/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/reconinter.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/interp_search.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/partition_strategy.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/tx_search.h" #define RIGHT_SHIFT_MV(x) (((x) + 3 + ((x) >= 0)) >> 3) typedef struct { int_mv fmv; int weight; } cand_mv_t; static int compare_weight(const void *a, const void *b) { const int diff = ((cand_mv_t *)a)->weight - ((cand_mv_t *)b)->weight; if (diff < 0) return 1; else if (diff > 0) return -1; return 0; } // Allow more mesh searches for screen content type on the ARF. static int use_fine_search_interval(const AV1_COMP *const cpi) { return cpi->is_screen_content_type && cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == ARF_UPDATE && cpi->oxcf.speed <= 2; } // Iterate through the tpl and collect the mvs to be used as candidates static INLINE void get_mv_candidate_from_tpl(const AV1_COMP *const cpi, const MACROBLOCK *x, BLOCK_SIZE bsize, int ref, cand_mv_t *cand, int *cand_count, int *total_cand_weight) { const SuperBlockEnc *sb_enc = &x->sb_enc; if (!sb_enc->tpl_data_count) { return; } const AV1_COMMON *cm = &cpi->common; const MACROBLOCKD *xd = &x->e_mbd; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d); const int tplw = mi_size_wide[tpl_bsize]; const int tplh = mi_size_high[tpl_bsize]; const int nw = mi_size_wide[bsize] / tplw; const int nh = mi_size_high[bsize] / tplh; if (nw >= 1 && nh >= 1) { const int of_h = mi_row % mi_size_high[cm->seq_params->sb_size]; const int of_w = mi_col % mi_size_wide[cm->seq_params->sb_size]; const int start = of_h / tplh * sb_enc->tpl_stride + of_w / tplw; int valid = 1; // Assign large weight to start_mv, so it is always tested. cand[0].weight = nw * nh; for (int k = 0; k < nh; k++) { for (int l = 0; l < nw; l++) { const int_mv mv = sb_enc ->tpl_mv[start + k * sb_enc->tpl_stride + l][ref - LAST_FRAME]; if (mv.as_int == INVALID_MV) { valid = 0; break; } const FULLPEL_MV fmv = { GET_MV_RAWPEL(mv.as_mv.row), GET_MV_RAWPEL(mv.as_mv.col) }; int unique = 1; for (int m = 0; m < *cand_count; m++) { if (RIGHT_SHIFT_MV(fmv.row) == RIGHT_SHIFT_MV(cand[m].fmv.as_fullmv.row) && RIGHT_SHIFT_MV(fmv.col) == RIGHT_SHIFT_MV(cand[m].fmv.as_fullmv.col)) { unique = 0; cand[m].weight++; break; } } if (unique) { cand[*cand_count].fmv.as_fullmv = fmv; cand[*cand_count].weight = 1; (*cand_count)++; } } if (!valid) break; } if (valid) { *total_cand_weight = 2 * nh * nw; if (*cand_count > 2) qsort(cand, *cand_count, sizeof(cand[0]), &compare_weight); } } } void av1_single_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int ref_idx, int *rate_mv, int search_range, inter_mode_info *mode_info, int_mv *best_mv, struct HandleInterModeArgs *const args) { MACROBLOCKD *xd = &x->e_mbd; const AV1_COMMON *cm = &cpi->common; const MotionVectorSearchParams *mv_search_params = &cpi->mv_search_params; const int num_planes = av1_num_planes(cm); MB_MODE_INFO *mbmi = xd->mi[0]; struct buf_2d backup_yv12[MAX_MB_PLANE] = { { 0, 0, 0, 0, 0 } }; int bestsme = INT_MAX; const int ref = mbmi->ref_frame[ref_idx]; const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const MvCosts *mv_costs = x->mv_costs; if (scaled_ref_frame) { // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // full-pixel motion search code to be used without additional // modifications. for (int i = 0; i < num_planes; i++) { backup_yv12[i] = xd->plane[i].pre[ref_idx]; } av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, num_planes); } // Work out the size of the first step in the mv step search. // 0 here is maximum length first step. 1 is AOMMAX >> 1 etc. int step_param; if (cpi->sf.mv_sf.auto_mv_step_size && cm->show_frame) { // Take the weighted average of the step_params based on the last frame's // max mv magnitude and that based on the best ref mvs of the current // block for the given reference. step_param = (av1_init_search_range(x->max_mv_context[ref]) + mv_search_params->mv_step_param) / 2; } else { step_param = mv_search_params->mv_step_param; } const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; FULLPEL_MV start_mv; if (mbmi->motion_mode != SIMPLE_TRANSLATION) start_mv = get_fullmv_from_mv(&mbmi->mv[0].as_mv); else start_mv = get_fullmv_from_mv(&ref_mv); // cand stores start_mv and all possible MVs in a SB. cand_mv_t cand[MAX_TPL_BLK_IN_SB * MAX_TPL_BLK_IN_SB + 1]; av1_zero(cand); cand[0].fmv.as_fullmv = start_mv; int cnt = 1; int total_weight = 0; if (!cpi->sf.mv_sf.full_pixel_search_level && mbmi->motion_mode == SIMPLE_TRANSLATION) { get_mv_candidate_from_tpl(cpi, x, bsize, ref, cand, &cnt, &total_weight); } const int cand_cnt = AOMMIN(2, cnt); // TODO(any): Test the speed feature for OBMC_CAUSAL mode. if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv && mbmi->motion_mode == SIMPLE_TRANSLATION) { const int stack_size = args->start_mv_cnt; for (int cand_idx = 0; cand_idx < cand_cnt; cand_idx++) { int_mv *fmv_cand = &cand[cand_idx].fmv; int skip_cand_mv = 0; // Check difference between mvs in the stack and candidate mv. for (int stack_idx = 0; stack_idx < stack_size; stack_idx++) { const uint8_t this_ref_mv_idx = args->ref_mv_idx_stack[stack_idx]; const FULLPEL_MV *fmv_stack = &args->start_mv_stack[stack_idx]; const int this_newmv_valid = args->single_newmv_valid[this_ref_mv_idx][ref]; const int row_diff = abs(fmv_stack->row - fmv_cand->as_fullmv.row); const int col_diff = abs(fmv_stack->col - fmv_cand->as_fullmv.col); if (!this_newmv_valid) continue; if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv >= 2) { // Prunes the current start_mv candidate, if the absolute mv // difference of both row and column are <= 1. if (row_diff <= 1 && col_diff <= 1) { skip_cand_mv = 1; break; } } else if (cpi->sf.mv_sf.skip_fullpel_search_using_startmv >= 1) { // Prunes the current start_mv candidate, if the sum of the absolute // mv difference of row and column is <= 1. if (row_diff + col_diff <= 1) { skip_cand_mv = 1; break; } } } if (skip_cand_mv) { // Ensure atleast one full-pel motion search is not pruned. assert(mbmi->ref_mv_idx != 0); // Mark the candidate mv as invalid so that motion search gets skipped. cand[cand_idx].fmv.as_int = INVALID_MV; } else { // Store start_mv candidate and corresponding ref_mv_idx of full-pel // search in the mv stack (except last ref_mv_idx). if (mbmi->ref_mv_idx != MAX_REF_MV_SEARCH - 1) { assert(args->start_mv_cnt < (MAX_REF_MV_SEARCH - 1) * 2); args->start_mv_stack[args->start_mv_cnt] = fmv_cand->as_fullmv; args->ref_mv_idx_stack[args->start_mv_cnt] = mbmi->ref_mv_idx; args->start_mv_cnt++; } } } } // Hot fix for asan complaints when resize mode is on. When resize mode is on, // the stride of the reference frame can be different from indicated by // MotionVectorSearchParams::search_site_cfg. When this happens, we need to // readjust the stride. const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf; const SEARCH_METHODS search_method = av1_get_default_mv_search_method(x, mv_sf, bsize); const search_site_config *src_search_site_cfg = av1_get_search_site_config(cpi, x, search_method); // Further reduce the search range. if (search_range < INT_MAX) { const search_site_config *search_site_cfg = &src_search_site_cfg[search_method_lookup[search_method]]; // Max step_param is search_site_cfg->num_search_steps. if (search_range < 1) { step_param = search_site_cfg->num_search_steps; } else { while (search_site_cfg->radius[search_site_cfg->num_search_steps - step_param - 1] > (search_range << 1) && search_site_cfg->num_search_steps - step_param - 1 > 0) step_param++; } } int cost_list[5]; FULLPEL_MV_STATS best_mv_stats; int_mv second_best_mv; best_mv->as_int = second_best_mv.as_int = INVALID_MV; // Allow more mesh searches for screen content type on the ARF. const int fine_search_interval = use_fine_search_interval(cpi); FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; switch (mbmi->motion_mode) { case SIMPLE_TRANSLATION: { // Perform a search with the top 2 candidates int sum_weight = 0; for (int m = 0; m < cand_cnt; m++) { int_mv smv = cand[m].fmv; FULLPEL_MV this_best_mv, this_second_best_mv; FULLPEL_MV_STATS this_mv_stats; if (smv.as_int == INVALID_MV) continue; av1_make_default_fullpel_ms_params( &full_ms_params, cpi, x, bsize, &ref_mv, smv.as_fullmv, src_search_site_cfg, search_method, fine_search_interval); const int thissme = av1_full_pixel_search(smv.as_fullmv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), &this_best_mv, &this_mv_stats, &this_second_best_mv); if (thissme < bestsme) { bestsme = thissme; best_mv->as_fullmv = this_best_mv; best_mv_stats = this_mv_stats; second_best_mv.as_fullmv = this_second_best_mv; } sum_weight += cand[m].weight; if (4 * sum_weight > 3 * total_weight) break; } } break; case OBMC_CAUSAL: av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &ref_mv, start_mv, src_search_site_cfg, search_method, fine_search_interval); bestsme = av1_obmc_full_pixel_search(start_mv, &full_ms_params, step_param, &best_mv->as_fullmv); break; default: assert(0 && "Invalid motion mode!