/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/common.h" #include "av1/common/filter.h" #include "av1/common/mvref_common.h" #include "av1/common/reconinter.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" static INLINE void init_mv_cost_params(MV_COST_PARAMS *mv_cost_params, const MvCosts *mv_costs, const MV *ref_mv, int errorperbit, int sadperbit) { mv_cost_params->ref_mv = ref_mv; mv_cost_params->full_ref_mv = get_fullmv_from_mv(ref_mv); mv_cost_params->mv_cost_type = MV_COST_ENTROPY; mv_cost_params->error_per_bit = errorperbit; mv_cost_params->sad_per_bit = sadperbit; // For allintra encoding mode, 'mv_costs' is not allocated. Hence, the // population of mvjcost and mvcost are avoided. In case of IntraBC, these // values are populated from 'dv_costs' in av1_set_ms_to_intra_mode(). if (mv_costs != NULL) { mv_cost_params->mvjcost = mv_costs->nmv_joint_cost; mv_cost_params->mvcost[0] = mv_costs->mv_cost_stack[0]; mv_cost_params->mvcost[1] = mv_costs->mv_cost_stack[1]; } } static INLINE void init_ms_buffers(MSBuffers *ms_buffers, const MACROBLOCK *x) { ms_buffers->ref = &x->e_mbd.plane[0].pre[0]; ms_buffers->src = &x->plane[0].src; av1_set_ms_compound_refs(ms_buffers, NULL, NULL, 0, 0); ms_buffers->wsrc = x->obmc_buffer.wsrc; ms_buffers->obmc_mask = x->obmc_buffer.mask; } void av1_init_obmc_buffer(OBMCBuffer *obmc_buffer) { obmc_buffer->wsrc = NULL; obmc_buffer->mask = NULL; obmc_buffer->above_pred = NULL; obmc_buffer->left_pred = NULL; } void av1_make_default_fullpel_ms_params( FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, const MV *ref_mv, FULLPEL_MV start_mv, const search_site_config search_sites[NUM_DISTINCT_SEARCH_METHODS], SEARCH_METHODS search_method, int fine_search_interval) { const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf; const int is_key_frame = cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == KF_UPDATE; // High level params ms_params->bsize = bsize; ms_params->vfp = &cpi->ppi->fn_ptr[bsize]; init_ms_buffers(&ms_params->ms_buffers, x); av1_set_mv_search_method(ms_params, search_sites, search_method); ms_params->mesh_patterns[0] = mv_sf->mesh_patterns; ms_params->mesh_patterns[1] = mv_sf->intrabc_mesh_patterns; ms_params->force_mesh_thresh = mv_sf->exhaustive_searches_thresh; ms_params->prune_mesh_search = (cpi->sf.mv_sf.prune_mesh_search == PRUNE_MESH_SEARCH_LVL_2) ? 1 : 0; ms_params->mesh_search_mv_diff_threshold = 4; ms_params->run_mesh_search = 0; ms_params->fine_search_interval = fine_search_interval; ms_params->is_intra_mode = 0; ms_params->fast_obmc_search = mv_sf->obmc_full_pixel_search_level; ms_params->mv_limits = x->mv_limits; av1_set_mv_search_range(&ms_params->mv_limits, ref_mv); // Mvcost params init_mv_cost_params(&ms_params->mv_cost_params, x->mv_costs, ref_mv, x->errorperbit, x->sadperbit); ms_params->sdf = ms_params->vfp->sdf; ms_params->sdx4df = ms_params->vfp->sdx4df; ms_params->sdx3df = ms_params->vfp->sdx3df; if (mv_sf->use_downsampled_sad == 2 && block_size_high[bsize] >= 16) { ms_params->sdf = ms_params->vfp->sdsf; ms_params->sdx4df = ms_params->vfp->sdsx4df; // Skip version of sadx3 is not available yet ms_params->sdx3df = ms_params->vfp->sdsx4df; } else if (mv_sf->use_downsampled_sad == 1 && block_size_high[bsize] >= 16 && !is_key_frame) { FULLPEL_MV start_mv_clamped = start_mv; // adjust start_mv to make sure it is within MV range clamp_fullmv(&start_mv_clamped, &ms_params->mv_limits); const struct buf_2d *const ref = ms_params->ms_buffers.ref; const int ref_stride = ref->stride; const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv_clamped); const struct buf_2d *const src = ms_params->ms_buffers.src; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; unsigned int start_mv_sad_even_rows, start_mv_sad_odd_rows; start_mv_sad_even_rows = ms_params->vfp->sdsf(src_buf, src_stride, best_address, ref_stride); start_mv_sad_odd_rows = ms_params->vfp->sdsf(src_buf + src_stride, src_stride, best_address + ref_stride, ref_stride); // If the absolute SAD difference computed between the pred-to-src of even // and odd rows is small, skip every other row in sad computation. const int odd_to_even_diff_sad = abs((int)start_mv_sad_even_rows - (int)start_mv_sad_odd_rows); const int mult_thresh = 4; if (odd_to_even_diff_sad * mult_thresh < (int)start_mv_sad_even_rows) { ms_params->sdf = ms_params->vfp->sdsf; ms_params->sdx4df = ms_params->vfp->sdsx4df; ms_params->sdx3df = ms_params->vfp->sdsx4df; } } } void av1_set_ms_to_intra_mode(FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const IntraBCMVCosts *dv_costs) { ms_params->is_intra_mode = 1; MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; mv_cost_params->mvjcost = dv_costs->joint_mv; mv_cost_params->mvcost[0] = dv_costs->dv_costs[0]; mv_cost_params->mvcost[1] = dv_costs->dv_costs[1]; } void av1_make_default_subpel_ms_params(SUBPEL_MOTION_SEARCH_PARAMS *ms_params, const struct AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize, const MV *ref_mv, const int *cost_list) { const AV1_COMMON *cm = &cpi->common; // High level params ms_params->allow_hp = cm->features.allow_high_precision_mv; ms_params->forced_stop = cpi->sf.mv_sf.subpel_force_stop; ms_params->iters_per_step = cpi->sf.mv_sf.subpel_iters_per_step; ms_params->cost_list = cond_cost_list_const(cpi, cost_list); av1_set_subpel_mv_search_range(&ms_params->mv_limits, &x->mv_limits, ref_mv); // Mvcost params init_mv_cost_params(&ms_params->mv_cost_params, x->mv_costs, ref_mv, x->errorperbit, x->sadperbit); // Subpel variance params ms_params->var_params.vfp = &cpi->ppi->fn_ptr[bsize]; ms_params->var_params.subpel_search_type = cpi->sf.mv_sf.use_accurate_subpel_search; ms_params->var_params.w = block_size_wide[bsize]; ms_params->var_params.h = block_size_high[bsize]; // Ref and src buffers MSBuffers *ms_buffers = &ms_params->var_params.ms_buffers; init_ms_buffers(ms_buffers, x); } void av1_set_mv_search_range(FullMvLimits *mv_limits, const MV *mv) { // Calculate the outermost full-pixel MVs which are inside the limits set by // av1_set_subpel_mv_search_range(). // // The subpel limits are simply mv->col +/- 8*MAX_FULL_PEL_VAL, and similar // for mv->row. We can then divide by 8 to find the fullpel MV limits. But // we have to be careful about the rounding. We want these bounds to be // at least as tight as the subpel limits, which means that we must round // the minimum values up and the maximum values down when dividing. int col_min = ((mv->col + 7) >> 3) - MAX_FULL_PEL_VAL; int row_min = ((mv->row + 7) >> 3) - MAX_FULL_PEL_VAL; int col_max = (mv->col >> 3) + MAX_FULL_PEL_VAL; int row_max = (mv->row >> 3) + MAX_FULL_PEL_VAL; col_min = AOMMAX(col_min, (MV_LOW >> 3) + 1); row_min = AOMMAX(row_min, (MV_LOW >> 3) + 1); col_max = AOMMIN(col_max, (MV_UPP >> 3) - 1); row_max = AOMMIN(row_max, (MV_UPP >> 3) - 1); // Get intersection of UMV window and valid MV window to reduce # of checks // in diamond search. if (mv_limits->col_min < col_min) mv_limits->col_min = col_min; if (mv_limits->col_max > col_max) mv_limits->col_max = col_max; if (mv_limits->row_min < row_min) mv_limits->row_min = row_min; if (mv_limits->row_max > row_max) mv_limits->row_max = row_max; mv_limits->col_max = AOMMAX(mv_limits->col_min, mv_limits->col_max); mv_limits->row_max = AOMMAX(mv_limits->row_min, mv_limits->row_max); } int av1_init_search_range(int size) { int sr = 0; // Minimum search size no matter what the passed in value. size = AOMMAX(16, size); while ((size << sr) < MAX_FULL_PEL_VAL) sr++; sr = AOMMIN(sr, MAX_MVSEARCH_STEPS - 2); return sr; } // ============================================================================ // Cost of motion vectors // ============================================================================ // TODO(any): Adaptively adjust the regularization strength based on image size // and motion activity instead of using hard-coded values. It seems like we // roughly half the lambda for each increase in resolution // These are multiplier used to perform regularization in motion compensation // when x->mv_cost_type is set to MV_COST_L1. // LOWRES #define SSE_LAMBDA_LOWRES 2 // Used by mv_cost_err_fn #define SAD_LAMBDA_LOWRES 32 // Used by mvsad_err_cost during full pixel search // MIDRES #define SSE_LAMBDA_MIDRES 0 // Used by mv_cost_err_fn #define SAD_LAMBDA_MIDRES 15 // Used by mvsad_err_cost during full pixel search // HDRES #define SSE_LAMBDA_HDRES 1 // Used by mv_cost_err_fn #define SAD_LAMBDA_HDRES 8 // Used by mvsad_err_cost during full pixel search // Returns the rate of encoding the current motion vector based on the // joint_cost and comp_cost. joint_costs covers the cost of transmitting // JOINT_MV, and comp_cost covers the cost of transmitting the actual motion // vector. static INLINE int mv_cost(const MV *mv, const int *joint_cost, const int *const comp_cost[2]) { return joint_cost[av1_get_mv_joint(mv)] + comp_cost[0][mv->row] + comp_cost[1][mv->col]; } #define CONVERT_TO_CONST_MVCOST(ptr) ((const int *const *)(ptr)) // Returns the cost of encoding the motion vector diff := *mv - *ref. The cost // is defined as the rate required to encode diff * weight, rounded to the // nearest 2 ** 7. // This is NOT used during motion compensation. int av1_mv_bit_cost(const MV *mv, const MV *ref_mv, const int *mvjcost, int *const mvcost[2], int weight) { const MV diff = { mv->row - ref_mv->row, mv->col - ref_mv->col }; return ROUND_POWER_OF_TWO( mv_cost(&diff, mvjcost, CONVERT_TO_CONST_MVCOST(mvcost)) * weight, 7); } // Returns the cost of using the current mv during the motion search. This is // used when var is used as the error metric. #define PIXEL_TRANSFORM_ERROR_SCALE 4 static INLINE int mv_err_cost(const MV *mv, const MV *ref_mv, const int *mvjcost, const int *const mvcost[2], int error_per_bit, MV_COST_TYPE mv_cost_type) { const MV diff = { mv->row - ref_mv->row, mv->col - ref_mv->col }; const MV abs_diff = { abs(diff.row), abs(diff.col) }; switch (mv_cost_type) { case MV_COST_ENTROPY: if (mvcost) { return (int)ROUND_POWER_OF_TWO_64( (int64_t)mv_cost(&diff, mvjcost, mvcost) * error_per_bit, RDDIV_BITS + AV1_PROB_COST_SHIFT - RD_EPB_SHIFT + PIXEL_TRANSFORM_ERROR_SCALE); } return 0; case MV_COST_L1_LOWRES: return (SSE_LAMBDA_LOWRES * (abs_diff.row + abs_diff.col)) >> 3; case MV_COST_L1_MIDRES: return (SSE_LAMBDA_MIDRES * (abs_diff.row + abs_diff.col)) >> 3; case MV_COST_L1_HDRES: return (SSE_LAMBDA_HDRES * (abs_diff.row + abs_diff.col)) >> 3; case MV_COST_NONE: return 0; default: assert(0 && "Invalid rd_cost_type"); return 0; } } static INLINE int mv_err_cost_(const MV *mv, const MV_COST_PARAMS *mv_cost_params) { if (mv_cost_params->mv_cost_type == MV_COST_NONE) { return 0; } return mv_err_cost(mv, mv_cost_params->ref_mv, mv_cost_params->mvjcost, mv_cost_params->mvcost, mv_cost_params->error_per_bit, mv_cost_params->mv_cost_type); } // Returns the cost of using the current mv during the motion search. This is // only used during full pixel motion search when sad is used as the error // metric static INLINE int mvsad_err_cost(const FULLPEL_MV *mv, const FULLPEL_MV *ref_mv, const int *mvjcost, const int *const mvcost[2], int sad_per_bit, MV_COST_TYPE mv_cost_type) { const MV diff = { GET_MV_SUBPEL(mv->row - ref_mv->row), GET_MV_SUBPEL(mv->col - ref_mv->col) }; switch (mv_cost_type) { case MV_COST_ENTROPY: return ROUND_POWER_OF_TWO( (unsigned)mv_cost(&diff, mvjcost, CONVERT_TO_CONST_MVCOST(mvcost)) * sad_per_bit, AV1_PROB_COST_SHIFT); case MV_COST_L1_LOWRES: return (SAD_LAMBDA_LOWRES * (abs(diff.row) + abs(diff.col))) >> 3; case MV_COST_L1_MIDRES: return (SAD_LAMBDA_MIDRES * (abs(diff.row) + abs(diff.col))) >> 3; case MV_COST_L1_HDRES: return (SAD_LAMBDA_HDRES * (abs(diff.row) + abs(diff.col))) >> 3; case MV_COST_NONE: return 0; default: assert(0 && "Invalid rd_cost_type"); return 0; } } static INLINE int mvsad_err_cost_(const FULLPEL_MV *mv, const MV_COST_PARAMS *mv_cost_params) { return mvsad_err_cost(mv, &mv_cost_params->full_ref_mv, mv_cost_params->mvjcost, mv_cost_params->mvcost, mv_cost_params->sad_per_bit, mv_cost_params->mv_cost_type); } // ============================================================================= // Fullpixel Motion Search: Translational // ============================================================================= #define MAX_PATTERN_SCALES 11 #define MAX_PATTERN_CANDIDATES 8 // max number of candidates per scale #define PATTERN_CANDIDATES_REF 3 // number of refinement candidates // Search site initialization for DIAMOND / CLAMPED_DIAMOND search methods. // level = 0: DIAMOND, level = 1: CLAMPED_DIAMOND. void av1_init_dsmotion_compensation(search_site_config *cfg, int stride, int level) { int num_search_steps = 0; int stage_index = MAX_MVSEARCH_STEPS - 1; cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0; cfg->site[stage_index][0].offset = 0; cfg->stride = stride; // Choose the initial step size depending on level. const int first_step = (level > 0) ? (MAX_FIRST_STEP / 4) : MAX_FIRST_STEP; for (int radius = first_step; radius > 0;) { int num_search_pts = 8; const FULLPEL_MV search_site_mvs[13] = { { 0, 0 }, { -radius, 0 }, { radius, 0 }, { 0, -radius }, { 0, radius }, { -radius, -radius }, { radius, radius }, { -radius, radius }, { radius, -radius }, }; int i; for (i = 0; i <= num_search_pts; ++i) { search_site *const site = &cfg->site[stage_index][i]; site->mv = search_site_mvs[i]; site->offset = get_offset_from_fullmv(&site->mv, stride); } cfg->searches_per_step[stage_index] = num_search_pts; cfg->radius[stage_index] = radius; // Update the search radius based on level. if (!level || ((stage_index < 9) && level)) radius /= 2; --stage_index; ++num_search_steps; } cfg->num_search_steps = num_search_steps; } void av1_init_motion_fpf(search_site_config *cfg, int stride) { int num_search_steps = 0; int stage_index = MAX_MVSEARCH_STEPS - 1; cfg->site[stage_index][0].mv.col = cfg->site[stage_index][0].mv.row = 0; cfg->site[stage_index][0].offset = 0; cfg->stride = stride; for (int radius = MAX_FIRST_STEP; radius > 0; radius /= 2) { // Generate offsets for 8 search sites per step. int tan_radius = AOMMAX((int)(0.41 * radius), 1); int num_search_pts = 12; if (radius == 1) num_search_pts = 8; const FULLPEL_MV search_site_mvs[13] = { { 0, 0 }, { -radius, 0 }, { radius, 0 }, { 0, -radius }, { 0, radius }, { -radius, -tan_radius }, { radius, tan_radius }, { -tan_radius, radius }, { tan_radius, -radius }, { -radius, tan_radius }, { radius, -tan_radius }, { tan_radius, radius }, { -tan_radius, -radius }, }; int i; for (i = 0; i <= num_search_pts; ++i) { search_site *const site = &cfg->site[stage_index][i]; site->mv = search_site_mvs[i]; site->offset = get_offset_from_fullmv(&site->mv, stride); } cfg->searches_per_step[stage_index] = num_search_pts; cfg->radius[stage_index] = radius; --stage_index; ++num_search_steps; } cfg->num_search_steps = num_search_steps; } // Search site initialization for NSTEP / NSTEP_8PT search methods. // level = 0: NSTEP, level = 1: NSTEP_8PT. void av1_init_motion_compensation_nstep(search_site_config *cfg, int stride, int level) { int num_search_steps = 0; int stage_index = 0; cfg->stride = stride; int radius = 1; const int num_stages = (level > 0) ? 