/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_MODEL_RD_H_ #define AOM_AV1_ENCODER_MODEL_RD_H_ #include "aom/aom_integer.h" #include "av1/encoder/block.h" #include "av1/encoder/encoder.h" #include "av1/encoder/pustats.h" #include "av1/encoder/rdopt_utils.h" #include "config/aom_dsp_rtcd.h" #ifdef __cplusplus extern "C" { #endif // 0: Legacy model // 1: Curve fit model // 2: Surface fit model // 3: DNN regression model // 4: Full rd model #define MODELRD_TYPE_INTERP_FILTER 1 #define MODELRD_TYPE_TX_SEARCH_PRUNE 1 #define MODELRD_TYPE_MASKED_COMPOUND 1 #define MODELRD_TYPE_INTERINTRA 1 #define MODELRD_TYPE_INTRA 1 #define MODELRD_TYPE_MOTION_MODE_RD 1 typedef void (*model_rd_for_sb_type)( const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum, uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate, int64_t *plane_sse, int64_t *plane_dist); typedef void (*model_rd_from_sse_type)(const AV1_COMP *const cpi, const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, int plane, int64_t sse, int num_samples, int *rate, int64_t *dist); static int64_t calculate_sse(MACROBLOCKD *const xd, const struct macroblock_plane *p, struct macroblockd_plane *pd, const int bw, const int bh) { int64_t sse = 0; const int shift = xd->bd - 8; #if CONFIG_AV1_HIGHBITDEPTH if (is_cur_buf_hbd(xd)) { sse = aom_highbd_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh); } else { sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh); } #else sse = aom_sse(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, bw, bh); #endif sse = ROUND_POWER_OF_TWO(sse, shift * 2); return sse; } static AOM_INLINE int64_t compute_sse_plane(MACROBLOCK *x, MACROBLOCKD *xd, int plane, const BLOCK_SIZE bsize) { struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); int bw, bh; const struct macroblock_plane *const p = &x->plane[plane]; get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, &bh); int64_t sse = calculate_sse(xd, p, pd, bw, bh); return sse; } static AOM_INLINE void model_rd_from_sse(const AV1_COMP *const cpi, const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, int plane, int64_t sse, int num_samples, int *rate, int64_t *dist) { (void)num_samples; const MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; // Fast approximate the modelling function. if (cpi->sf.rd_sf.simple_model_rd_from_var) { const int64_t square_error = sse; int quantizer = p->dequant_QTX[1] >> dequant_shift; if (quantizer < 120) *rate = (int)AOMMIN( (square_error * (280 - quantizer)) >> (16 - AV1_PROB_COST_SHIFT), INT_MAX); else *rate = 0; assert(*rate >= 0); *dist = (square_error * quantizer) >> 8; } else { av1_model_rd_from_var_lapndz(sse, num_pels_log2_lookup[plane_bsize], p->dequant_QTX[1] >> dequant_shift, rate, dist); } *dist <<= 4; } // Fits a curve for rate and distortion using as feature: // log2(sse_norm/qstep^2) static AOM_INLINE void model_rd_with_curvfit(const AV1_COMP *const cpi, const MACROBLOCK *const x, BLOCK_SIZE plane_bsize, int plane, int64_t sse, int num_samples, int *rate, int64_t *dist) { (void)cpi; (void)plane_bsize; const MACROBLOCKD *const xd = &x->e_mbd; const struct macroblock_plane *const p = &x->plane[plane]; const int dequant_shift = (is_cur_buf_hbd(xd)) ? xd->bd - 5 : 3; const int qstep = AOMMAX(p->dequant_QTX[1] >> dequant_shift, 1); if (sse == 0) { if (rate) *rate = 0; if (dist) *dist = 0; return; } const double sse_norm = (double)sse / num_samples; const double