\n"); } if (best_mv->as_int == INVALID_MV) return; if (scaled_ref_frame) { // Swap back the original buffers for subpel motion search. for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[ref_idx] = backup_yv12[i]; } } // Terminate search with the current ref_idx based on fullpel mv, rate cost, // and other know cost. if (cpi->sf.inter_sf.skip_newmv_in_drl >= 2 && mbmi->motion_mode == SIMPLE_TRANSLATION && best_mv->as_int != INVALID_MV) { int_mv this_mv; this_mv.as_mv = get_mv_from_fullmv(&best_mv->as_fullmv); const int ref_mv_idx = mbmi->ref_mv_idx; const int this_mv_rate = av1_mv_bit_cost(&this_mv.as_mv, &ref_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); mode_info[ref_mv_idx].full_search_mv.as_int = this_mv.as_int; mode_info[ref_mv_idx].full_mv_rate = this_mv_rate; mode_info[ref_mv_idx].full_mv_bestsme = bestsme; for (int prev_ref_idx = 0; prev_ref_idx < ref_mv_idx; ++prev_ref_idx) { // Check if the motion search result same as previous results if (this_mv.as_int == mode_info[prev_ref_idx].full_search_mv.as_int) { // Compare the rate cost const int prev_rate_cost = mode_info[prev_ref_idx].full_mv_rate + mode_info[prev_ref_idx].drl_cost; const int this_rate_cost = this_mv_rate + mode_info[ref_mv_idx].drl_cost; if (prev_rate_cost <= this_rate_cost) { // If the current rate_cost is worse than the previous rate_cost, then // we terminate the search. Since av1_single_motion_search is only // called by handle_new_mv in SIMPLE_TRANSLATION mode, we set the // best_mv to INVALID mv to signal that we wish to terminate search // for the current mode. best_mv->as_int = INVALID_MV; return; } } // Terminate the evaluation of current ref_mv_idx based on bestsme and // drl_cost. const int psme = mode_info[prev_ref_idx].full_mv_bestsme; if (psme == INT_MAX) continue; const int thr = cpi->sf.inter_sf.skip_newmv_in_drl == 3 ? (psme + (psme >> 2)) : psme; if (cpi->sf.inter_sf.skip_newmv_in_drl >= 3 && mode_info[ref_mv_idx].full_mv_bestsme > thr && mode_info[prev_ref_idx].drl_cost < mode_info[ref_mv_idx].drl_cost) { best_mv->as_int = INVALID_MV; return; } } } if (cpi->common.features.cur_frame_force_integer_mv) { convert_fullmv_to_mv(best_mv); } const int use_fractional_mv = bestsme < INT_MAX && cpi->common.features.cur_frame_force_integer_mv == 0; int best_mv_rate = 0; int mv_rate_calculated = 0; if (use_fractional_mv) { int_mv fractional_ms_list[3]; av1_set_fractional_mv(fractional_ms_list); int dis; /* TODO: use dis in distortion calculation later. */ SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, cost_list); MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv); assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)); switch (mbmi->motion_mode) { case SIMPLE_TRANSLATION: if (mv_sf->use_accurate_subpel_search) { const int try_second = second_best_mv.as_int != INVALID_MV && second_best_mv.as_int != best_mv->as_int && (mv_sf->disable_second_mv <= 1); const int best_mv_var = mv_search_params->find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv, &dis, &x->pred_sse[ref], fractional_ms_list); if (try_second) { struct macroblockd_plane *p = xd->plane; const BUFFER_SET orig_dst = { { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, }; int64_t rd = INT64_MAX; if (!mv_sf->disable_second_mv) { // Calculate actual rd cost. mbmi->mv[0].as_mv = best_mv->as_mv; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0, 0); av1_subtract_plane(x, bsize, 0); RD_STATS this_rd_stats; av1_init_rd_stats(&this_rd_stats); av1_estimate_txfm_yrd(cpi, x, &this_rd_stats, INT64_MAX, bsize, max_txsize_rect_lookup[bsize]); int this_mv_rate = av1_mv_bit_cost( &best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); rd = RDCOST(x->rdmult, this_mv_rate + this_rd_stats.rate, this_rd_stats.dist); } MV this_best_mv; subpel_start_mv = get_mv_from_fullmv(&second_best_mv.as_fullmv); if (av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)) { unsigned int sse; const int this_var = mv_search_params->find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, NULL, &this_best_mv, &dis, &sse, fractional_ms_list); if (!mv_sf->disable_second_mv) { // If cpi->sf.mv_sf.disable_second_mv is 0, use actual rd cost // to choose the better MV. mbmi->mv[0].as_mv = this_best_mv; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0, 0); av1_subtract_plane(x, bsize, 0); RD_STATS tmp_rd_stats; av1_init_rd_stats(&tmp_rd_stats); av1_estimate_txfm_yrd(cpi, x, &tmp_rd_stats, INT64_MAX, bsize, max_txsize_rect_lookup[bsize]); int tmp_mv_rate = av1_mv_bit_cost( &this_best_mv, &ref_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); int64_t tmp_rd = RDCOST(x->rdmult, tmp_rd_stats.rate + tmp_mv_rate, tmp_rd_stats.dist); if (tmp_rd < rd) { best_mv->as_mv = this_best_mv; x->pred_sse[ref] = sse; } } else { // If cpi->sf.mv_sf.disable_second_mv = 1, use var to decide the // best MV. if (this_var < best_mv_var) { best_mv->as_mv = this_best_mv; x->pred_sse[ref] = sse; } } } } } else { mv_search_params->find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv, &dis, &x->pred_sse[ref], NULL); } break; case OBMC_CAUSAL: av1_find_best_obmc_sub_pixel_tree_up( xd, cm, &ms_params, subpel_start_mv, NULL, &best_mv->as_mv, &dis, &x->pred_sse[ref], NULL); break; default: assert(0 && "Invalid motion mode!\n"); } // Terminate search with the current ref_idx based on subpel mv and rate // cost. if (cpi->sf.inter_sf.skip_newmv_in_drl >= 1 && args != NULL && mbmi->motion_mode == SIMPLE_TRANSLATION && best_mv->as_int != INVALID_MV) { const int ref_mv_idx = mbmi->ref_mv_idx; best_mv_rate = av1_mv_bit_cost(&best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); mv_rate_calculated = 1; for (int prev_ref_idx = 0; prev_ref_idx < ref_mv_idx; ++prev_ref_idx) { if (!args->single_newmv_valid[prev_ref_idx][ref]) continue; // Check if the motion vectors are the same. if (best_mv->as_int == args->single_newmv[prev_ref_idx][ref].as_int) { // Skip this evaluation if the previous one is skipped. if (mode_info[prev_ref_idx].skip) { mode_info[ref_mv_idx].skip = 1; break; } // Compare the rate cost that we current know. const int prev_rate_cost = args->single_newmv_rate[prev_ref_idx][ref] + mode_info[prev_ref_idx].drl_cost; const int this_rate_cost = best_mv_rate + mode_info[ref_mv_idx].drl_cost; if (prev_rate_cost <= this_rate_cost) { // If the current rate_cost is worse than the previous rate_cost, // then we terminate the search for this ref_mv_idx. mode_info[ref_mv_idx].skip = 1; break; } } } } } if (mv_rate_calculated) { *rate_mv = best_mv_rate; } else { *rate_mv = av1_mv_bit_cost(&best_mv->as_mv, &ref_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); } } int av1_joint_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv, const uint8_t *mask, int mask_stride, int *rate_mv, int allow_second_mv, int joint_me_num_refine_iter) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); const int pw = block_size_wide[bsize]; const int ph = block_size_high[bsize]; const int plane = 0; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; // This function should only ever be called for compound modes assert(has_second_ref(mbmi)); const int_mv init_mv[2] = { cur_mv[0], cur_mv[1] }; const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] }; const MvCosts *mv_costs = x->mv_costs; int_mv ref_mv[2]; int ite, ref; // Get the prediction block from the 'other' reference frame. const int_interpfilters interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); InterPredParams inter_pred_params; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // Do joint motion search in compound mode to get more accurate mv. struct buf_2d backup_yv12[2][MAX_MB_PLANE]; int last_besterr[2] = { INT_MAX, INT_MAX }; const YV12_BUFFER_CONFIG *const scaled_ref_frame[2] = { av1_get_scaled_ref_frame(cpi, refs[0]), av1_get_scaled_ref_frame(cpi, refs[1]) }; // Prediction buffer from second frame. DECLARE_ALIGNED(16, uint8_t, second_pred16[MAX_SB_SQUARE * sizeof(uint16_t)]); uint8_t *second_pred = get_buf_by_bd(xd, second_pred16); int_mv