16 : 15; for (stage_index = 0; stage_index < num_stages; ++stage_index) { int tan_radius = AOMMAX((int)(0.41 * radius), 1); int num_search_pts = 12; if ((radius <= 5) || (level > 0)) { tan_radius = radius; num_search_pts = 8; } const FULLPEL_MV search_site_mvs[13] = { { 0, 0 }, { -radius, 0 }, { radius, 0 }, { 0, -radius }, { 0, radius }, { -radius, -tan_radius }, { radius, tan_radius }, { -tan_radius, radius }, { tan_radius, -radius }, { -radius, tan_radius }, { radius, -tan_radius }, { tan_radius, radius }, { -tan_radius, -radius }, }; for (int i = 0; i <= num_search_pts; ++i) { search_site *const site = &cfg->site[stage_index][i]; site->mv = search_site_mvs[i]; site->offset = get_offset_from_fullmv(&site->mv, stride); } cfg->searches_per_step[stage_index] = num_search_pts; cfg->radius[stage_index] = radius; ++num_search_steps; if (stage_index < 12) radius = (int)AOMMAX((radius * 1.5 + 0.5), radius + 1); } cfg->num_search_steps = num_search_steps; } // Search site initialization for BIGDIA / FAST_BIGDIA / FAST_DIAMOND // search methods. void av1_init_motion_compensation_bigdia(search_site_config *cfg, int stride, int level) { (void)level; cfg->stride = stride; // First scale has 4-closest points, the rest have 8 points in diamond // shape at increasing scales static const int bigdia_num_candidates[MAX_PATTERN_SCALES] = { 4, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; // BIGDIA search method candidates. // Note that the largest candidate step at each scale is 2^scale /* clang-format off */ static const FULLPEL_MV site_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 }, { 0, 0 } }, { { -1, -1 }, { 0, -2 }, { 1, -1 }, { 2, 0 }, { 1, 1 }, { 0, 2 }, { -1, 1 }, { -2, 0 } }, { { -2, -2 }, { 0, -4 }, { 2, -2 }, { 4, 0 }, { 2, 2 }, { 0, 4 }, { -2, 2 }, { -4, 0 } }, { { -4, -4 }, { 0, -8 }, { 4, -4 }, { 8, 0 }, { 4, 4 }, { 0, 8 }, { -4, 4 }, { -8, 0 } }, { { -8, -8 }, { 0, -16 }, { 8, -8 }, { 16, 0 }, { 8, 8 }, { 0, 16 }, { -8, 8 }, { -16, 0 } }, { { -16, -16 }, { 0, -32 }, { 16, -16 }, { 32, 0 }, { 16, 16 }, { 0, 32 }, { -16, 16 }, { -32, 0 } }, { { -32, -32 }, { 0, -64 }, { 32, -32 }, { 64, 0 }, { 32, 32 }, { 0, 64 }, { -32, 32 }, { -64, 0 } }, { { -64, -64 }, { 0, -128 }, { 64, -64 }, { 128, 0 }, { 64, 64 }, { 0, 128 }, { -64, 64 }, { -128, 0 } }, { { -128, -128 }, { 0, -256 }, { 128, -128 }, { 256, 0 }, { 128, 128 }, { 0, 256 }, { -128, 128 }, { -256, 0 } }, { { -256, -256 }, { 0, -512 }, { 256, -256 }, { 512, 0 }, { 256, 256 }, { 0, 512 }, { -256, 256 }, { -512, 0 } }, { { -512, -512 }, { 0, -1024 }, { 512, -512 }, { 1024, 0 }, { 512, 512 }, { 0, 1024 }, { -512, 512 }, { -1024, 0 } }, }; /* clang-format on */ int radius = 1; for (int i = 0; i < MAX_PATTERN_SCALES; ++i) { cfg->searches_per_step[i] = bigdia_num_candidates[i]; cfg->radius[i] = radius; for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) { search_site *const site = &cfg->site[i][j]; site->mv = site_candidates[i][j]; site->offset = get_offset_from_fullmv(&site->mv, stride); } radius *= 2; } cfg->num_search_steps = MAX_PATTERN_SCALES; } // Search site initialization for SQUARE search method. void av1_init_motion_compensation_square(search_site_config *cfg, int stride, int level) { (void)level; cfg->stride = stride; // All scales have 8 closest points in square shape. static const int square_num_candidates[MAX_PATTERN_SCALES] = { 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, }; // Square search method candidates. // Note that the largest candidate step at each scale is 2^scale. /* clang-format off */ static const FULLPEL_MV square_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } }, { { -2, -2 }, { 0, -2 }, { 2, -2 }, { 2, 0 }, { 2, 2 }, { 0, 2 }, { -2, 2 }, { -2, 0 } }, { { -4, -4 }, { 0, -4 }, { 4, -4 }, { 4, 0 }, { 4, 4 }, { 0, 4 }, { -4, 4 }, { -4, 0 } }, { { -8, -8 }, { 0, -8 }, { 8, -8 }, { 8, 0 }, { 8, 8 }, { 0, 8 }, { -8, 8 }, { -8, 0 } }, { { -16, -16 }, { 0, -16 }, { 16, -16 }, { 16, 0 }, { 16, 16 }, { 0, 16 }, { -16, 16 }, { -16, 0 } }, { { -32, -32 }, { 0, -32 }, { 32, -32 }, { 32, 0 }, { 32, 32 }, { 0, 32 }, { -32, 32 }, { -32, 0 } }, { { -64, -64 }, { 0, -64 }, { 64, -64 }, { 64, 0 }, { 64, 64 }, { 0, 64 }, { -64, 64 }, { -64, 0 } }, { { -128, -128 }, { 0, -128 }, { 128, -128 }, { 128, 0 }, { 128, 128 }, { 0, 128 }, { -128, 128 }, { -128, 0 } }, { { -256, -256 }, { 0, -256 }, { 256, -256 }, { 256, 0 }, { 256, 256 }, { 0, 256 }, { -256, 256 }, { -256, 0 } }, { { -512, -512 }, { 0, -512 }, { 512, -512 }, { 512, 0 }, { 512, 512 }, { 0, 512 }, { -512, 512 }, { -512, 0 } }, { { -1024, -1024 }, { 0, -1024 }, { 1024, -1024 }, { 1024, 0 }, { 1024, 1024 }, { 0, 1024 }, { -1024, 1024 }, { -1024, 0 } }, }; /* clang-format on */ int radius = 1; for (int i = 0; i < MAX_PATTERN_SCALES; ++i) { cfg->searches_per_step[i] = square_num_candidates[i]; cfg->radius[i] = radius; for (int j = 0; j < MAX_PATTERN_CANDIDATES; ++j) { search_site *const site = &cfg->site[i][j]; site->mv = square_candidates[i][j]; site->offset = get_offset_from_fullmv(&site->mv, stride); } radius *= 2; } cfg->num_search_steps = MAX_PATTERN_SCALES; } // Search site initialization for HEX / FAST_HEX search methods. void av1_init_motion_compensation_hex(search_site_config *cfg, int stride, int level) { (void)level; cfg->stride = stride; // First scale has 8-closest points, the rest have 6 points in hex shape // at increasing scales. static const int hex_num_candidates[MAX_PATTERN_SCALES] = { 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6 }; // Note that the largest candidate step at each scale is 2^scale. /* clang-format off */ static const FULLPEL_MV hex_candidates[MAX_PATTERN_SCALES][MAX_PATTERN_CANDIDATES] = { { { -1, -1 }, { 0, -1 }, { 1, -1 }, { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 } }, { { -1, -2 }, { 1, -2 }, { 2, 0 }, { 1, 2 }, { -1, 2 }, { -2, 0 } }, { { -2, -4 }, { 2, -4 }, { 4, 0 }, { 2, 4 }, { -2, 4 }, { -4, 0 } }, { { -4, -8 }, { 4, -8 }, { 8, 0 }, { 4, 8 }, { -4, 8 }, { -8, 0 } }, { { -8, -16 }, { 8, -16 }, { 16, 0 }, { 8, 16 }, { -8, 16 }, { -16, 0 } }, { { -16, -32 }, { 16, -32 }, { 32, 0 }, { 16, 32 }, { -16, 32 }, { -32, 0 } }, { { -32, -64 }, { 32, -64 }, { 64, 0 }, { 32, 64 }, { -32, 64 }, { -64, 0 } }, { { -64, -128 }, { 64, -128 }, { 128, 0 }, { 64, 128 }, { -64, 128 }, { -128, 0 } }, { { -128, -256 }, { 128, -256 }, { 256, 0 }, { 128, 256 }, { -128, 256 }, { -256, 0 } }, { { -256, -512 }, { 256, -512 }, { 512, 0 }, { 256, 512 }, { -256, 512 }, { -512, 0 } }, { { -512, -1024 }, { 512, -1024 }, { 1024, 0 }, { 512, 1024 }, { -512, 1024 }, { -1024, 0 } }, }; /* clang-format on */ int radius = 1; for (int i = 0; i < MAX_PATTERN_SCALES; ++i) { cfg->searches_per_step[i] = hex_num_candidates[i]; cfg->radius[i] = radius; for (int j = 0; j < hex_num_candidates[i]; ++j) { search_site *const site = &cfg->site[i][j]; site->mv = hex_candidates[i][j]; site->offset = get_offset_from_fullmv(&site->mv, stride); } radius *= 2; } cfg->num_search_steps = MAX_PATTERN_SCALES; } const av1_init_search_site_config av1_init_motion_compensation[NUM_DISTINCT_SEARCH_METHODS] = { av1_init_dsmotion_compensation, av1_init_motion_compensation_nstep, av1_init_motion_compensation_nstep, av1_init_dsmotion_compensation, av1_init_motion_compensation_hex, av1_init_motion_compensation_bigdia, av1_init_motion_compensation_square }; // Checks whether the mv is within range of the mv_limits static INLINE int check_bounds(const FullMvLimits *mv_limits, int row, int col, int range) { return ((row - range) >= mv_limits->row_min) & ((row + range) <= mv_limits->row_max) & ((col - range) >= mv_limits->col_min) & ((col + range) <= mv_limits->col_max); } static INLINE int get_mvpred_var_cost( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv, FULLPEL_MV_STATS *mv_stats) { const aom_variance_fn_ptr_t *vfp = ms_params->vfp; const MV sub_this_mv = get_mv_from_fullmv(this_mv); const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; const int ref_stride = ref->stride; int bestsme; bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv), ref_stride, &mv_stats->sse); mv_stats->distortion = bestsme; mv_stats->err_cost = mv_err_cost_(&sub_this_mv, &ms_params->mv_cost_params); bestsme += mv_stats->err_cost; return bestsme; } static INLINE int get_mvpred_sad(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct buf_2d *const src, const uint8_t *const ref_address, const int ref_stride) { const uint8_t *src_buf = src->buf; const int src_stride = src->stride; return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride); } static INLINE int get_mvpred_compound_var_cost( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv, FULLPEL_MV_STATS *mv_stats) { const aom_variance_fn_ptr_t *vfp = ms_params->vfp; const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; const int ref_stride = ref->stride; const uint8_t *mask = ms_params->ms_buffers.mask; const uint8_t *second_pred = ms_params->ms_buffers.second_pred; const int mask_stride = ms_params->ms_buffers.mask_stride; const int invert_mask = ms_params->ms_buffers.inv_mask; int bestsme; if (mask) { bestsme = vfp->msvf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0, src_buf, src_stride, second_pred, mask, mask_stride, invert_mask, &mv_stats->sse); } else if (second_pred) { bestsme = vfp->svaf(get_buf_from_fullmv(ref, this_mv), ref_stride, 0, 0, src_buf, src_stride, &mv_stats->sse, second_pred); } else { bestsme = vfp->vf(src_buf, src_stride, get_buf_from_fullmv(ref, this_mv), ref_stride, &mv_stats->sse); } mv_stats->distortion = bestsme; const MV sub_this_mv = get_mv_from_fullmv(this_mv); mv_stats->err_cost = mv_err_cost_(&sub_this_mv, &ms_params->mv_cost_params); bestsme += mv_stats->err_cost; return bestsme; } static INLINE int get_mvpred_compound_sad( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct buf_2d *const src, const uint8_t *const ref_address, const int ref_stride) { const aom_variance_fn_ptr_t *vfp = ms_params->vfp; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; const uint8_t *mask = ms_params->ms_buffers.mask; const uint8_t *second_pred = ms_params->ms_buffers.second_pred; const int mask_stride = ms_params->ms_buffers.mask_stride; const int invert_mask = ms_params->ms_buffers.inv_mask; if (mask) { return vfp->msdf(src_buf, src_stride, ref_address, ref_stride, second_pred, mask, mask_stride, invert_mask); } else if (second_pred) { return vfp->sdaf(src_buf, src_stride, ref_address, ref_stride, second_pred); } else { return ms_params->sdf(src_buf, src_stride, ref_address, ref_stride); } } // Calculates and returns a sad+mvcost list around an integer best pel during // fullpixel motion search. The resulting list can be used to speed up subpel // motion search later. #define USE_SAD_COSTLIST 1 // calc_int_cost_list uses var to populate the costlist, which is more accurate // than sad but slightly slower. static AOM_FORCE_INLINE void calc_int_cost_list( const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, int *cost_list) { static const FULLPEL_MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; const int br = best_mv.row; const int bc = best_mv.col; FULLPEL_MV_STATS mv_stats; cost_list[0] = get_mvpred_var_cost(ms_params, &best_mv, &mv_stats); if (check_bounds(&ms_params->mv_limits, br, bc, 1)) { for (int i = 0; i < 4; i++) { const FULLPEL_MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; cost_list[i + 1] = get_mvpred_var_cost(ms_params, &neighbor_mv, &mv_stats); } } else { for (int i = 0; i < 4; i++) { const FULLPEL_MV neighbor_mv = { br + neighbors[i].row, bc + neighbors[i].col }; if (!av1_is_fullmv_in_range(&ms_params->mv_limits, neighbor_mv)) { cost_list[i + 1] = INT_MAX; } else { cost_list[i + 1] = get_mvpred_var_cost(ms_params, &neighbor_mv, &mv_stats); } } } } // calc_int_sad_list uses sad to populate the costlist, which is less accurate // than var but faster. static AOM_FORCE_INLINE void calc_int_sad_list( const FULLPEL_MV best_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, int *cost_list, int costlist_has_sad) { static const FULLPEL_MV neighbors[4] = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }; const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const int ref_stride = ref->stride; const int br = best_mv.row; const int bc = best_mv.col; assert(av1_is_fullmv_in_range(&ms_params->mv_limits, best_mv)); // Refresh the costlist it does not contain valid sad if (!costlist_has_sad) { cost_list[0] = get_mvpred_sad( ms_params, src, get_buf_from_fullmv(ref, &best_mv), ref_stride); if (check_bounds(&ms_params->mv_limits, br, bc, 1)) { for (int i = 0; i < 4; i++) { const FULLPEL_MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; cost_list[i + 1] = get_mvpred_sad( ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride); } } else { for (int i = 0; i < 4; i++) { const FULLPEL_MV this_mv = { br + neighbors[i].row, bc + neighbors[i].col }; if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) { cost_list[i + 1] = INT_MAX; } else { cost_list[i + 1] = get_mvpred_sad( ms_params, src, get_buf_from_fullmv(ref, &this_mv), ref_stride); } } } } const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; cost_list[0] += mvsad_err_cost_(&best_mv, mv_cost_params); for (int idx = 0; idx < 4; idx++) { if (cost_list[idx + 1] != INT_MAX) { const FULLPEL_MV this_mv = { br + neighbors[idx].row, bc + neighbors[idx].col }; cost_list[idx + 1] += mvsad_err_cost_(&this_mv, mv_cost_params); } } } // Computes motion vector cost and adds to the sad cost. // Then updates the best sad and motion vectors. // Inputs: // this_sad: the sad to be evaluated. // mv: the current motion vector. // mv_cost_params: a structure containing information to compute mv cost. // best_sad: the current best sad. // raw_best_sad (optional): the current best sad without calculating mv cost. // best_mv: the current best motion vector. // second_best_mv (optional): the second best motion vector up to now. // Modifies: // best_sad, raw_best_sad, best_mv, second_best_mv // If the current sad is lower than the current best sad. // Returns: // Whether the input sad (mv) is better than the current best. static AOM_INLINE int update_mvs_and_sad(const unsigned int this_sad, const FULLPEL_MV *mv, const MV_COST_PARAMS *mv_cost_params, unsigned int *best_sad, unsigned int *raw_best_sad, FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) { if (this_sad >= *best_sad) return 0; // Add the motion vector cost. const unsigned int sad = this_sad + mvsad_err_cost_(mv, mv_cost_params); if (sad < *best_sad) { if (raw_best_sad) *raw_best_sad = this_sad; *best_sad = sad; if (second_best_mv) *second_best_mv = *best_mv; *best_mv = *mv; return 1; } return 0; } // Calculate sad4 and update the bestmv information // in FAST_DIAMOND search method. static AOM_INLINE void calc_sad4_update_bestmv( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv, const FULLPEL_MV center_mv, const uint8_t *center_address, unsigned int *bestsad, unsigned int *raw_bestsad, int search_step, int *best_site, int cand_start, int *cost_list) { const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const search_site *site = ms_params->search_sites->site[search_step]; unsigned char const *block_offset[4]; unsigned int sads_buf[4]; unsigned int *sads; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; if (cost_list) { sads = (unsigned int *)(cost_list + 1); } else { sads = sads_buf; } // Loop over number of candidates. for (int j = 0; j < 4; j++) block_offset[j] = site[cand_start + j].offset + center_address; // 4-point sad calculation. ms_params->sdx4df(src_buf, src_stride, block_offset, ref->stride, sads); for (int j = 0; j < 4; j++) { const FULLPEL_MV this_mv = { center_mv.row + site[cand_start + j].mv.row, center_mv.col + site[cand_start + j].mv.col }; const int found_better_mv = update_mvs_and_sad( sads[j], &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv, /*second_best_mv=*/NULL); if (found_better_mv) *best_site = cand_start + j; } } static AOM_INLINE void calc_sad3_update_bestmv( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv, FULLPEL_MV center_mv, const uint8_t *center_address, unsigned int *bestsad, unsigned int *raw_bestsad, int search_step, int *best_site, const int *chkpts_indices, int *cost_list) { const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const search_site *site = ms_params->search_sites->site[search_step]; unsigned char const *block_offset[4] = { center_address + site[chkpts_indices[0]].offset, center_address + site[chkpts_indices[1]].offset, center_address + site[chkpts_indices[2]].offset, center_address, }; unsigned int sads[4]; ms_params->sdx3df(src->buf, src->stride, block_offset, ref->stride, sads); for (int j = 0; j < 3; j++) { const int index = chkpts_indices[j]; const FULLPEL_MV this_mv = { center_mv.row + site[index].mv.row, center_mv.col + site[index].mv.col }; const int found_better_mv = update_mvs_and_sad( sads[j], &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv, /*second_best_mv=*/NULL); if (found_better_mv) *best_site = j; } if (cost_list) { for (int j = 0; j < 3; j++) { int index = chkpts_indices[j]; cost_list[index + 1] = sads[j]; } } } // Calculate sad and update the bestmv information // in FAST_DIAMOND search method. static AOM_INLINE void calc_sad_update_bestmv( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv, const FULLPEL_MV center_mv, const uint8_t *center_address, unsigned int *bestsad, unsigned int *raw_bestsad, int search_step, int *best_site, const int num_candidates, int cand_start, int *cost_list) { const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const search_site *site = ms_params->search_sites->site[search_step]; // Loop over number of candidates. for (int i = cand_start; i < num_candidates; i++) { const FULLPEL_MV this_mv = { center_mv.row + site[i].mv.row, center_mv.col + site[i].mv.col }; if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) continue; int thissad = get_mvpred_sad(ms_params, src, center_address + site[i].offset, ref->stride); if (cost_list) { cost_list[i + 1] = thissad; } const int found_better_mv = update_mvs_and_sad( thissad, &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv, /*second_best_mv=*/NULL); if (found_better_mv) *best_site = i; } } static AOM_INLINE void calc_sad_update_bestmv_with_indices( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const MV_COST_PARAMS *mv_cost_params, FULLPEL_MV *best_mv, const FULLPEL_MV center_mv, const uint8_t *center_address, unsigned int *bestsad, unsigned int *raw_bestsad, int search_step, int *best_site, const int num_candidates, const int *chkpts_indices, int *cost_list) { const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const search_site *site = ms_params->search_sites->site[search_step]; // Loop over number of candidates. for (int i = 0; i < num_candidates; i++) { int index = chkpts_indices[i]; const FULLPEL_MV this_mv = { center_mv.row + site[index].mv.row, center_mv.col + site[index].mv.col }; if (!av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) { if (cost_list) { cost_list[index + 1] = INT_MAX; } continue; } const int thissad = get_mvpred_sad( ms_params, src, center_address + site[index].offset, ref->stride); if (cost_list) { cost_list[index + 1] = thissad; } const int found_better_mv = update_mvs_and_sad( thissad, &this_mv, mv_cost_params, bestsad, raw_bestsad, best_mv, /*second_best_mv=*/NULL); if (found_better_mv) *best_site = i; } } // Generic pattern search function that searches over multiple scales. // Each scale can have a different number of candidates and shape of // candidates as indicated in the num_candidates and candidates arrays // passed into this function static int pattern_search(FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { static const int search_steps[MAX_MVSEARCH_STEPS] = { 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, }; int i, s, t; const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const search_site_config *search_sites = ms_params->search_sites; const int *num_candidates = search_sites->searches_per_step; const int ref_stride = ref->stride; const int last_is_4 = num_candidates[0] == 4; int br, bc; unsigned int bestsad = UINT_MAX, raw_bestsad = UINT_MAX; int k = -1; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; search_step = AOMMIN(search_step, MAX_MVSEARCH_STEPS - 1); assert(search_step >= 0); int best_init_s = search_steps[search_step]; // adjust ref_mv to make sure it is within MV range clamp_fullmv(&start_mv, &ms_params->mv_limits); br = start_mv.row; bc = start_mv.col; if (cost_list != NULL) { cost_list[0] = cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; } int costlist_has_sad = 0; // Work out the start point for the search raw_bestsad = get_mvpred_sad(ms_params, src, get_buf_from_fullmv(ref, &start_mv), ref_stride); bestsad = raw_bestsad + mvsad_err_cost_(&start_mv, mv_cost_params); // Search all possible scales up to the search param around the center point // pick the scale of the point that is best as the starting scale of // further steps around it. const uint8_t *center_address = get_buf_from_fullmv(ref, &start_mv); if (do_init_search) { s = best_init_s; best_init_s = -1; for (t = 0; t <= s; ++t) { int best_site = -1; FULLPEL_MV center_mv = { br, bc }; if (check_bounds(&ms_params->mv_limits, br, bc, 1 << t)) { // Call 4-point sad for multiples of 4 candidates. const int no_of_4_cand_loops = num_candidates[t] >> 2; for (i = 0; i < no_of_4_cand_loops; i++) { calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, t, &best_site, i * 4, /*cost_list=*/NULL); } // Rest of the candidates const int remaining_cand = num_candidates[t] % 4; calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, t, &best_site, remaining_cand, no_of_4_cand_loops * 4, NULL); } else { calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, t, &best_site, num_candidates[t], 0, NULL); } if (best_site == -1) { continue; } else { best_init_s = t; k = best_site; } } if (best_init_s != -1) { br += search_sites->site[best_init_s][k].mv.row; bc += search_sites->site[best_init_s][k].mv.col; center_address += search_sites->site[best_init_s][k].offset; } } // If the center point is still the best, just skip this and move to // the refinement step. if (best_init_s != -1) { const int last_s = (last_is_4 && cost_list != NULL); int best_site = -1; s = best_init_s; for (; s >= last_s; s--) { // No need to search all points the 1st time if initial search was used if (!do_init_search || s != best_init_s) { FULLPEL_MV center_mv = { br, bc }; if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) { // Call 4-point sad for multiples of 4 candidates. const int no_of_4_cand_loops = num_candidates[s] >> 2; for (i = 0; i < no_of_4_cand_loops; i++) { calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, i * 4, /*cost_list=*/NULL); } // Rest of the candidates const int remaining_cand = num_candidates[s] % 4; calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, remaining_cand, no_of_4_cand_loops * 4, NULL); } else { calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, num_candidates[s], 0, NULL); } if (best_site == -1) { continue; } else { br += search_sites->site[s][best_site].mv.row; bc += search_sites->site[s][best_site].mv.col; center_address += search_sites->site[s][best_site].offset; k = best_site; } } do { int next_chkpts_indices[PATTERN_CANDIDATES_REF]; best_site = -1; next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; next_chkpts_indices[1] = k; next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; FULLPEL_MV center_mv = { br, bc }; if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) { calc_sad3_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, next_chkpts_indices, NULL); } else { calc_sad_update_bestmv_with_indices( ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, PATTERN_CANDIDATES_REF, next_chkpts_indices, NULL); } if (best_site != -1) { k = next_chkpts_indices[best_site]; br += search_sites->site[s][k].mv.row; bc += search_sites->site[s][k].mv.col; center_address += search_sites->site[s][k].offset; } } while (best_site != -1); } // Note: If we enter the if below, then cost_list must be non-NULL. if (s == 0) { cost_list[0] = raw_bestsad; costlist_has_sad = 1; assert(num_candidates[s] == 4); if (!do_init_search || s != best_init_s) { FULLPEL_MV center_mv = { br, bc }; if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) { calc_sad4_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, 0, cost_list); } else { calc_sad_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, /*num_candidates=*/4, /*cand_start=*/0, cost_list); } if (best_site != -1) { br += search_sites->site[s][best_site].mv.row; bc += search_sites->site[s][best_site].mv.col; center_address += search_sites->site[s][best_site].offset; k = best_site; } } while (best_site != -1) { int next_chkpts_indices[PATTERN_CANDIDATES_REF]; best_site = -1; next_chkpts_indices[0] = (k == 0) ? num_candidates[s] - 1 : k - 1; next_chkpts_indices[1] = k; next_chkpts_indices[2] = (k == num_candidates[s] - 1) ? 0 : k + 1; cost_list[1] = cost_list[2] = cost_list[3] = cost_list[4] = INT_MAX; cost_list[((k + 2) % 4) + 1] = cost_list[0]; cost_list[0] = raw_bestsad; FULLPEL_MV center_mv = { br, bc }; if (check_bounds(&ms_params->mv_limits, br, bc, 1 << s)) { assert(PATTERN_CANDIDATES_REF == 3); calc_sad3_update_bestmv(ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, next_chkpts_indices, cost_list); } else { calc_sad_update_bestmv_with_indices( ms_params, mv_cost_params, best_mv, center_mv, center_address, &bestsad, &raw_bestsad, s, &best_site, PATTERN_CANDIDATES_REF, next_chkpts_indices, cost_list); } if (best_site != -1) { k = next_chkpts_indices[best_site]; br += search_sites->site[s][k].mv.row; bc += search_sites->site[s][k].mv.col; center_address += search_sites->site[s][k].offset; } } } } best_mv->row = br; best_mv->col = bc; assert(center_address == get_buf_from_fullmv(ref, best_mv) && "center address is out of sync with best_mv!\n"); // Returns the one-away integer pel cost/sad around the best as follows: // cost_list[0]: cost/sad at the best integer pel // cost_list[1]: cost/sad at delta {0, -1} (left) from the best integer pel // cost_list[2]: cost/sad at delta { 1, 0} (bottom) from the best integer pel // cost_list[3]: cost/sad at delta { 0, 1} (right) from the best integer pel // cost_list[4]: cost/sad at delta {-1, 0} (top) from the best integer pel if (cost_list) { if (USE_SAD_COSTLIST) { calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad); } else { calc_int_cost_list(*best_mv, ms_params, cost_list); } } const int var_cost = get_mvpred_var_cost(ms_params, best_mv, best_mv_stats); return var_cost; } // For the following foo_search, the input arguments are: // start_mv: where we are starting our motion search // ms_params: a collection of motion search parameters // search_step: how many steps to skip in our motion search. For example, // a value 3 suggests that 3 search steps have already taken place prior to // this function call, so we jump directly to step 4 of the search process // do_init_search: if on, do an initial search of all possible scales around the // start_mv, and then pick the best scale. // cond_list: used to hold the cost around the best full mv so we can use it to // speed up subpel search later. // best_mv: the best mv found in the motion search static int hex_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return pattern_search(start_mv, ms_params, search_step, do_init_search, cost_list, best_mv, best_mv_stats); } static int bigdia_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return pattern_search(start_mv, ms_params, search_step, do_init_search, cost_list, best_mv, best_mv_stats); } static int square_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return pattern_search(start_mv, ms_params, search_step, do_init_search, cost_list, best_mv, best_mv_stats); } static int fast_hex_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return hex_search(start_mv, ms_params, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step), do_init_search, cost_list, best_mv, best_mv_stats); } static int vfast_dia_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return bigdia_search(start_mv, ms_params, AOMMAX(MAX_MVSEARCH_STEPS - 1, search_step), do_init_search, cost_list, best_mv, best_mv_stats); } static int fast_dia_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return bigdia_search(start_mv, ms_params, AOMMAX(MAX_MVSEARCH_STEPS - 2, search_step), do_init_search, cost_list, best_mv, best_mv_stats); } static int fast_bigdia_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, const int do_init_search, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats) { return bigdia_search(start_mv, ms_params, AOMMAX(MAX_MVSEARCH_STEPS - 3, search_step), do_init_search, cost_list, best_mv, best_mv_stats); } static int diamond_search_sad(FULLPEL_MV start_mv, unsigned int start_mv_sad, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int search_step, int *num00, FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) { #define UPDATE_SEARCH_STEP \ do { \ if (best_site != 0) { \ tmp_second_best_mv = *best_mv; \ best_mv->row += site[best_site].mv.row; \ best_mv->col += site[best_site].mv.col; \ best_address += site[best_site].offset; \ is_off_center = 1; \ } \ \ if (is_off_center == 0) num_center_steps++; \ \ if (best_site == 0 && step > 2) { \ int next_step_size = cfg->radius[step - 1]; \ while (next_step_size == cfg->radius[step] && step > 2) { \ num_center_steps++; \ --step; \ next_step_size = cfg->radius[step - 1]; \ } \ } \ } while (0) const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const uint8_t *src_buf = src->buf; const int src_stride = src->stride; const int ref_stride = ref->stride; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const search_site_config *cfg = ms_params->search_sites; int is_off_center = 0; // Number of times that we have stayed in the middle. This is used to skip // search steps in the future if diamond_search_sad is called again. int num_center_steps = 0; // search_step determines the length of the initial step and hence the number // of iterations. const int tot_steps = cfg->num_search_steps - search_step; FULLPEL_MV tmp_second_best_mv; if (second_best_mv) { tmp_second_best_mv = *second_best_mv; } *best_mv = start_mv; // Check the starting position const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv); unsigned int bestsad = start_mv_sad; // TODO(chiyotsai@google.com): Implement 4 points search for msdf&sdaf if (ms_params->ms_buffers.second_pred) { for (int step = tot_steps - 1; step >= 0; --step) { const search_site *site = cfg->site[step]; const int num_searches = cfg->searches_per_step[step]; int best_site = 0; for (int idx = 1; idx <= num_searches; idx++) { const FULLPEL_MV this_mv = { best_mv->row + site[idx].mv.row, best_mv->col + site[idx].mv.col }; if (av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) { const uint8_t *const check_here = site[idx].offset + best_address; unsigned int thissad = get_mvpred_compound_sad(ms_params, src, check_here, ref_stride); if (thissad < bestsad) { thissad += mvsad_err_cost_(&this_mv, mv_cost_params); if (thissad < bestsad) { bestsad = thissad; best_site = idx; } } } } UPDATE_SEARCH_STEP; } } else { for (int step = tot_steps - 1; step >= 0; --step) { const search_site *site = cfg->site[step]; const int num_searches = cfg->searches_per_step[step]; int best_site = 0; int all_in = 1; // Trap illegal vectors all_in &= best_mv->row + site[1].mv.row >= ms_params->mv_limits.row_min; all_in &= best_mv->row + site[2].mv.row <= ms_params->mv_limits.row_max; all_in &= best_mv->col + site[3].mv.col >= ms_params->mv_limits.col_min; all_in &= best_mv->col + site[4].mv.col <= ms_params->mv_limits.col_max; if (all_in) { for (int idx = 1; idx <= num_searches; idx += 4) { unsigned char const *block_offset[4]; unsigned int sads[4]; for (int j = 0; j < 4; j++) block_offset[j] = site[idx + j].offset + best_address; ms_params->sdx4df(src_buf, src_stride, block_offset, ref_stride, sads); for (int j = 0; j < 4; j++) { if (sads[j] < bestsad) { const FULLPEL_MV this_mv = { best_mv->row + site[idx + j].mv.row, best_mv->col + site[idx + j].mv.col }; unsigned int thissad = sads[j] + mvsad_err_cost_(&this_mv, mv_cost_params); if (thissad < bestsad) { bestsad = thissad; best_site = idx + j; } } } } } else { for (int idx = 1; idx <= num_searches; idx++) { const FULLPEL_MV this_mv = { best_mv->row + site[idx].mv.row, best_mv->col + site[idx].mv.col }; if (av1_is_fullmv_in_range(&ms_params->mv_limits, this_mv)) { const uint8_t *const check_here = site[idx].offset + best_address; unsigned int thissad = get_mvpred_sad(ms_params, src, check_here, ref_stride); if (thissad < bestsad) { thissad += mvsad_err_cost_(&this_mv, mv_cost_params); if (thissad < bestsad) { bestsad = thissad; best_site = idx; } } } } } UPDATE_SEARCH_STEP; } } *num00 = num_center_steps; if (second_best_mv) { *second_best_mv = tmp_second_best_mv; } return bestsad; #undef UPDATE_SEARCH_STEP } static INLINE unsigned int get_start_mvpred_sad_cost( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV start_mv) { const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const uint8_t *best_address = get_buf_from_fullmv(ref, &start_mv); unsigned int start_mv_sad = mvsad_err_cost_(&start_mv, &ms_params->mv_cost_params); if (ms_params->ms_buffers.second_pred) start_mv_sad += get_mvpred_compound_sad(ms_params, src, best_address, ref->stride); else start_mv_sad += get_mvpred_sad(ms_params, src, best_address, ref->stride); return start_mv_sad; } static int full_pixel_diamond(FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int step_param, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats, FULLPEL_MV *second_best_mv) { const search_site_config *cfg = ms_params->search_sites; int thissme, n, num00 = 0; // Clamp start mv and calculate the cost clamp_fullmv(&start_mv, &ms_params->mv_limits); unsigned int start_mv_sad = get_start_mvpred_sad_cost(ms_params, start_mv); diamond_search_sad(start_mv, start_mv_sad, ms_params, step_param, &n, best_mv, second_best_mv); int bestsme = get_mvpred_compound_var_cost(ms_params, best_mv, best_mv_stats); // If there won't be more n-step search, check to see if refining search is // needed. const int further_steps = cfg->num_search_steps - 1 - step_param; while (n < further_steps) { ++n; // TODO(chiyotsai@google.com): There is another bug here where the second // best mv gets incorrectly overwritten. Fix it later. FULLPEL_MV tmp_best_mv; FULLPEL_MV_STATS tmp_best_mv_stats; diamond_search_sad(start_mv, start_mv_sad, ms_params, step_param + n, &num00, &tmp_best_mv, second_best_mv); thissme = get_mvpred_compound_var_cost(ms_params, &tmp_best_mv, &tmp_best_mv_stats); if (thissme < bestsme) { bestsme = thissme; *best_mv = tmp_best_mv; *best_mv_stats = tmp_best_mv_stats; } if (num00) { // Advance the loop by num00 steps n += num00; num00 = 0; } } // Return cost list. if (cost_list) { if (USE_SAD_COSTLIST) { const int costlist_has_sad = 0; calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad); } else { calc_int_cost_list(*best_mv, ms_params, cost_list); } } return bestsme; } // Exhaustive motion search around a given centre position with a given // step size. static int exhaustive_mesh_search(FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int range, const int step, FULLPEL_MV *best_mv, FULLPEL_MV *second_best_mv) { const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const struct buf_2d *const src = ms_params->ms_buffers.src; const struct buf_2d *const ref = ms_params->ms_buffers.ref; const int ref_stride = ref->stride; unsigned int best_sad = INT_MAX; int r, c, i; int start_col, end_col, start_row, end_row; const int col_step = (step > 1) ? step : 4; assert(step >= 1); clamp_fullmv(&start_mv, &ms_params->mv_limits); *best_mv = start_mv; best_sad = get_mvpred_sad(ms_params, src, get_buf_from_fullmv(ref, &start_mv), ref_stride); best_sad += mvsad_err_cost_(&start_mv, mv_cost_params); start_row = AOMMAX(-range, ms_params->mv_limits.row_min - start_mv.row); start_col = AOMMAX(-range, ms_params->mv_limits.col_min - start_mv.col); end_row = AOMMIN(range, ms_params->mv_limits.row_max - start_mv.row); end_col = AOMMIN(range, ms_params->mv_limits.col_max - start_mv.col); for (r = start_row; r <= end_row; r += step) { for (c = start_col; c <= end_col; c += col_step) { // Step > 1 means we are not checking every location in this pass. if (step > 1) { const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c }; unsigned int sad = get_mvpred_sad( ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride); update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad, /*raw_best_sad=*/NULL, best_mv, second_best_mv); } else { // 4 sads in a single call if we are checking every location if (c + 3 <= end_col) { unsigned int sads[4]; const uint8_t *addrs[4]; for (i = 0; i < 4; ++i) { const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i }; addrs[i] = get_buf_from_fullmv(ref, &mv); } ms_params->sdx4df(src->buf, src->stride, addrs, ref_stride, sads); for (i = 0; i < 4; ++i) { if (sads[i] < best_sad) { const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i }; update_mvs_and_sad(sads[i], &mv, mv_cost_params, &best_sad, /*raw_best_sad=*/NULL, best_mv, second_best_mv); } } } else { for (i = 0; i < end_col - c; ++i) { const FULLPEL_MV mv = { start_mv.row + r, start_mv.col + c + i }; unsigned int sad = get_mvpred_sad( ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride); update_mvs_and_sad(sad, &mv, mv_cost_params, &best_sad, /*raw_best_sad=*/NULL, best_mv, second_best_mv); } } } } } return best_sad; } // Runs an limited range exhaustive mesh search using a pattern set // according to the encode speed profile. static int full_pixel_exhaustive(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const struct MESH_PATTERN *const mesh_patterns, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *mv_stats, FULLPEL_MV *second_best_mv) { const int kMinRange = 7; const int kMaxRange = 256; const int kMinInterval = 1; int bestsme; int i; int interval = mesh_patterns[0].interval; int range = mesh_patterns[0].range; int baseline_interval_divisor; // TODO(chiyotsai@google.com): Currently exhaustive search calls single ref // version of sad and variance function. We still need to check the // performance when compound ref exhaustive search is enabled. assert(!ms_params->ms_buffers.second_pred && "Mesh search does not support compound mode!"); *best_mv = start_mv; // Trap illegal values for interval and range for this function. if ((range < kMinRange) || (range > kMaxRange) || (interval < kMinInterval) || (interval > range)) return INT_MAX; baseline_interval_divisor = range / interval; // Check size of proposed first range against magnitude of the centre // value used as a starting point. range = AOMMAX(range, (5 * AOMMAX(abs(best_mv->row), abs(best_mv->col))) / 4); range = AOMMIN(range, kMaxRange); interval = AOMMAX(interval, range / baseline_interval_divisor); // Use a small search step/interval for certain kind of clips. // For example, screen content clips with a lot of texts. // Large interval could lead to a false matching position, and it can't find // the best global candidate in following iterations due to reduced search // range. The solution here is to use a small search iterval in the beginning // and thus reduces the chance of missing the best candidate. if (ms_params->fine_search_interval) { interval = AOMMIN(interval, 4); } // initial search bestsme = exhaustive_mesh_search(*best_mv, ms_params, range, interval, best_mv, second_best_mv); if ((interval > kMinInterval) && (range > kMinRange)) { // Progressive searches with range and step size decreasing each time // till we reach a step size of 1. Then break out. for (i = 1; i < MAX_MESH_STEP; ++i) { // First pass with coarser step and longer range bestsme = exhaustive_mesh_search( *best_mv, ms_params, mesh_patterns[i].range, mesh_patterns[i].interval, best_mv, second_best_mv); if (mesh_patterns[i].interval == 1) break; } } if (bestsme < INT_MAX) { bestsme = get_mvpred_var_cost(ms_params, best_mv, mv_stats); } // Return cost list. if (cost_list) { if (USE_SAD_COSTLIST) { const int costlist_has_sad = 0; calc_int_sad_list(*best_mv, ms_params, cost_list, costlist_has_sad); } else { calc_int_cost_list(*best_mv, ms_params, cost_list); } } return bestsme; } // This function is called when we do joint motion search in comp_inter_inter // mode, or when searching for one component of an ext-inter compound mode. int av1_refining_search_8p_c(const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV start_mv, FULLPEL_MV *best_mv) { static const search_neighbors neighbors[8] = { { { -1, 0 }, -1 * SEARCH_GRID_STRIDE_8P + 0 }, { { 0, -1 }, 0 * SEARCH_GRID_STRIDE_8P - 1 }, { { 0, 1 }, 0 * SEARCH_GRID_STRIDE_8P + 1 }, { { 1, 0 }, 1 * SEARCH_GRID_STRIDE_8P + 0 }, { { -1, -1 }, -1 * SEARCH_GRID_STRIDE_8P - 1 }, { { 1, -1 }, 1 * SEARCH_GRID_STRIDE_8P - 1 }, { { -1, 1 }, -1 * SEARCH_GRID_STRIDE_8P + 1 }, { { 1, 1 }, 1 * SEARCH_GRID_STRIDE_8P + 1 } }; uint8_t do_refine_search_grid[SEARCH_GRID_STRIDE_8P * SEARCH_GRID_STRIDE_8P] = { 0 }; int grid_center = SEARCH_GRID_CENTER_8P; int grid_coord = grid_center; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const FullMvLimits *mv_limits = &ms_params->mv_limits; const MSBuffers *ms_buffers = &ms_params->ms_buffers; const struct buf_2d *src = ms_buffers->src; const struct buf_2d *ref = ms_buffers->ref; const int ref_stride = ref->stride; *best_mv = start_mv; clamp_fullmv(best_mv, mv_limits); unsigned int best_sad = get_mvpred_compound_sad( ms_params, src, get_buf_from_fullmv(ref, best_mv), ref_stride); best_sad += mvsad_err_cost_(best_mv, mv_cost_params); do_refine_search_grid[grid_coord] = 1; for (int i = 0; i < SEARCH_RANGE_8P; ++i) { int best_site = -1; for (int j = 0; j < 8; ++j) { grid_coord = grid_center + neighbors[j].coord_offset; if (do_refine_search_grid[grid_coord] == 1) { continue; } const FULLPEL_MV mv = { best_mv->row + neighbors[j].coord.row, best_mv->col + neighbors[j].coord.col }; do_refine_search_grid[grid_coord] = 1; if (av1_is_fullmv_in_range(mv_limits, mv)) { unsigned int sad; sad = get_mvpred_compound_sad( ms_params, src, get_buf_from_fullmv(ref, &mv), ref_stride); if (sad < best_sad) { sad += mvsad_err_cost_(&mv, mv_cost_params); if (sad < best_sad) { best_sad = sad; best_site = j; } } } } if (best_site == -1) { break; } else { best_mv->row += neighbors[best_site].coord.row; best_mv->col += neighbors[best_site].coord.col; grid_center += neighbors[best_site].coord_offset; } } return best_sad; } int av1_full_pixel_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int step_param, int *cost_list, FULLPEL_MV *best_mv, FULLPEL_MV_STATS *best_mv_stats, FULLPEL_MV *second_best_mv) { const BLOCK_SIZE bsize = ms_params->bsize; const SEARCH_METHODS search_method = ms_params->search_method; const int is_intra_mode = ms_params->is_intra_mode; int run_mesh_search = ms_params->run_mesh_search; int var = 0; MARK_MV_INVALID(best_mv); if (second_best_mv) { MARK_MV_INVALID(second_best_mv); } if (cost_list) { cost_list[0] = INT_MAX; cost_list[1] = INT_MAX; cost_list[2] = INT_MAX; cost_list[3] = INT_MAX; cost_list[4] = INT_MAX; } assert(ms_params->ms_buffers.ref->stride == ms_params->search_sites->stride); assert(ms_params->ms_buffers.ref->width == ms_params->ms_buffers.src->width); switch (search_method) { case FAST_BIGDIA: var = fast_bigdia_search(start_mv, ms_params, step_param, 0, cost_list, best_mv, best_mv_stats); break; case VFAST_DIAMOND: var = vfast_dia_search(start_mv, ms_params, step_param, 0, cost_list, best_mv, best_mv_stats); break; case FAST_DIAMOND: var = fast_dia_search(start_mv, ms_params, step_param, 0, cost_list, best_mv, best_mv_stats); break; case FAST_HEX: var = fast_hex_search(start_mv, ms_params, step_param, 0, cost_list, best_mv, best_mv_stats); break; case HEX: var = hex_search(start_mv, ms_params, step_param, 1, cost_list, best_mv, best_mv_stats); break; case SQUARE: var = square_search(start_mv, ms_params, step_param, 1, cost_list, best_mv, best_mv_stats); break; case BIGDIA: var = bigdia_search(start_mv, ms_params, step_param, 1, cost_list, best_mv, best_mv_stats); break; case NSTEP: case NSTEP_8PT: case DIAMOND: case CLAMPED_DIAMOND: var = full_pixel_diamond(start_mv, ms_params, step_param, cost_list, best_mv, best_mv_stats, second_best_mv); break; default: assert(0 && "Invalid search method."); } // Should we allow a follow on exhaustive search? if (!run_mesh_search && ((search_method == NSTEP) || (search_method == NSTEP_8PT)) && !ms_params->ms_buffers.second_pred) { int exhaustive_thr = ms_params->force_mesh_thresh; exhaustive_thr >>= 10 - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); // Threshold variance for an exhaustive full search. if (var > exhaustive_thr) run_mesh_search = 1; } // TODO(yunqing): the following is used to reduce mesh search in temporal // filtering. Can extend it to intrabc. if (!is_intra_mode && ms_params->prune_mesh_search) { const int full_pel_mv_diff = AOMMAX(abs(start_mv.row - best_mv->row), abs(start_mv.col - best_mv->col)); if (full_pel_mv_diff <= ms_params->mesh_search_mv_diff_threshold) { run_mesh_search = 0; } } if (ms_params->sdf != ms_params->vfp->sdf) { // If we are skipping rows when we perform the motion search, we need to // check the quality of skipping. If it's bad, then we run mesh search with // skip row features off. // TODO(chiyotsai@google.com): Handle the case where we have a vertical // offset of 1 before we hit this statement to avoid having to redo // motion search. const struct buf_2d *src = ms_params->ms_buffers.src; const struct buf_2d *ref = ms_params->ms_buffers.ref; const int src_stride = src->stride; const int ref_stride = ref->stride; const uint8_t *src_address = src->buf; const uint8_t *best_address = get_buf_from_fullmv(ref, best_mv); const int sad = ms_params->vfp->sdf(src_address, src_stride, best_address, ref_stride); const int skip_sad = ms_params->vfp->sdsf(src_address, src_stride, best_address, ref_stride); // We will keep the result of skipping rows if it's good enough. Here, good // enough means the error is less than 1 per pixel. const int kSADThresh = 1 << (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize]); if (sad > kSADThresh && abs(skip_sad - sad) * 10 >= AOMMAX(sad, 1) * 9) { // There is a large discrepancy between skipping and not skipping, so we // need to redo the motion search. FULLPEL_MOTION_SEARCH_PARAMS new_ms_params = *ms_params; new_ms_params.sdf = new_ms_params.vfp->sdf; new_ms_params.sdx4df = new_ms_params.vfp->sdx4df; new_ms_params.sdx3df = new_ms_params.vfp->sdx3df; return av1_full_pixel_search(start_mv, &new_ms_params, step_param, cost_list, best_mv, best_mv_stats, second_best_mv); } } if (run_mesh_search) { int var_ex; FULLPEL_MV