_data, bsize, orig_dst, rd, &rd_stats_luma, &rd_stats, switchable_rate, dst_bufs, switchable_ctx, skip_ver, skip_hor); } swap_dst_buf(xd, dst_bufs, num_planes); // Recompute final MC data if required if (x->recalc_luma_mc_data == 1) { // Recomputing final luma MC data is required only if the same was skipped // in either of the directions Condition below is necessary, but not // sufficient assert((skip_hor == 1) || (skip_ver == 1)); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, AOM_PLANE_Y, AOM_PLANE_Y); } x->pred_sse[ref_frame] = (unsigned int)(rd_stats_luma.sse >> 4); // save search results if (cpi->sf.interp_sf.use_interp_filter) { assert(match_found_idx == -1); args->interp_filter_stats_idx = save_interp_filter_search_stat( mbmi, *rd, x->pred_sse[ref_frame], args->interp_filter_stats, args->interp_filter_stats_idx); } return 0; }