best_mv, second_best_mv; // Allow joint search multiple times iteratively for each reference frame // and break out of the search loop if it couldn't find a better mv. for (ite = 0; ite < (2 * joint_me_num_refine_iter); ite++) { struct buf_2d ref_yv12[2]; int bestsme = INT_MAX; int id = ite % 2; // Even iterations search in the first reference frame, // odd iterations search in the second. The predictor // found for the 'other' reference frame is factored in. if (ite >= 2 && cur_mv[!id].as_int == init_mv[!id].as_int) { if (cur_mv[id].as_int == init_mv[id].as_int) { break; } else { int_mv cur_int_mv, init_int_mv; cur_int_mv.as_mv.col = cur_mv[id].as_mv.col >> 3; cur_int_mv.as_mv.row = cur_mv[id].as_mv.row >> 3; init_int_mv.as_mv.row = init_mv[id].as_mv.row >> 3; init_int_mv.as_mv.col = init_mv[id].as_mv.col >> 3; if (cur_int_mv.as_int == init_int_mv.as_int) { break; } } } for (ref = 0; ref < 2; ++ref) { ref_mv[ref] = av1_get_ref_mv(x, ref); // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // motion search code to be used without additional modifications. if (scaled_ref_frame[ref]) { int i; for (i = 0; i < num_planes; i++) backup_yv12[ref][i] = xd->plane[i].pre[ref]; av1_setup_pre_planes(xd, ref, scaled_ref_frame[ref], mi_row, mi_col, NULL, num_planes); } } assert(IMPLIES(scaled_ref_frame[0] != NULL, cm->width == scaled_ref_frame[0]->y_crop_width && cm->height == scaled_ref_frame[0]->y_crop_height)); assert(IMPLIES(scaled_ref_frame[1] != NULL, cm->width == scaled_ref_frame[1]->y_crop_width && cm->height == scaled_ref_frame[1]->y_crop_height)); // Initialize based on (possibly scaled) prediction buffers. ref_yv12[0] = xd->plane[plane].pre[0]; ref_yv12[1] = xd->plane[plane].pre[1]; av1_init_inter_params(&inter_pred_params, pw, ph, mi_row * MI_SIZE, mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0, &cm->sf_identity, &ref_yv12[!id], interp_filters); inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd); // Since we have scaled the reference frames to match the size of the // current frame we must use a unit scaling factor during mode selection. av1_enc_build_one_inter_predictor(second_pred, pw, &cur_mv[!id].as_mv, &inter_pred_params); // Do full-pixel compound motion search on the current reference frame. if (id) xd->plane[plane].pre[0] = ref_yv12[id]; // Make motion search params FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; FULLPEL_MV_STATS best_mv_stats; const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf; const SEARCH_METHODS search_method = av1_get_default_mv_search_method(x, mv_sf, bsize); const search_site_config *src_search_sites = av1_get_search_site_config(cpi, x, search_method); // Use the mv result from the single mode as mv predictor. const FULLPEL_MV start_fullmv = get_fullmv_from_mv(&cur_mv[id].as_mv); av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &ref_mv[id].as_mv, start_fullmv, src_search_sites, search_method, /*fine_search_interval=*/0); av1_set_ms_compound_refs(&full_ms_params.ms_buffers, second_pred, mask, mask_stride, id); // Small-range full-pixel motion search. if (!mv_sf->disable_extensive_joint_motion_search && mbmi->interinter_comp.type != COMPOUND_WEDGE) { bestsme = av1_full_pixel_search(start_fullmv, &full_ms_params, 5, NULL, &best_mv.as_fullmv, &best_mv_stats, &second_best_mv.as_fullmv); } else { bestsme = av1_refining_search_8p_c(&full_ms_params, start_fullmv, &best_mv.as_fullmv); second_best_mv = best_mv; } const int try_second = second_best_mv.as_int != INVALID_MV && second_best_mv.as_int != best_mv.as_int && allow_second_mv; // Restore the pointer to the first (possibly scaled) prediction buffer. if (id) xd->plane[plane].pre[0] = ref_yv12[0]; for (ref = 0; ref < 2; ++ref) { if (scaled_ref_frame[ref]) { // Swap back the original buffers for subpel motion search. for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[ref] = backup_yv12[ref][i]; } // Re-initialize based on unscaled prediction buffers. ref_yv12[ref] = xd->plane[plane].pre[ref]; } } // Do sub-pixel compound motion search on the current reference frame. if (id) xd->plane[plane].pre[0] = ref_yv12[id]; if (cpi->common.features.cur_frame_force_integer_mv) { convert_fullmv_to_mv(&best_mv); } if (bestsme < INT_MAX && cpi->common.features.cur_frame_force_integer_mv == 0) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv[id].as_mv, NULL); av1_set_ms_compound_refs(&ms_params.var_params.ms_buffers, second_pred, mask, mask_stride, id); ms_params.forced_stop = EIGHTH_PEL; MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv)); bestsme = cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, start_mv, NULL, &best_mv.as_mv, &dis, &sse, NULL); if (try_second) { MV this_best_mv; MV subpel_start_mv = get_mv_from_fullmv(&second_best_mv.as_fullmv); if (av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)) { const int thissme = cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, NULL, &this_best_mv, &dis, &sse, NULL); if (thissme < bestsme) { best_mv.as_mv = this_best_mv; bestsme = thissme; } } } } // Restore the pointer to the first prediction buffer. if (id) xd->plane[plane].pre[0] = ref_yv12[0]; if (bestsme < last_besterr[id]) { cur_mv[id] = best_mv; last_besterr[id] = bestsme; } else { break; } } *rate_mv = 0; for (ref = 0; ref < 2; ++ref) { const int_mv curr_ref_mv = av1_get_ref_mv(x, ref); *rate_mv += av1_mv_bit_cost(&cur_mv[ref].as_mv, &curr_ref_mv.as_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); } return AOMMIN(last_besterr[0], last_besterr[1]); } // Search for the best mv for one component of a compound, // given that the other component is fixed. int av1_compound_single_motion_search(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, MV *this_mv, const uint8_t *second_pred, const uint8_t *mask, int mask_stride, int *rate_mv, int ref_idx) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; const int ref = mbmi->ref_frame[ref_idx]; const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); struct macroblockd_plane *const pd = &xd->plane[0]; const MvCosts *mv_costs = x->mv_costs; struct buf_2d backup_yv12[MAX_MB_PLANE]; const YV12_BUFFER_CONFIG *const scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); // Check that this is either an interinter or an interintra block assert(has_second_ref(mbmi) || (ref_idx == 0 && is_interintra_mode(mbmi))); // Store the first prediction buffer. struct buf_2d orig_yv12; if (ref_idx) { orig_yv12 = pd->pre[0]; pd->pre[0] = pd->pre[ref_idx]; } if (scaled_ref_frame) { // Swap out the reference frame for a version that's been scaled to // match the resolution of the current frame, allowing the existing // full-pixel motion search code to be used without additional // modifications. for (int i = 0; i < num_planes; i++) { backup_yv12[i] = xd->plane[i].pre[ref_idx]; } const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // The index below needs to be 0 instead of ref_idx since we assume the // 0th slot to be used for subsequent searches. Note that the ref_idx // reference buffer has been copied to the 0th slot in the code above. // Now we need to swap the reference frame for the 0th slot. av1_setup_pre_planes(xd, 0, scaled_ref_frame, mi_row, mi_col, NULL, num_planes); } int bestsme = INT_MAX; int_mv best_mv; // Make motion search params FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; FULLPEL_MV_STATS best_mv_stats; const SEARCH_METHODS search_method = av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize); const search_site_config *src_search_sites = av1_get_search_site_config(cpi, x, search_method); // Use the mv result from the single mode as mv predictor. const FULLPEL_MV start_fullmv = get_fullmv_from_mv(this_mv); av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &ref_mv.as_mv, start_fullmv, src_search_sites, search_method, /*fine_search_interval=*/0); av1_set_ms_compound_refs(&full_ms_params.ms_buffers, second_pred, mask, mask_stride, ref_idx); // Small-range full-pixel motion search. bestsme = av1_full_pixel_search(start_fullmv, &full_ms_params, 5, NULL, &best_mv.as_fullmv, &best_mv_stats, NULL); if (scaled_ref_frame) { // Swap back the original buffers for subpel motion search for the 0th slot. for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = backup_yv12[i]; } } if (cpi->common.features.cur_frame_force_integer_mv) { convert_fullmv_to_mv(&best_mv); } const int use_fractional_mv = bestsme < INT_MAX && cpi->common.features.cur_frame_force_integer_mv == 0; if (use_fractional_mv) { int dis; /* TODO: use dis in distortion calculation later. */ unsigned int