tmp_mv_ex; FULLPEL_MV_STATS tmp_mv_stats; // Pick the mesh pattern for exhaustive search based on the toolset (intraBC // or non-intraBC) // TODO(chiyotsai@google.com): There is a bug here where the second best mv // gets overwritten without actually comparing the rdcost. const MESH_PATTERN *const mesh_patterns = ms_params->mesh_patterns[is_intra_mode]; // TODO(chiyotsai@google.com): the second best mv is not set correctly by // full_pixel_exhaustive, which can incorrectly override it. var_ex = full_pixel_exhaustive(*best_mv, ms_params, mesh_patterns, cost_list, &tmp_mv_ex, &tmp_mv_stats, second_best_mv); if (var_ex < var) { var = var_ex; *best_mv_stats = tmp_mv_stats; *best_mv = tmp_mv_ex; } } return var; } int av1_intrabc_hash_search(const AV1_COMP *cpi, const MACROBLOCKD *xd, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, IntraBCHashInfo *intrabc_hash_info, FULLPEL_MV *best_mv) { if (!av1_use_hash_me(cpi)) return INT_MAX; const BLOCK_SIZE bsize = ms_params->bsize; const int block_width = block_size_wide[bsize]; const int block_height = block_size_high[bsize]; if (block_width != block_height) return INT_MAX; const FullMvLimits *mv_limits = &ms_params->mv_limits; const MSBuffers *ms_buffer = &ms_params->ms_buffers; const uint8_t *src = ms_buffer->src->buf; const int src_stride = ms_buffer->src->stride; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int x_pos = mi_col * MI_SIZE; const int y_pos = mi_row * MI_SIZE; uint32_t hash_value1, hash_value2; int best_hash_cost = INT_MAX; // for the hashMap hash_table *ref_frame_hash = &intrabc_hash_info->intrabc_hash_table; av1_get_block_hash_value(intrabc_hash_info, src, src_stride, block_width, &hash_value1, &hash_value2, is_cur_buf_hbd(xd)); const int count = av1_hash_table_count(ref_frame_hash, hash_value1); if (count <= 1) { return INT_MAX; } Iterator iterator = av1_hash_get_first_iterator(ref_frame_hash, hash_value1); for (int i = 0; i < count; i++, aom_iterator_increment(&iterator)) { block_hash ref_block_hash = *(block_hash *)(aom_iterator_get(&iterator)); if (hash_value2 == ref_block_hash.hash_value2) { // Make sure the prediction is from valid area. const MV dv = { GET_MV_SUBPEL(ref_block_hash.y - y_pos), GET_MV_SUBPEL(ref_block_hash.x - x_pos) }; if (!av1_is_dv_valid(dv, &cpi->common, xd, mi_row, mi_col, bsize, cpi->common.seq_params->mib_size_log2)) continue; FULLPEL_MV hash_mv; hash_mv.col = ref_block_hash.x - x_pos; hash_mv.row = ref_block_hash.y - y_pos; if (!av1_is_fullmv_in_range(mv_limits, hash_mv)) continue; FULLPEL_MV_STATS mv_stats; const int refCost = get_mvpred_var_cost(ms_params, &hash_mv, &mv_stats); if (refCost < best_hash_cost) { best_hash_cost = refCost; *best_mv = hash_mv; } } } return best_hash_cost; } static int vector_match(int16_t *ref, int16_t *src, int bwl, int search_size, int full_search, int *sad) { int best_sad = INT_MAX; int this_sad; int d; int center, offset = 0; int bw = search_size << 1; if (full_search) { for (d = 0; d <= bw; d++) { this_sad = aom_vector_var(&ref[d], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; offset = d; } } center = offset; *sad = best_sad; return (center - (bw >> 1)); } for (d = 0; d <= bw; d += 16) { this_sad = aom_vector_var(&ref[d], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; offset = d; } } center = offset; for (d = -8; d <= 8; d += 16) { int this_pos = offset + d; // check limit if (this_pos < 0 || this_pos > bw) continue; this_sad = aom_vector_var(&ref[this_pos], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; center = this_pos; } } offset = center; for (d = -4; d <= 4; d += 8) { int this_pos = offset + d; // check limit if (this_pos < 0 || this_pos > bw) continue; this_sad = aom_vector_var(&ref[this_pos], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; center = this_pos; } } offset = center; for (d = -2; d <= 2; d += 4) { int this_pos = offset + d; // check limit if (this_pos < 0 || this_pos > bw) continue; this_sad = aom_vector_var(&ref[this_pos], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; center = this_pos; } } offset = center; for (d = -1; d <= 1; d += 2) { int this_pos = offset + d; // check limit if (this_pos < 0 || this_pos > bw) continue; this_sad = aom_vector_var(&ref[this_pos], src, bwl); if (this_sad < best_sad) { best_sad = this_sad; center = this_pos; } } *sad = best_sad; return (center - (bw >> 1)); } // A special fast version of motion search used in rt mode. // The search window along columns and row is given by: // +/- me_search_size_col/row. unsigned int av1_int_pro_motion_estimation(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, const MV *ref_mv, unsigned int *y_sad_zero, int me_search_size_col, int me_search_size_row) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mi = xd->mi[0]; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int idx; const int bw = block_size_wide[bsize]; const int bh = block_size_high[bsize]; const int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; const int full_search = is_screen; const bool screen_scroll_superblock = is_screen && bsize == cm->seq_params->sb_size; // Keep border a multiple of 16. const int border = (cpi->oxcf.border_in_pixels >> 4) << 4; int search_size_width = me_search_size_col; int search_size_height = me_search_size_row; // Adjust based on boundary. if (((mi_col << 2) - search_size_width < -border) || ((mi_col << 2) + search_size_width > cm->width + border)) search_size_width = border; if (((mi_row << 2) - search_size_height < -border) || ((mi_row << 2) + search_size_height > cm->height + border)) search_size_height = border; const int src_stride = x->plane[0].src.stride; const int ref_stride = xd->plane[0].pre[0].stride; uint8_t const *ref_buf, *src_buf; int_mv *best_int_mv = &xd->mi[0]->mv[0]; unsigned int best_sad, tmp_sad, this_sad[4]; int best_sad_col, best_sad_row; const int row_norm_factor = mi_size_high_log2[bsize] + 1; const int col_norm_factor = 3 + (bw >> 5); const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, mi->ref_frame[0]); static const MV search_pos[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 }, }; if (scaled_ref_frame) { int i; // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. for (i = 0; i < MAX_MB_PLANE; i++) backup_yv12[i] = xd->plane[i].pre[0]; av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, MAX_MB_PLANE); } if (xd->bd != 8) { best_int_mv->as_fullmv = kZeroFullMv; best_sad = cpi->ppi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride, xd->plane[0].pre[0].buf, ref_stride); if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } return best_sad; } const int width_ref_buf = (search_size_width << 1) + bw; const int height_ref_buf = (search_size_height << 1) + bh; int16_t *hbuf = (int16_t *)aom_malloc(width_ref_buf * sizeof(*hbuf)); int16_t *vbuf = (int16_t *)aom_malloc(height_ref_buf * sizeof(*vbuf)); int16_t *src_hbuf = (int16_t *)aom_malloc(bw * sizeof(*src_hbuf)); int16_t *src_vbuf = (int16_t *)aom_malloc(bh * sizeof(*src_vbuf)); if (!hbuf || !vbuf || !src_hbuf || !src_vbuf) { aom_free(hbuf); aom_free(vbuf); aom_free(src_hbuf); aom_free(src_vbuf); aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate hbuf, vbuf, src_hbuf, or src_vbuf"); } // Set up prediction 1-D reference set for rows. ref_buf = xd->plane[0].pre[0].buf - search_size_width; aom_int_pro_row(hbuf, ref_buf, ref_stride, width_ref_buf, bh, row_norm_factor); // Set up prediction 1-D reference set for cols ref_buf = xd->plane[0].pre[0].buf - search_size_height * ref_stride; aom_int_pro_col(vbuf, ref_buf, ref_stride, bw, height_ref_buf, col_norm_factor); // Set up src 1-D reference set src_buf = x->plane[0].src.buf; aom_int_pro_row(src_hbuf, src_buf, src_stride, bw, bh, row_norm_factor); aom_int_pro_col(src_vbuf, src_buf, src_stride, bw, bh, col_norm_factor); // Find the best match per 1-D search best_int_mv->as_fullmv.col = vector_match(hbuf, src_hbuf, mi_size_wide_log2[bsize], search_size_width, full_search, &best_sad_col); best_int_mv->as_fullmv.row = vector_match(vbuf, src_vbuf, mi_size_high_log2[bsize], search_size_height, full_search, &best_sad_row); // For screen: select between horiz or vert motion. if (is_screen) { if (best_sad_col < best_sad_row) best_int_mv->as_fullmv.row = 0; else best_int_mv->as_fullmv.col = 0; } FULLPEL_MV this_mv = best_int_mv->as_fullmv; src_buf = x->plane[0].src.buf; ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &this_mv); best_sad = cpi->ppi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride); // Evaluate zero MV if found MV is non-zero. if (best_int_mv->as_int != 0) { tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(x->plane[0].src.buf, src_stride, xd->plane[0].pre[0].buf, ref_stride); *y_sad_zero = tmp_sad; if (tmp_sad < best_sad) { best_int_mv->as_fullmv = kZeroFullMv; this_mv = best_int_mv->as_fullmv; ref_buf = xd->plane[0].pre[0].buf; best_sad = tmp_sad; } } else { *y_sad_zero = best_sad; } if (!screen_scroll_superblock) { const uint8_t *const pos[4] = { ref_buf - ref_stride, ref_buf - 1, ref_buf + 1, ref_buf + ref_stride, }; cpi->ppi->fn_ptr[bsize].sdx4df(src_buf, src_stride, pos, ref_stride, this_sad); for (idx = 0; idx < 4; ++idx) { if (this_sad[idx] < best_sad) { best_sad = this_sad[idx]; best_int_mv->as_fullmv.row = search_pos[idx].row + this_mv.row; best_int_mv->as_fullmv.col = search_pos[idx].col + this_mv.col; } } if (this_sad[0] < this_sad[3]) this_mv.row -= 1; else this_mv.row += 1; if (this_sad[1] < this_sad[2]) this_mv.col -= 1; else this_mv.col += 1; ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &this_mv); tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_buf, src_stride, ref_buf, ref_stride); if (best_sad > tmp_sad) { best_int_mv->as_fullmv = this_mv; best_sad = tmp_sad; } } FullMvLimits mv_limits = x->mv_limits; av1_set_mv_search_range(&mv_limits, ref_mv); clamp_fullmv(&best_int_mv->as_fullmv, &mv_limits); convert_fullmv_to_mv(best_int_mv); if (scaled_ref_frame) { int i; for (i = 0; i < MAX_MB_PLANE; i++) xd->plane[i].pre[0] = backup_yv12[i]; } aom_free(hbuf); aom_free(vbuf); aom_free(src_hbuf); aom_free(src_vbuf); return best_sad; } // ============================================================================= // Fullpixel Motion Search: OBMC // ============================================================================= static INLINE int get_obmc_mvpred_var( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV *this_mv) { const aom_variance_fn_ptr_t *vfp = ms_params->vfp; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const MSBuffers *ms_buffers = &ms_params->ms_buffers; const int32_t *wsrc = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const struct buf_2d *ref_buf = ms_buffers->ref; const MV mv = get_mv_from_fullmv(this_mv); unsigned int unused; return vfp->ovf(get_buf_from_fullmv(ref_buf, this_mv), ref_buf->stride, wsrc, mask, &unused) + mv_err_cost_(&mv, mv_cost_params); } static int obmc_refining_search_sad( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV *best_mv) { const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const MSBuffers *ms_buffers = &ms_params->ms_buffers; const int32_t *wsrc = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const struct buf_2d *ref_buf = ms_buffers->ref; const FULLPEL_MV neighbors[4] = { { -1, 0 }, { 0, -1 }, { 0, 1 }, { 1, 0 } }; const int kSearchRange = 8; unsigned int best_sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, best_mv), ref_buf->stride, wsrc, mask) + mvsad_err_cost_(best_mv, mv_cost_params); for (int i = 0; i < kSearchRange; i++) { int best_site = -1; for (int j = 0; j < 4; j++) { const FULLPEL_MV mv = { best_mv->row + neighbors[j].row, best_mv->col + neighbors[j].col }; if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv)) { unsigned int sad = fn_ptr->osdf(get_buf_from_fullmv(ref_buf, &mv), ref_buf->stride, wsrc, mask); if (sad < best_sad) { sad += mvsad_err_cost_(&mv, mv_cost_params); if (sad < best_sad) { best_sad = sad; best_site = j; } } } } if (best_site == -1) { break; } else { best_mv->row += neighbors[best_site].row; best_mv->col += neighbors[best_site].col; } } return best_sad; } static int obmc_diamond_search_sad( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, FULLPEL_MV start_mv, FULLPEL_MV *best_mv, int search_step, int *num00) { const aom_variance_fn_ptr_t *fn_ptr = ms_params->vfp; const search_site_config *cfg = ms_params->search_sites; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const MSBuffers *ms_buffers = &ms_params->ms_buffers; const int32_t *wsrc = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const struct buf_2d *const ref_buf = ms_buffers->ref; // search_step determines the length of the initial step and hence the number // of iterations. const int tot_steps = cfg->num_search_steps - search_step; const uint8_t *best_address, *init_ref; int best_sad = INT_MAX; int best_site = 0; clamp_fullmv(&start_mv, &ms_params->mv_limits); best_address = init_ref = get_buf_from_fullmv(ref_buf, &start_mv); *num00 = 0; *best_mv = start_mv; // Check the starting position best_sad = fn_ptr->osdf(best_address, ref_buf->stride, wsrc, mask) + mvsad_err_cost_(best_mv, mv_cost_params); for (int step = tot_steps - 1; step >= 0; --step) { const search_site *const site = cfg->site[step]; best_site = 0; for (int idx = 1; idx <= cfg->searches_per_step[step]; ++idx) { const FULLPEL_MV mv = { best_mv->row + site[idx].mv.row, best_mv->col + site[idx].mv.col }; if (av1_is_fullmv_in_range(&ms_params->mv_limits, mv)) { int sad = fn_ptr->osdf(best_address + site[idx].offset, ref_buf->stride, wsrc, mask); if (sad < best_sad) { sad += mvsad_err_cost_(&mv, mv_cost_params); if (sad < best_sad) { best_sad = sad; best_site = idx; } } } } if (best_site != 0) { best_mv->row += site[best_site].mv.row; best_mv->col += site[best_site].mv.col; best_address += site[best_site].offset; } else if (best_address == init_ref) { (*num00)++; } } return best_sad; } static int obmc_full_pixel_diamond( const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const FULLPEL_MV start_mv, int step_param, FULLPEL_MV *best_mv) { const search_site_config *cfg = ms_params->search_sites; FULLPEL_MV tmp_mv; int thissme, n, num00 = 0; int bestsme = obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv, step_param, &n); if (bestsme < INT_MAX) bestsme = get_obmc_mvpred_var(ms_params, &tmp_mv); *best_mv = tmp_mv; // If there won't be more n-step search, check to see if refining search is // needed. const int further_steps = cfg->num_search_steps - 1 - step_param; while (n < further_steps) { ++n; if (num00) { num00--; } else { thissme = obmc_diamond_search_sad(ms_params, start_mv, &tmp_mv, step_param + n, &num00); if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, &tmp_mv); if (thissme < bestsme) { bestsme = thissme; *best_mv = tmp_mv; } } } return bestsme; } int av1_obmc_full_pixel_search(const FULLPEL_MV start_mv, const FULLPEL_MOTION_SEARCH_PARAMS *ms_params, const int step_param, FULLPEL_MV *best_mv) { if (!ms_params->fast_obmc_search) { const int bestsme = obmc_full_pixel_diamond(ms_params, start_mv, step_param, best_mv); return bestsme; } else { *best_mv = start_mv; clamp_fullmv(best_mv, &ms_params->mv_limits); int thissme = obmc_refining_search_sad(ms_params, best_mv); if (thissme < INT_MAX) thissme = get_obmc_mvpred_var(ms_params, best_mv); return thissme; } } // ============================================================================= // Subpixel Motion Search: Translational // ============================================================================= #define INIT_SUBPEL_STEP_SIZE (4) /* * To avoid the penalty for crossing cache-line read, preload the reference * area in a small buffer, which is aligned to make sure there won't be crossing * cache-line read while reading from this buffer. This reduced the cpu * cycles spent on reading ref data in sub-pixel filter functions. * TODO: Currently, since sub-pixel search range here is -3 ~ 3, copy 22 rows x * 32 cols area that is enough for 16x16 macroblock. Later, for SPLITMV, we * could reduce the area. */ // Returns the subpel offset used by various subpel variance functions [m]sv[a]f static INLINE int get_subpel_part(int x) { return x & 7; } // Gets the address of the ref buffer at subpel location (r, c), rounded to the // nearest fullpel precision toward - \infty static INLINE const uint8_t *get_buf_from_mv(const struct buf_2d *buf, const MV mv) { const int offset = (mv.row >> 3) * buf->stride + (mv.col >> 3); return &buf->buf[offset]; } // Estimates the variance of prediction residue using bilinear filter for fast // search. static INLINE int estimated_pref_error( const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, unsigned int *sse) { const aom_variance_fn_ptr_t *vfp = var_params->vfp; const MSBuffers *ms_buffers = &var_params->ms_buffers; const uint8_t *src = ms_buffers->src->buf; const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv); const int src_stride = ms_buffers->src->stride; const int ref_stride = ms_buffers->ref->stride; const uint8_t *second_pred = ms_buffers->second_pred; const uint8_t *mask = ms_buffers->mask; const int mask_stride = ms_buffers->mask_stride; const int invert_mask = ms_buffers->inv_mask; const int subpel_x_q3 = get_subpel_part(this_mv->col); const int subpel_y_q3 = get_subpel_part(this_mv->row); if (second_pred == NULL) { return vfp->svf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride, sse); } else if (mask) { return vfp->msvf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride, second_pred, mask, mask_stride, invert_mask, sse); } else { return vfp->svaf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, src_stride, sse, second_pred); } } // Calculates the variance of prediction residue. static int upsampled_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, unsigned int *sse) { const aom_variance_fn_ptr_t *vfp = var_params->vfp; const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type; const MSBuffers *ms_buffers = &var_params->ms_buffers; const uint8_t *src = ms_buffers->src->buf; const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv); const int src_stride = ms_buffers->src->stride; const int ref_stride = ms_buffers->ref->stride; const uint8_t *second_pred = ms_buffers->second_pred; const uint8_t *mask = ms_buffers->mask; const int mask_stride = ms_buffers->mask_stride; const int invert_mask = ms_buffers->inv_mask; const int w = var_params->w; const int h = var_params->h; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int subpel_x_q3 = get_subpel_part(this_mv->col); const int subpel_y_q3 = get_subpel_part(this_mv->row); unsigned int besterr; #if CONFIG_AV1_HIGHBITDEPTH if (is_cur_buf_hbd(xd)) { DECLARE_ALIGNED(16, uint16_t, pred16[MAX_SB_SQUARE]); uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred16); if (second_pred != NULL) { if (mask) { aom_highbd_comp_mask_upsampled_pred( xd, cm, mi_row, mi_col, this_mv, pred8, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, mask, mask_stride, invert_mask, xd->bd, subpel_search_type); } else { aom_highbd_comp_avg_upsampled_pred( xd, cm, mi_row, mi_col, this_mv, pred8, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd, subpel_search_type); } } else { aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred8, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd, subpel_search_type); } besterr = vfp->vf(pred8, w, src, src_stride, sse); } else { DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]); if (second_pred != NULL) { if (mask) { aom_comp_mask_upsampled_pred( xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, mask, mask_stride, invert_mask, subpel_search_type); } else { aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); } } else { aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); } besterr = vfp->vf(pred, w, src, src_stride, sse); } #else DECLARE_ALIGNED(16, uint8_t, pred[MAX_SB_SQUARE]); if (second_pred != NULL) { if (mask) { aom_comp_mask_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, mask, mask_stride, invert_mask, subpel_search_type); } else { aom_comp_avg_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, second_pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); } } else { aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); } besterr = vfp->vf(pred, w, src, src_stride, sse); #endif return besterr; } // Estimates whether this_mv is better than best_mv. This function incorporates // both prediction error and residue into account. It is suffixed "fast" because // it uses bilinear filter to estimate the prediction. static INLINE unsigned int check_better_fast( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int *has_better_mv, int is_scaled) { unsigned int cost; if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) { unsigned int sse; int thismse; if (is_scaled) { thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse); } else { thismse = estimated_pref_error(this_mv, var_params, &sse); } cost = mv_err_cost_(this_mv, mv_cost_params); cost += thismse; if (cost < *besterr) { *besterr = cost; *best_mv = *this_mv; *distortion = thismse; *sse1 = sse; *has_better_mv |= 1; } } else { cost = INT_MAX; } return cost; } // Checks whether this_mv is better than best_mv. This function incorporates // both prediction error and residue into account. static AOM_FORCE_INLINE unsigned int check_better( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int *is_better) { unsigned int cost; if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) { unsigned int sse; int thismse; thismse = upsampled_pref_error(xd, cm, this_mv, var_params, &sse); cost = mv_err_cost_(this_mv, mv_cost_params); cost += thismse; if (cost < *besterr) { *besterr = cost; *best_mv = *this_mv; *distortion = thismse; *sse1 = sse; *is_better |= 1; } } else { cost = INT_MAX; } return cost; } static INLINE MV get_best_diag_step(int step_size, unsigned int left_cost, unsigned int right_cost, unsigned int up_cost, unsigned int down_cost) { const MV diag_step = { up_cost <= down_cost ? -step_size : step_size, left_cost <= right_cost ? -step_size : step_size }; return diag_step; } // Searches the four cardinal direction for a better mv, then follows up with a // search in the best quadrant. This uses bilinear filter to speed up the // calculation. static AOM_FORCE_INLINE MV first_level_check_fast( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv, int hstep, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int is_scaled) { // Check the four cardinal directions const MV left_mv = { this_mv.row, this_mv.col - hstep }; int dummy = 0; const unsigned int left = check_better_fast( xd, cm, &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); const MV right_mv = { this_mv.row, this_mv.col + hstep }; const unsigned int right = check_better_fast( xd, cm, &right_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); const MV top_mv = { this_mv.row - hstep, this_mv.col }; const unsigned int up = check_better_fast( xd, cm, &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); const MV bottom_mv = { this_mv.row + hstep, this_mv.col }; const unsigned int down = check_better_fast( xd, cm, &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); const MV diag_step = get_best_diag_step(hstep, left, right, up, down); const MV diag_mv = { this_mv.row + diag_step.row, this_mv.col + diag_step.col }; // Check the diagonal direction with the best mv check_better_fast(xd, cm, &diag_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); return diag_step; } // Performs a following up search after first_level_check_fast is called. This // performs two extra chess pattern searches in the best quadrant. static AOM_FORCE_INLINE void second_level_check_fast( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, const MV diag_step, MV *best_mv, int hstep, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int is_scaled) { assert(diag_step.row == hstep || diag_step.row == -hstep); assert(diag_step.col == hstep || diag_step.col == -hstep); const int tr = this_mv.row; const int tc = this_mv.col; const int br = best_mv->row; const int bc = best_mv->col; int dummy = 0; if (tr != br && tc != bc) { assert(diag_step.col == bc - tc); assert(diag_step.row == br - tr); const MV chess_mv_1 = { br, bc + diag_step.col }; const MV chess_mv_2 = { br + diag_step.row, bc }; check_better_fast(xd, cm, &chess_mv_1, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &chess_mv_2, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); } else if (tr == br && tc != bc) { assert(diag_step.col == bc - tc); // Continue searching in the best direction const MV bottom_long_mv = { br + hstep, bc + diag_step.col }; const MV top_long_mv = { br - hstep, bc + diag_step.col }; check_better_fast(xd, cm, &bottom_long_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &top_long_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); // Search in the direction opposite of the best quadrant const MV rev_mv = { br - diag_step.row, bc }; check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); } else if (tr != br && tc == bc) { assert(diag_step.row == br - tr); // Continue searching in the best direction const MV right_long_mv = { br + diag_step.row, bc + hstep }; const MV left_long_mv = { br + diag_step.row, bc - hstep }; check_better_fast(xd, cm, &right_long_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &left_long_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); // Search in the direction opposite of the best quadrant const MV rev_mv = { br, bc - diag_step.col }; check_better_fast(xd, cm, &rev_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy, is_scaled); } } // Combines first level check and second level check when applicable. This first // searches the four cardinal directions, and perform several // diagonal/chess-pattern searches in the best quadrant. static AOM_FORCE_INLINE void two_level_checks_fast( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV this_mv, MV *best_mv, int hstep, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int iters, int is_scaled) { const MV diag_step = first_level_check_fast( xd, cm, this_mv, best_mv, hstep, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, is_scaled); if (iters > 1) { second_level_check_fast(xd, cm, this_mv, diag_step, best_mv, hstep, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, is_scaled); } } static AOM_FORCE_INLINE MV first_level_check(MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV *best_mv, const int hstep, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion) { int dummy = 0; const MV left_mv = { this_mv.row, this_mv.col - hstep }; const MV right_mv = { this_mv.row, this_mv.col + hstep }; const MV top_mv = { this_mv.row - hstep, this_mv.col }; const MV bottom_mv = { this_mv.row + hstep, this_mv.col }; const unsigned int left = check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int right = check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int up = check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int down = check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const MV diag_step = get_best_diag_step(hstep, left, right, up, down); const MV diag_mv = { this_mv.row + diag_step.row, this_mv.col + diag_step.col }; // Check the diagonal direction with the best mv check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); return diag_step; } // A newer version of second level check that gives better quality. // TODO(chiyotsai@google.com): evaluate this on subpel_search_types different // from av1_find_best_sub_pixel_tree static AOM_FORCE_INLINE void second_level_check_v2( MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int is_scaled) { assert(best_mv->row == this_mv.row + diag_step.row || best_mv->col == this_mv.col + diag_step.col); if (CHECK_MV_EQUAL(this_mv, *best_mv)) { return; } else if (this_mv.row == best_mv->row) { // Search away from diagonal step since diagonal search did not provide any // improvement diag_step.row *= -1; } else if (this_mv.col == best_mv->col) { diag_step.col *= -1; } const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col }; const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col }; const MV diag_bias_mv = { best_mv->row + diag_step.row, best_mv->col + diag_step.col }; int has_better_mv = 0; if (var_params->subpel_search_type != USE_2_TAPS_ORIG) { check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); // Do an additional search if the second iteration gives a better mv if (has_better_mv) { check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); } } else { check_better_fast(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv, is_scaled); check_better_fast(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv, is_scaled); // Do an additional search if the second iteration gives a better mv if (has_better_mv) { check_better_fast(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv, is_scaled); } } } // Gets the error at the beginning when the mv has fullpel precision static unsigned int setup_center_error( const MACROBLOCKD *xd, const MV *bestmv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) { const aom_variance_fn_ptr_t *vfp = var_params->vfp; const int w = var_params->w; const int h = var_params->h; const MSBuffers *ms_buffers = &var_params->ms_buffers; const uint8_t *src = ms_buffers->src->buf; const uint8_t *y = get_buf_from_mv(ms_buffers->ref, *bestmv); const int src_stride = ms_buffers->src->stride; const int y_stride = ms_buffers->ref->stride; const uint8_t *second_pred = ms_buffers->second_pred; const uint8_t *mask = ms_buffers->mask; const int mask_stride = ms_buffers->mask_stride; const int invert_mask = ms_buffers->inv_mask; unsigned int besterr; if (second_pred != NULL) { #if CONFIG_AV1_HIGHBITDEPTH if (is_cur_buf_hbd(xd)) { DECLARE_ALIGNED(16, uint16_t, comp_pred16[MAX_SB_SQUARE]); uint8_t *comp_pred = CONVERT_TO_BYTEPTR(comp_pred16); if (mask) { aom_highbd_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask, mask_stride, invert_mask); } else { aom_highbd_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride); } besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); } else { DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]); if (mask) { aom_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask, mask_stride, invert_mask); } else { aom_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride); } besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); } #else (void)xd; DECLARE_ALIGNED(16, uint8_t, comp_pred[MAX_SB_SQUARE]); if (mask) { aom_comp_mask_pred(comp_pred, second_pred, w, h, y, y_stride, mask, mask_stride, invert_mask); } else { aom_comp_avg_pred(comp_pred, second_pred, w, h, y, y_stride); } besterr = vfp->vf(comp_pred, w, src, src_stride, sse1); #endif } else { besterr = vfp->vf(y, y_stride, src, src_stride, sse1); } *distortion = besterr; besterr += mv_err_cost_(bestmv, mv_cost_params); return besterr; } // Gets the error at the beginning when the mv has fullpel precision static unsigned int upsampled_setup_center_error( MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *bestmv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) { unsigned