qstepsqr = (double)qstep * qstep; const double xqr = log2(sse_norm / qstepsqr); double rate_f, dist_by_sse_norm_f; av1_model_rd_curvfit(plane_bsize, sse_norm, xqr, &rate_f, &dist_by_sse_norm_f); const double dist_f = dist_by_sse_norm_f * sse_norm; int rate_i = (int)(AOMMAX(0.0, rate_f * num_samples) + 0.5); int64_t dist_i = (int64_t)(AOMMAX(0.0, dist_f * num_samples) + 0.5); // Check if skip is better if (rate_i == 0) { dist_i = sse << 4; } else if (RDCOST(x->rdmult, rate_i, dist_i) >= RDCOST(x->rdmult, 0, sse << 4)) { rate_i = 0; dist_i = sse << 4; } if (rate) *rate = rate_i; if (dist) *dist = dist_i; } static AOM_INLINE void model_rd_for_sb( const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum, uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. int plane; const int ref = xd->mi[0]->ref_frame[0]; int64_t rate_sum = 0; int64_t dist_sum = 0; int64_t total_sse = 0; assert(bsize < BLOCK_SIZES_ALL); for (plane = plane_from; plane <= plane_to; ++plane) { if (plane && !xd->is_chroma_ref) break; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); assert(plane_bsize < BLOCK_SIZES_ALL); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; int64_t sse; int rate; int64_t dist; sse = calculate_sse(xd, p, pd, bw, bh); model_rd_from_sse(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); total_sse += sse; rate_sum += rate; dist_sum += dist; if (plane_rate) plane_rate[plane] = rate; if (plane_sse) plane_sse[plane] = sse; if (plane_dist) plane_dist[plane] = dist; assert(rate_sum >= 0); } if (skip_txfm_sb) *skip_txfm_sb = total_sse == 0; if (skip_sse_sb) *skip_sse_sb = total_sse << 4; rate_sum = AOMMIN(rate_sum, INT_MAX); *out_rate_sum = (int)rate_sum; *out_dist_sum = dist_sum; } static AOM_INLINE void model_rd_for_sb_with_curvfit( const AV1_COMP *const cpi, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd, int plane_from, int plane_to, int *out_rate_sum, int64_t *out_dist_sum, uint8_t *skip_txfm_sb, int64_t *skip_sse_sb, int *plane_rate, int64_t *plane_sse, int64_t *plane_dist) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. const int ref = xd->mi[0]->ref_frame[0]; int64_t rate_sum = 0; int64_t dist_sum = 0; int64_t total_sse = 0; for (int plane = plane_from; plane <= plane_to; ++plane) { if (plane && !xd->is_chroma_ref) break; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); int64_t dist, sse; int rate; int bw, bh; const struct macroblock_plane *const p = &x->plane[plane]; get_txb_dimensions(xd, plane, plane_bsize, 0, 0, plane_bsize, NULL, NULL, &bw, &bh); sse = calculate_sse(xd, p, pd, bw, bh); model_rd_with_curvfit(cpi, x, plane_bsize, plane, sse, bw * bh, &rate, &dist); if (plane == 0) x->pred_sse[ref] = (unsigned int)AOMMIN(sse, UINT_MAX); total_sse += sse; rate_sum += rate; dist_sum += dist; if (plane_rate) plane_rate[plane] = rate; if (plane_sse) plane_sse[plane] = sse; if (plane_dist) plane_dist[plane] = dist; } if (skip_txfm_sb) *skip_txfm_sb = rate_sum == 0; if (skip_sse_sb) *skip_sse_sb = total_sse << 4; *out_rate_sum = (int)rate_sum; *out_dist_sum = dist_sum; } enum { MODELRD_LEGACY, MODELRD_CURVFIT, MODELRD_TYPES } UENUM1BYTE(ModelRdType); static const model_rd_for_sb_type model_rd_sb_fn[MODELRD_TYPES] = { model_rd_for_sb, model_rd_for_sb_with_curvfit }; static const model_rd_from_sse_type model_rd_sse_fn[MODELRD_TYPES] = { model_rd_from_sse, model_rd_with_curvfit }; #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_MODEL_RD_H_