sse; SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv.as_mv, NULL); av1_set_ms_compound_refs(&ms_params.var_params.ms_buffers, second_pred, mask, mask_stride, ref_idx); ms_params.forced_stop = EIGHTH_PEL; MV start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, start_mv)); bestsme = cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, start_mv, &best_mv_stats, &best_mv.as_mv, &dis, &sse, NULL); } // Restore the pointer to the first unscaled prediction buffer. if (ref_idx) pd->pre[0] = orig_yv12; if (bestsme < INT_MAX) *this_mv = best_mv.as_mv; *rate_mv = 0; *rate_mv += av1_mv_bit_cost(this_mv, &ref_mv.as_mv, mv_costs->nmv_joint_cost, mv_costs->mv_cost_stack, MV_COST_WEIGHT); return bestsme; } static AOM_INLINE void build_second_inter_pred(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, const MV *other_mv, int ref_idx, uint8_t *second_pred) { const AV1_COMMON *const cm = &cpi->common; const int pw = block_size_wide[bsize]; const int ph = block_size_high[bsize]; MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblockd_plane *const pd = &xd->plane[0]; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int p_col = ((mi_col * MI_SIZE) >> pd->subsampling_x); const int p_row = ((mi_row * MI_SIZE) >> pd->subsampling_y); // This function should only ever be called for compound modes assert(has_second_ref(mbmi)); const int plane = 0; struct buf_2d ref_yv12 = xd->plane[plane].pre[!ref_idx]; struct scale_factors sf; av1_setup_scale_factors_for_frame(&sf, ref_yv12.width, ref_yv12.height, cm->width, cm->height); InterPredParams inter_pred_params; av1_init_inter_params(&inter_pred_params, pw, ph, p_row, p_col, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0, &sf, &ref_yv12, mbmi->interp_filters); inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); // Get the prediction block from the 'other' reference frame. av1_enc_build_one_inter_predictor(second_pred, pw, other_mv, &inter_pred_params); } // Wrapper for av1_compound_single_motion_search, for the common case // where the second prediction is also an inter mode. int av1_compound_single_motion_search_interinter( const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int_mv *cur_mv, const uint8_t *mask, int mask_stride, int *rate_mv, int ref_idx) { MACROBLOCKD *xd = &x->e_mbd; // This function should only ever be called for compound modes assert(has_second_ref(xd->mi[0])); // Prediction buffer from second frame. DECLARE_ALIGNED(16, uint16_t, second_pred_alloc_16[MAX_SB_SQUARE]); uint8_t *second_pred; if (is_cur_buf_hbd(xd)) second_pred = CONVERT_TO_BYTEPTR(second_pred_alloc_16); else second_pred = (uint8_t *)second_pred_alloc_16; MV *this_mv = &cur_mv[ref_idx].as_mv; const MV *other_mv = &cur_mv[!ref_idx].as_mv; build_second_inter_pred(cpi, x, bsize, other_mv, ref_idx, second_pred); return av1_compound_single_motion_search(cpi, x, bsize, this_mv, second_pred, mask, mask_stride, rate_mv, ref_idx); } static AOM_INLINE void do_masked_motion_search_indexed( const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE bsize, int_mv *tmp_mv, int *rate_mv, int which) { // NOTE: which values: 0 - 0 only, 1 - 1 only, 2 - both MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; BLOCK_SIZE sb_type = mbmi->bsize; const uint8_t *mask; const int mask_stride = block_size_wide[bsize]; mask = av1_get_compound_type_mask(comp_data, sb_type); tmp_mv[0].as_int = cur_mv[0].as_int; tmp_mv[1].as_int = cur_mv[1].as_int; if (which == 0 || which == 1) { av1_compound_single_motion_search_interinter(cpi, x, bsize, tmp_mv, mask, mask_stride, rate_mv, which); } else if (which == 2) { const int joint_me_num_refine_iter = cpi->sf.inter_sf.enable_fast_compound_mode_search == 2 ? REDUCED_JOINT_ME_REFINE_ITER : NUM_JOINT_ME_REFINE_ITER; av1_joint_motion_search(cpi, x, bsize, tmp_mv, mask, mask_stride, rate_mv, !cpi->sf.mv_sf.disable_second_mv, joint_me_num_refine_iter); } } int av1_interinter_compound_motion_search(const AV1_COMP *const cpi, MACROBLOCK *x, const int_mv *const cur_mv, const BLOCK_SIZE bsize, const PREDICTION_MODE this_mode) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; int_mv tmp_mv[2]; int tmp_rate_mv = 0; // TODO(jingning): The average compound mode has proper SAD and variance // functions implemented, and is triggerd by setting the mask