int besterr = upsampled_pref_error(xd, cm, bestmv, var_params, sse1); *distortion = besterr; besterr += mv_err_cost_(bestmv, mv_cost_params); return besterr; } static INLINE int divide_and_round(int n, int d) { return ((n < 0) ^ (d < 0)) ? ((n - d / 2) / d) : ((n + d / 2) / d); } static INLINE int is_cost_list_wellbehaved(const int *cost_list) { return cost_list[0] < cost_list[1] && cost_list[0] < cost_list[2] && cost_list[0] < cost_list[3] && cost_list[0] < cost_list[4]; } // Returns surface minima estimate at given precision in 1/2^n bits. // Assume a model for the cost surface: S = A(x - x0)^2 + B(y - y0)^2 + C // For a given set of costs S0, S1, S2, S3, S4 at points // (y, x) = (0, 0), (0, -1), (1, 0), (0, 1) and (-1, 0) respectively, // the solution for the location of the minima (x0, y0) is given by: // x0 = 1/2 (S1 - S3)/(S1 + S3 - 2*S0), // y0 = 1/2 (S4 - S2)/(S4 + S2 - 2*S0). // The code below is an integerized version of that. static AOM_INLINE void get_cost_surf_min(const int *cost_list, int *ir, int *ic, int bits) { *ic = divide_and_round((cost_list[1] - cost_list[3]) * (1 << (bits - 1)), (cost_list[1] - 2 * cost_list[0] + cost_list[3])); *ir = divide_and_round((cost_list[4] - cost_list[2]) * (1 << (bits - 1)), (cost_list[4] - 2 * cost_list[0] + cost_list[2])); } // Checks the list of mvs searched in the last iteration and see if we are // repeating it. If so, return 1. Otherwise we update the last_mv_search_list // with current_mv and return 0. static INLINE int check_repeated_mv_and_update(int_mv *last_mv_search_list, const MV current_mv, int iter) { if (last_mv_search_list) { if (CHECK_MV_EQUAL(last_mv_search_list[iter].as_mv, current_mv)) { return 1; } last_mv_search_list[iter].as_mv = current_mv; } return 0; } static AOM_INLINE int setup_center_error_facade( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *bestmv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion, int is_scaled) { if (is_scaled) { return upsampled_setup_center_error(xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion); } else { return setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1, distortion); } } int av1_find_best_sub_pixel_tree_pruned_more( MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)cm; const int allow_hp = ms_params->allow_hp; const int forced_stop = ms_params->forced_stop; const int iters_per_step = ms_params->iters_per_step; const int *cost_list = ms_params->cost_list; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params; // The iteration we are current searching for. Iter 0 corresponds to fullpel // mv, iter 1 to half pel, and so on int iter = 0; int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel unsigned int besterr = INT_MAX; *bestmv = start_mv; const struct scale_factors *const sf = is_intrabc_block(xd->mi[0]) ? &cm->sf_identity : xd->block_ref_scale_factors[0]; const int is_scaled = av1_is_scaled(sf); if (start_mv_stats != NULL && !is_scaled) { besterr = start_mv_stats->distortion + start_mv_stats->err_cost; *distortion = start_mv_stats->distortion; *sse1 = start_mv_stats->sse; } else { besterr = setup_center_error_facade(xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion, is_scaled); } // If forced_stop is FULL_PEL, return. if (forced_stop == FULL_PEL) return besterr; if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && cost_list[4] != INT_MAX && is_cost_list_wellbehaved(cost_list)) { int ir, ic; get_cost_surf_min(cost_list, &ir, &ic, 1); if (ir != 0 || ic != 0) { const MV this_mv = { start_mv.row + ir * hstep, start_mv.col + ic * hstep }; int dummy = 0; check_better_fast(xd, cm, &this_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); } } else { two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } // Each subsequent iteration checks at least one point in common with // the last iteration could be 2 ( if diag selected) 1/4 pel if (forced_stop < HALF_PEL) { if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; hstep >>= 1; start_mv = *bestmv; two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } if (allow_hp && forced_stop == EIGHTH_PEL) { if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; hstep >>= 1; start_mv = *bestmv; two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } return besterr; } int av1_find_best_sub_pixel_tree_pruned( MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)cm; (void)start_mv_stats; const int allow_hp = ms_params->allow_hp; const int forced_stop = ms_params->forced_stop; const int iters_per_step = ms_params->iters_per_step; const int *cost_list = ms_params->cost_list; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params; // The iteration we are current searching for. Iter 0 corresponds to fullpel // mv, iter 1 to half pel, and so on int iter = 0; int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel unsigned int besterr = INT_MAX; *bestmv = start_mv; const struct scale_factors *const sf = is_intrabc_block(xd->mi[0]) ? &cm->sf_identity : xd->block_ref_scale_factors[0]; const int is_scaled = av1_is_scaled(sf); if (start_mv_stats != NULL && !is_scaled) { besterr = start_mv_stats->distortion + start_mv_stats->err_cost; *distortion = start_mv_stats->distortion; *sse1 = start_mv_stats->sse; } else { besterr = setup_center_error_facade(xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion, is_scaled); } // If forced_stop is FULL_PEL, return. if (forced_stop == FULL_PEL) return besterr; if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; if (cost_list && cost_list[0] != INT_MAX && cost_list[1] != INT_MAX && cost_list[2] != INT_MAX && cost_list[3] != INT_MAX && cost_list[4] != INT_MAX) { const unsigned int whichdir = (cost_list[1] < cost_list[3] ? 0 : 1) + (cost_list[2] < cost_list[4] ? 0 : 2); const MV left_mv = { start_mv.row, start_mv.col - hstep }; const MV right_mv = { start_mv.row, start_mv.col + hstep }; const MV bottom_mv = { start_mv.row + hstep, start_mv.col }; const MV top_mv = { start_mv.row - hstep, start_mv.col }; const MV bottom_left_mv = { start_mv.row + hstep, start_mv.col - hstep }; const MV bottom_right_mv = { start_mv.row + hstep, start_mv.col + hstep }; const MV top_left_mv = { start_mv.row - hstep, start_mv.col - hstep }; const MV top_right_mv = { start_mv.row - hstep, start_mv.col + hstep }; int dummy = 0; switch (whichdir) { case 0: // bottom left quadrant check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &bottom_left_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); break; case 1: // bottom right quadrant check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &bottom_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &bottom_right_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); break; case 2: // top left quadrant check_better_fast(xd, cm, &left_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &top_left_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); break; case 3: // top right quadrant check_better_fast(xd, cm, &right_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &top_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); check_better_fast(xd, cm, &top_right_mv, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, &dummy, is_scaled); break; } } else { two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } // Each subsequent iteration checks at least one point in common with // the last iteration could be 2 ( if diag selected) 1/4 pel if (forced_stop < HALF_PEL) { if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; hstep >>= 1; start_mv = *bestmv; two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } if (allow_hp && forced_stop == EIGHTH_PEL) { if (check_repeated_mv_and_update(last_mv_search_list, *bestmv, iter)) { return INT_MAX; } iter++; hstep >>= 1; start_mv = *bestmv; two_level_checks_fast(xd, cm, start_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, iters_per_step, is_scaled); } return besterr; } int av1_find_best_sub_pixel_tree(MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)start_mv_stats; const int allow_hp = ms_params->allow_hp; const int forced_stop = ms_params->forced_stop; const int iters_per_step = ms_params->iters_per_step; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params; const SUBPEL_SEARCH_TYPE subpel_search_type = ms_params->var_params.subpel_search_type; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; // How many steps to take. A round of 0 means fullpel search only, 1 means // half-pel, and so on. const int round = AOMMIN(FULL_PEL - forced_stop, 3 - !allow_hp); int hstep = INIT_SUBPEL_STEP_SIZE; // Step size, initialized to 4/8=1/2 pel unsigned int besterr = INT_MAX; *bestmv = start_mv; const struct scale_factors *const sf = is_intrabc_block(xd->mi[0]) ? &cm->sf_identity : xd->block_ref_scale_factors[0]; const int is_scaled = av1_is_scaled(sf); if (start_mv_stats != NULL && !is_scaled) { besterr = start_mv_stats->distortion + start_mv_stats->err_cost; *distortion = start_mv_stats->distortion; *sse1 = start_mv_stats->sse; } else { if (subpel_search_type != USE_2_TAPS_ORIG) { besterr = upsampled_setup_center_error(xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion); } else { besterr = setup_center_error(xd, bestmv, var_params, mv_cost_params, sse1, distortion); } } // If forced_stop is FULL_PEL, return. if (!round) return besterr; for (int iter = 0; iter < round; ++iter) { MV iter_center_mv = *bestmv; if (check_repeated_mv_and_update(last_mv_search_list, iter_center_mv, iter)) { return INT_MAX; } MV diag_step; if (subpel_search_type != USE_2_TAPS_ORIG) { diag_step = first_level_check(xd, cm, iter_center_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion); } else { diag_step = first_level_check_fast(xd, cm, iter_center_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, is_scaled); } // Check diagonal sub-pixel position if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) { second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion, is_scaled); } hstep >>= 1; } return besterr; } // Note(yunqingwang): The following 2 functions are only used in the motion // vector unit test, which return extreme motion vectors allowed by the MV // limits. // Returns the maximum MV. int av1_return_max_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)xd; (void)cm; (void)start_mv; (void)start_mv_stats; (void)sse1; (void)distortion; (void)last_mv_search_list; const int allow_hp = ms_params->allow_hp; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; bestmv->row = mv_limits->row_max; bestmv->col = mv_limits->col_max; unsigned int besterr = 0; // In the sub-pel motion search, if hp is not used, then the last bit of mv // has to be 0. lower_mv_precision(bestmv, allow_hp, 0); return besterr; } // Returns the minimum MV. int av1_return_min_sub_pixel_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)xd; (void)cm; (void)start_mv; (void)start_mv_stats; (void)sse1; (void)distortion; (void)last_mv_search_list; const int allow_hp = ms_params->allow_hp; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; bestmv->row = mv_limits->row_min; bestmv->col = mv_limits->col_min; unsigned int besterr = 0; // In the sub-pel motion search, if hp is not used, then the last bit of mv // has to be 0. lower_mv_precision(bestmv, allow_hp, 0); return besterr; } #if !CONFIG_REALTIME_ONLY // Computes the cost of the current predictor by going through the whole // av1_enc_build_inter_predictor pipeline. This is mainly used by warped mv // during motion_mode_rd. We are going through the whole // av1_enc_build_inter_predictor because we might have changed the interpolation // filter, etc before motion_mode_rd is called. static INLINE unsigned int compute_motion_cost( MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, BLOCK_SIZE bsize, const MV *this_mv) { unsigned int mse; unsigned int sse; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, AOM_PLANE_Y, AOM_PLANE_Y); const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params; const MSBuffers *ms_buffers = &var_params->ms_buffers; const uint8_t *const src = ms_buffers->src->buf; const int src_stride = ms_buffers->src->stride; const uint8_t *const dst = xd->plane[0].dst.buf; const int dst_stride = xd->plane[0].dst.stride; const aom_variance_fn_ptr_t *vfp = ms_params->var_params.vfp; mse = vfp->vf(dst, dst_stride, src, src_stride, &sse); mse += mv_err_cost_(this_mv, &ms_params->mv_cost_params); return mse; } // Refines MV in a small range // Macros to build bitmasks which help us avoid redundant computations // // To explain the idea here, imagine that on the first iteration of the // loop below, we step rightwards. Then, on the second iteration, the neighbors // to consider are: // . . . // 0 1 . // . . . // Where 0 is the initial search point, 1 is the best candidate found in the // first iteration, and the dots are the other neighbors of point 1. // // Naively, we would now need to scan all 8 neighbors of point 1 (point 0 and // the seven points marked with dots), and compare them to see where to move // next. However, we already evaluated 5 of those 8 neighbors in the last // iteration, and decided that they are worse than point 1. So we don't need // to re-consider these points. We only really need to consider the three // points which are adjacent to point 1 but *not* to point 0. // // As the algorithm goes on, there are other ways that redundant evaluations // can happen, if the search path curls back around on itself. // // To avoid all possible redundancies, we'd have to build a set containing // every point we have already checked, and this would be quite expensive. // // So instead, we apply a 95%-effective solution with a much lower overhead: // we prune out the points which were considered during the previous // iteration, but we don't worry about any prior iteration. This can be done // as follows: // // We build a static table, called neighbor_mask, which answers the question // "if we moved in direction X last time, which neighbors are new, and which // were scanned last iteration?" // Then we can query this table to quickly determine which points we need to // evaluate, and which we can skip. // // To query the table, the logic is simply: // neighbor_mask[i] & (1 << j) == "if we moved in direction i last iteration, // do we need to scan neighbor j this iteration?" #define NEIGHBOR_MASK_DIA(left, down, right, up) \ (left | (down << 1) | (right << 2) | (up << 3)) #define NEIGHBOR_MASK_SQR(left, down, right, up, down_left, down_right, \ up_left, up_right) \ (left | (down << 1) | (right << 2) | (up << 3) | (down_left << 4) | \ (down_right << 5) | (up_left << 6) | (up_right << 7)) static const warp_search_config warp_search_info[WARP_SEARCH_METHODS] = { // WARP_SEARCH_DIAMOND { .num_neighbors = 4, .neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 } }, .neighbor_mask = { // If we stepped left last time, consider all points except right NEIGHBOR_MASK_DIA(1, 1, 0, 1), // If we stepped down last time, consider all points except up NEIGHBOR_MASK_DIA(1, 1, 1, 0), // Stepped right last time NEIGHBOR_MASK_DIA(0, 1, 1, 1), // Stepped up last time NEIGHBOR_MASK_DIA(1, 0, 1, 1), }, }, // WARP_SEARCH_SQUARE { .num_neighbors = 8, .neighbors = { { 0, -1 }, { 1, 0 }, { 0, 1 }, { -1, 0 }, { 1, -1 }, { 1, 1 }, { -1, -1 }, { -1, 1 } }, .neighbor_mask = { // If we stepped left last time, then we only need to consider 3 points: // left, down+left, up+left NEIGHBOR_MASK_SQR(1, 0, 0, 0, 1, 0, 1, 0), // If we stepped down last time, then we only need to consider 3 points: // down, down+left, down+right NEIGHBOR_MASK_SQR(0, 1, 0, 0, 1, 1, 0, 0), // Stepped right last time NEIGHBOR_MASK_SQR(0, 0, 1, 0, 0, 1, 0, 1), // Stepped up last time NEIGHBOR_MASK_SQR(0, 0, 0, 1, 0, 0, 1, 1), // If we stepped down+left last time, then we need to consider 5 points: // left, down, down+left, down+right, up+left NEIGHBOR_MASK_SQR(1, 1, 0, 0, 1, 1, 1, 0), // Stepped down+right last time NEIGHBOR_MASK_SQR(0, 1, 1, 0, 1, 1, 0, 1), // Stepped up+left last time NEIGHBOR_MASK_SQR(1, 0, 0, 1, 1, 0, 1, 1), // Stepped up+right last time NEIGHBOR_MASK_SQR(0, 0, 1, 1, 0, 1, 1, 1), }, }, }; unsigned int av1_refine_warped_mv(MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, BLOCK_SIZE bsize, const int *pts0, const int *pts_inref0, int total_samples, WARP_SEARCH_METHOD search_method, int num_iterations) { MB_MODE_INFO *mbmi = xd->mi[0]; const MV *neighbors = warp_search_info[search_method].neighbors; const int num_neighbors = warp_search_info[search_method].num_neighbors; const uint8_t *neighbor_mask = warp_search_info[search_method].neighbor_mask; MV *best_mv = &mbmi->mv[0].as_mv; WarpedMotionParams best_wm_params = mbmi->wm_params; int best_num_proj_ref = mbmi->num_proj_ref; unsigned int bestmse; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; const int mv_shift = ms_params->allow_hp ? 