pointer as // Null. Need to further implement those for frame distance weighted mode. mbmi->interinter_comp.seg_mask = mbmi->interinter_comp.type == COMPOUND_AVERAGE ? NULL : xd->seg_mask; const INTERINTER_COMPOUND_DATA *compound_data = &mbmi->interinter_comp; if (this_mode == NEW_NEWMV) { do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, tmp_mv, &tmp_rate_mv, 2); mbmi->mv[0].as_int = tmp_mv[0].as_int; mbmi->mv[1].as_int = tmp_mv[1].as_int; } else if (this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV) { // which = 1 if this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV // which = 0 if this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV int which = (NEWMV == compound_ref1_mode(this_mode)); do_masked_motion_search_indexed(cpi, x, cur_mv, compound_data, bsize, tmp_mv, &tmp_rate_mv, which); mbmi->mv[which].as_int = tmp_mv[which].as_int; } return tmp_rate_mv; } int_mv av1_simple_motion_search_sse_var(AV1_COMP *const cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, int ref, FULLPEL_MV start_mv, int num_planes, int use_subpixel, unsigned int *sse, unsigned int *var) { assert(num_planes == 1 && "Currently simple_motion_search only supports luma plane"); assert(!frame_is_intra_only(&cpi->common) && "Simple motion search only enabled for non-key frames"); AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; set_offsets_for_motion_search(cpi, x, mi_row, mi_col, bsize); MB_MODE_INFO *mbmi = xd->mi[0]; mbmi->bsize = bsize; mbmi->ref_frame[0] = ref; mbmi->ref_frame[1] = NONE_FRAME; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->interp_filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref); const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref); struct buf_2d backup_yv12; // ref_mv is used to calculate the cost of the motion vector const MV ref_mv = kZeroMv; const int step_param = AOMMIN(cpi->mv_search_params.mv_step_param + cpi->sf.part_sf.simple_motion_search_reduce_search_steps, MAX_MVSEARCH_STEPS - 2); int cost_list[5]; const int ref_idx = 0; int bestsme; int_mv best_mv; FULLPEL_MV_STATS best_mv_stats; av1_setup_pre_planes(xd, ref_idx, yv12, mi_row, mi_col, get_ref_scale_factors(cm, ref), num_planes); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); if (scaled_ref_frame) { backup_yv12 = xd->plane[AOM_PLANE_Y].pre[ref_idx]; av1_setup_pre_planes(xd, ref_idx, scaled_ref_frame, mi_row, mi_col, NULL, num_planes); } // Allow more mesh searches for screen content type on the ARF. const int fine_search_interval = use_fine_search_interval(cpi); FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; const MV_SPEED_FEATURES *mv_sf = &cpi->sf.mv_sf; const SEARCH_METHODS search_method = av1_get_default_mv_search_method(x, mv_sf, bsize); const search_site_config *src_search_sites = av1_get_search_site_config(cpi, x, search_method); av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, &ref_mv, start_mv, src_search_sites, search_method, fine_search_interval); bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), &best_mv.as_fullmv, &best_mv_stats, NULL); const int use_subpel_search = bestsme < INT_MAX && !cpi->common.features.cur_frame_force_integer_mv && use_subpixel && (cpi->sf.mv_sf.simple_motion_subpel_force_stop != FULL_PEL); if (scaled_ref_frame) { xd->plane[AOM_PLANE_Y].pre[ref_idx] = backup_yv12; } if (use_subpel_search) { int not_used = 0; SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv, cost_list); // TODO(yunqing): integrate this into av1_make_default_subpel_ms_params(). ms_params.forced_stop = mv_sf->simple_motion_subpel_force_stop; MV subpel_start_mv = get_mv_from_fullmv(&best_mv.as_fullmv); assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)); cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv.as_mv, ¬_used, &x->pred_sse[ref], NULL); mbmi->mv[0] = best_mv; // Get a copy of the prediction output av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, AOM_PLANE_Y, AOM_PLANE_Y); *var = cpi->ppi->fn_ptr[bsize].vf( x->plane[0].src.buf, x->plane[0].src.stride, xd->plane[0].dst.buf, xd->plane[0].dst.stride, sse); } else { // Manually convert from units of pixel to 1/8-pixels if we are not doing // subpel search convert_fullmv_to_mv(&best_mv); *var = best_mv_stats.distortion; *sse = best_mv_stats.sse; } return best_mv; }