0 : 1; // Calculate the center position's error assert(av1_is_subpelmv_in_range(mv_limits, *best_mv)); bestmse = compute_motion_cost(xd, cm, ms_params, bsize, best_mv); // MV search int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // First step always scans all neighbors uint8_t valid_neighbors = UINT8_MAX; for (int ite = 0; ite < num_iterations; ++ite) { int best_idx = -1; for (int idx = 0; idx < num_neighbors; ++idx) { if ((valid_neighbors & (1 << idx)) == 0) { continue; } unsigned int thismse; MV this_mv = { best_mv->row + neighbors[idx].row * (1 << mv_shift), best_mv->col + neighbors[idx].col * (1 << mv_shift) }; if (av1_is_subpelmv_in_range(mv_limits, this_mv)) { memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); if (total_samples > 1) { mbmi->num_proj_ref = av1_selectSamples(&this_mv, pts, pts_inref, total_samples, bsize); } if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, this_mv.row, this_mv.col, &mbmi->wm_params, mi_row, mi_col)) { thismse = compute_motion_cost(xd, cm, ms_params, bsize, &this_mv); if (thismse < bestmse) { best_idx = idx; best_wm_params = mbmi->wm_params; best_num_proj_ref = mbmi->num_proj_ref; bestmse = thismse; } } } } if (best_idx == -1) break; if (best_idx >= 0) { best_mv->row += neighbors[best_idx].row * (1 << mv_shift); best_mv->col += neighbors[best_idx].col * (1 << mv_shift); valid_neighbors = neighbor_mask[best_idx]; } } mbmi->wm_params = best_wm_params; mbmi->num_proj_ref = best_num_proj_ref; return bestmse; } #endif // !CONFIG_REALTIME_ONLY // ============================================================================= // Subpixel Motion Search: OBMC // ============================================================================= // Estimates the variance of prediction residue static INLINE int estimate_obmc_pref_error( const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, unsigned int *sse) { const aom_variance_fn_ptr_t *vfp = var_params->vfp; const MSBuffers *ms_buffers = &var_params->ms_buffers; const int32_t *src = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv); const int ref_stride = ms_buffers->ref->stride; const int subpel_x_q3 = get_subpel_part(this_mv->col); const int subpel_y_q3 = get_subpel_part(this_mv->row); return vfp->osvf(ref, ref_stride, subpel_x_q3, subpel_y_q3, src, mask, sse); } // Calculates the variance of prediction residue static int upsampled_obmc_pref_error(MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, unsigned int *sse) { const aom_variance_fn_ptr_t *vfp = var_params->vfp; const SUBPEL_SEARCH_TYPE subpel_search_type = var_params->subpel_search_type; const int w = var_params->w; const int h = var_params->h; const MSBuffers *ms_buffers = &var_params->ms_buffers; const int32_t *wsrc = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const uint8_t *ref = get_buf_from_mv(ms_buffers->ref, *this_mv); const int ref_stride = ms_buffers->ref->stride; const int subpel_x_q3 = get_subpel_part(this_mv->col); const int subpel_y_q3 = get_subpel_part(this_mv->row); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; unsigned int besterr; DECLARE_ALIGNED(16, uint8_t, pred[2 * MAX_SB_SQUARE]); #if CONFIG_AV1_HIGHBITDEPTH if (is_cur_buf_hbd(xd)) { uint8_t *pred8 = CONVERT_TO_BYTEPTR(pred); aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred8, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, xd->bd, subpel_search_type); besterr = vfp->ovf(pred8, w, wsrc, mask, sse); } else { aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); besterr = vfp->ovf(pred, w, wsrc, mask, sse); } #else aom_upsampled_pred(xd, cm, mi_row, mi_col, this_mv, pred, w, h, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search_type); besterr = vfp->ovf(pred, w, wsrc, mask, sse); #endif return besterr; } static unsigned int setup_obmc_center_error( const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) { // TODO(chiyotsai@google.com): There might be a bug here where we didn't use // get_buf_from_mv(ref, *this_mv). const MSBuffers *ms_buffers = &var_params->ms_buffers; const int32_t *wsrc = ms_buffers->wsrc; const int32_t *mask = ms_buffers->obmc_mask; const uint8_t *ref = ms_buffers->ref->buf; const int ref_stride = ms_buffers->ref->stride; unsigned int besterr = var_params->vfp->ovf(ref, ref_stride, wsrc, mask, sse1); *distortion = besterr; besterr += mv_err_cost_(this_mv, mv_cost_params); return besterr; } static unsigned int upsampled_setup_obmc_center_error( MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV *this_mv, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *sse1, int *distortion) { unsigned int besterr = upsampled_obmc_pref_error(xd, cm, this_mv, var_params, sse1); *distortion = besterr; besterr += mv_err_cost_(this_mv, mv_cost_params); return besterr; } // Estimates the variance of prediction residue // TODO(chiyotsai@google.com): the cost does does not match the cost in // mv_cost_. Investigate this later. static INLINE int estimate_obmc_mvcost(const MV *this_mv, const MV_COST_PARAMS *mv_cost_params) { const MV *ref_mv = mv_cost_params->ref_mv; const int *mvjcost = mv_cost_params->mvjcost; const int *const *mvcost = mv_cost_params->mvcost; const int error_per_bit = mv_cost_params->error_per_bit; const MV_COST_TYPE mv_cost_type = mv_cost_params->mv_cost_type; const MV diff_mv = { GET_MV_SUBPEL(this_mv->row - ref_mv->row), GET_MV_SUBPEL(this_mv->col - ref_mv->col) }; switch (mv_cost_type) { case MV_COST_ENTROPY: return (unsigned)((mv_cost(&diff_mv, mvjcost, CONVERT_TO_CONST_MVCOST(mvcost)) * error_per_bit + 4096) >> 13); case MV_COST_NONE: return 0; default: assert(0 && "L1 norm is not tuned for estimated obmc mvcost"); return 0; } } // Estimates whether this_mv is better than best_mv. This function incorporates // both prediction error and residue into account. static INLINE unsigned int obmc_check_better_fast( const MV *this_mv, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int *has_better_mv) { unsigned int cost; if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) { unsigned int sse; const int thismse = estimate_obmc_pref_error(this_mv, var_params, &sse); cost = estimate_obmc_mvcost(this_mv, mv_cost_params); cost += thismse; if (cost < *besterr) { *besterr = cost; *best_mv = *this_mv; *distortion = thismse; *sse1 = sse; *has_better_mv |= 1; } } else { cost = INT_MAX; } return cost; } // Estimates whether this_mv is better than best_mv. This function incorporates // both prediction error and residue into account. static INLINE unsigned int obmc_check_better( MACROBLOCKD *xd, const AV1_COMMON *cm, const MV *this_mv, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion, int *has_better_mv) { unsigned int cost; if (av1_is_subpelmv_in_range(mv_limits, *this_mv)) { unsigned int sse; const int thismse = upsampled_obmc_pref_error(xd, cm, this_mv, var_params, &sse); cost = mv_err_cost_(this_mv, mv_cost_params); cost += thismse; if (cost < *besterr) { *besterr = cost; *best_mv = *this_mv; *distortion = thismse; *sse1 = sse; *has_better_mv |= 1; } } else { cost = INT_MAX; } return cost; } static AOM_FORCE_INLINE MV obmc_first_level_check( MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV *best_mv, const int hstep, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion) { int dummy = 0; const MV left_mv = { this_mv.row, this_mv.col - hstep }; const MV right_mv = { this_mv.row, this_mv.col + hstep }; const MV top_mv = { this_mv.row - hstep, this_mv.col }; const MV bottom_mv = { this_mv.row + hstep, this_mv.col }; if (var_params->subpel_search_type != USE_2_TAPS_ORIG) { const unsigned int left = obmc_check_better(xd, cm, &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int right = obmc_check_better(xd, cm, &right_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int up = obmc_check_better(xd, cm, &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int down = obmc_check_better(xd, cm, &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const MV diag_step = get_best_diag_step(hstep, left, right, up, down); const MV diag_mv = { this_mv.row + diag_step.row, this_mv.col + diag_step.col }; // Check the diagonal direction with the best mv obmc_check_better(xd, cm, &diag_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); return diag_step; } else { const unsigned int left = obmc_check_better_fast( &left_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int right = obmc_check_better_fast( &right_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int up = obmc_check_better_fast( &top_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const unsigned int down = obmc_check_better_fast( &bottom_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); const MV diag_step = get_best_diag_step(hstep, left, right, up, down); const MV diag_mv = { this_mv.row + diag_step.row, this_mv.col + diag_step.col }; // Check the diagonal direction with the best mv obmc_check_better_fast(&diag_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &dummy); return diag_step; } } // A newer version of second level check for obmc that gives better quality. static AOM_FORCE_INLINE void obmc_second_level_check_v2( MACROBLOCKD *xd, const AV1_COMMON *const cm, const MV this_mv, MV diag_step, MV *best_mv, const SubpelMvLimits *mv_limits, const SUBPEL_SEARCH_VAR_PARAMS *var_params, const MV_COST_PARAMS *mv_cost_params, unsigned int *besterr, unsigned int *sse1, int *distortion) { assert(best_mv->row == this_mv.row + diag_step.row || best_mv->col == this_mv.col + diag_step.col); if (CHECK_MV_EQUAL(this_mv, *best_mv)) { return; } else if (this_mv.row == best_mv->row) { // Search away from diagonal step since diagonal search did not provide any // improvement diag_step.row *= -1; } else if (this_mv.col == best_mv->col) { diag_step.col *= -1; } const MV row_bias_mv = { best_mv->row + diag_step.row, best_mv->col }; const MV col_bias_mv = { best_mv->row, best_mv->col + diag_step.col }; const MV diag_bias_mv = { best_mv->row + diag_step.row, best_mv->col + diag_step.col }; int has_better_mv = 0; if (var_params->subpel_search_type != USE_2_TAPS_ORIG) { obmc_check_better(xd, cm, &row_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); obmc_check_better(xd, cm, &col_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); // Do an additional search if the second iteration gives a better mv if (has_better_mv) { obmc_check_better(xd, cm, &diag_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); } } else { obmc_check_better_fast(&row_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); obmc_check_better_fast(&col_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); // Do an additional search if the second iteration gives a better mv if (has_better_mv) { obmc_check_better_fast(&diag_bias_mv, best_mv, mv_limits, var_params, mv_cost_params, besterr, sse1, distortion, &has_better_mv); } } } int av1_find_best_obmc_sub_pixel_tree_up( MACROBLOCKD *xd, const AV1_COMMON *const cm, const SUBPEL_MOTION_SEARCH_PARAMS *ms_params, MV start_mv, const FULLPEL_MV_STATS *start_mv_stats, MV *bestmv, int *distortion, unsigned int *sse1, int_mv *last_mv_search_list) { (void)last_mv_search_list; (void)start_mv_stats; const int allow_hp = ms_params->allow_hp; const int forced_stop = ms_params->forced_stop; const int iters_per_step = ms_params->iters_per_step; const MV_COST_PARAMS *mv_cost_params = &ms_params->mv_cost_params; const SUBPEL_SEARCH_VAR_PARAMS *var_params = &ms_params->var_params; const SUBPEL_SEARCH_TYPE subpel_search_type = ms_params->var_params.subpel_search_type; const SubpelMvLimits *mv_limits = &ms_params->mv_limits; int hstep = INIT_SUBPEL_STEP_SIZE; const int round = AOMMIN(FULL_PEL - forced_stop, 3 - !allow_hp); unsigned int besterr = INT_MAX; *bestmv = start_mv; if (subpel_search_type != USE_2_TAPS_ORIG) besterr = upsampled_setup_obmc_center_error( xd, cm, bestmv, var_params, mv_cost_params, sse1, distortion); else besterr = setup_obmc_center_error(bestmv, var_params, mv_cost_params, sse1, distortion); for (int iter = 0; iter < round; ++iter) { MV iter_center_mv = *bestmv; MV diag_step = obmc_first_level_check(xd, cm, iter_center_mv, bestmv, hstep, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion); if (!CHECK_MV_EQUAL(iter_center_mv, *bestmv) && iters_per_step > 1) { obmc_second_level_check_v2(xd, cm, iter_center_mv, diag_step, bestmv, mv_limits, var_params, mv_cost_params, &besterr, sse1, distortion); } hstep >>= 1; } return besterr; } // ============================================================================= // Public cost function: mv_cost + pred error // ============================================================================= int av1_get_mvpred_sse(const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src, const struct buf_2d *pre) { const MV mv = get_mv_from_fullmv(&best_mv); unsigned int sse, var; var = vfp->vf(src->buf, src->stride, get_buf_from_fullmv(pre, &best_mv), pre->stride, &sse); (void)var; return sse + mv_err_cost_(&mv, mv_cost_params); } static INLINE int get_mvpred_av_var(const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv, const uint8_t *second_pred, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src, const struct buf_2d *pre) { const MV mv = get_mv_from_fullmv(&best_mv); unsigned int unused; return vfp->svaf(get_buf_from_fullmv(pre, &best_mv), pre->stride, 0, 0, src->buf, src->stride, &unused, second_pred) + mv_err_cost_(&mv, mv_cost_params); } static INLINE int get_mvpred_mask_var( const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src, const struct buf_2d *pre) { const MV mv = get_mv_from_fullmv(&best_mv); unsigned int unused; return vfp->msvf(get_buf_from_fullmv(pre, &best_mv), pre->stride, 0, 0, src->buf, src->stride, second_pred, mask, mask_stride, invert_mask, &unused) + mv_err_cost_(&mv, mv_cost_params); } int av1_get_mvpred_compound_var(const MV_COST_PARAMS *mv_cost_params, const FULLPEL_MV best_mv, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int invert_mask, const aom_variance_fn_ptr_t *vfp, const struct buf_2d *src, const struct buf_2d *pre) { if (mask) { return get_mvpred_mask_var(mv_cost_params, best_mv, second_pred, mask, mask_stride, invert_mask, vfp, src, pre); } else { return get_mvpred_av_var(mv_cost_params, best_mv, second_pred, vfp, src, pre); } }