/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "config/aom_dsp_rtcd.h" #include "av1/common/reconinter.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/nonrd_opt.h" #include "av1/encoder/rdopt.h" static const SCAN_ORDER av1_fast_idtx_scan_order_16x16 = { av1_fast_idtx_scan_16x16, av1_fast_idtx_iscan_16x16 }; #define DECLARE_BLOCK_YRD_BUFFERS() \ DECLARE_ALIGNED(64, tran_low_t, dqcoeff_buf[16 * 16]); \ DECLARE_ALIGNED(64, tran_low_t, qcoeff_buf[16 * 16]); \ DECLARE_ALIGNED(64, tran_low_t, coeff_buf[16 * 16]); \ uint16_t eob[1]; #define DECLARE_BLOCK_YRD_VARS() \ /* When is_tx_8x8_dual_applicable is true, we compute the txfm for the \ * entire bsize and write macroblock_plane::coeff. So low_coeff is kept \ * as a non-const so we can reassign it to macroblock_plane::coeff. */ \ int16_t *low_coeff = (int16_t *)coeff_buf; \ int16_t *const low_qcoeff = (int16_t *)qcoeff_buf; \ int16_t *const low_dqcoeff = (int16_t *)dqcoeff_buf; \ const int diff_stride = bw; #define DECLARE_LOOP_VARS_BLOCK_YRD() \ const int16_t *src_diff = &p->src_diff[(r * diff_stride + c) << 2]; static AOM_FORCE_INLINE void update_yrd_loop_vars( MACROBLOCK *x, int *skippable, int step, int ncoeffs, int16_t *const low_coeff, int16_t *const low_qcoeff, int16_t *const low_dqcoeff, RD_STATS *this_rdc, int *eob_cost, int tx_blk_id) { const int is_txfm_skip = (ncoeffs == 0); *skippable &= is_txfm_skip; x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; *eob_cost += get_msb(ncoeffs + 1); if (ncoeffs == 1) this_rdc->rate += (int)abs(low_qcoeff[0]); else if (ncoeffs > 1) this_rdc->rate += aom_satd_lp(low_qcoeff, step << 4); this_rdc->dist += av1_block_error_lp(low_coeff, low_dqcoeff, step << 4) >> 2; } static INLINE void aom_process_hadamard_lp_8x16(MACROBLOCK *x, int max_blocks_high, int max_blocks_wide, int num_4x4_w, int step, int block_step) { struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; const int bw = 4 * num_4x4_w; const int num_4x4 = AOMMIN(num_4x4_w, max_blocks_wide); int block = 0; for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0; c < num_4x4; c += 2 * block_step) { const int16_t *src_diff = &p->src_diff[(r * bw + c) << 2]; int16_t *low_coeff = (int16_t *)p->coeff + BLOCK_OFFSET(block); aom_hadamard_lp_8x8_dual(src_diff, (ptrdiff_t)bw, low_coeff); block += 2 * step; } } } #if CONFIG_AV1_HIGHBITDEPTH #define DECLARE_BLOCK_YRD_HBD_VARS() \ tran_low_t *const coeff = coeff_buf; \ tran_low_t *const qcoeff = qcoeff_buf; \ tran_low_t *const dqcoeff = dqcoeff_buf; static AOM_FORCE_INLINE void update_yrd_loop_vars_hbd( MACROBLOCK *x, int *skippable, int step, int ncoeffs, tran_low_t *const coeff, tran_low_t *const qcoeff, tran_low_t *const dqcoeff, RD_STATS *this_rdc, int *eob_cost, int tx_blk_id) { const MACROBLOCKD *xd = &x->e_mbd; const int is_txfm_skip = (ncoeffs == 0); *skippable &= is_txfm_skip; x->txfm_search_info.blk_skip[tx_blk_id] = is_txfm_skip; *eob_cost += get_msb(ncoeffs + 1); int64_t dummy; if (ncoeffs == 1) this_rdc->rate += (int)abs(qcoeff[0]); else if (ncoeffs > 1) this_rdc->rate += aom_satd(qcoeff, step << 4); this_rdc->dist += av1_highbd_block_error(coeff, dqcoeff, step << 4, &dummy, xd->bd) >> 2; } #endif /*!\brief Calculates RD Cost using Hadamard transform. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost using Hadamard transform. For low bit depth this function * uses low-precision set of functions (16-bit) and 32 bit for high bit depth * \param[in] x Pointer to structure holding all the data for the current macroblock * \param[in] this_rdc Pointer to calculated RD Cost * \param[in] skippable Pointer to a flag indicating possible tx skip * \param[in] bsize Current block size * \param[in] tx_size Transform size * \param[in] is_inter_mode Flag to indicate inter mode * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c this_rdc. \c skippable flag is set if there is no non-zero quantized * coefficients for Hadamard transform */ void av1_block_yrd(MACROBLOCK *x, RD_STATS *this_rdc, int *skippable, BLOCK_SIZE bsize, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; const struct macroblockd_plane *pd = &xd->plane[AOM_PLANE_Y]; struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; assert(bsize < BLOCK_SIZES_ALL); const int num_4x4_w = mi_size_wide[bsize]; const int num_4x4_h = mi_size_high[bsize]; const int step = 1 << (tx_size << 1); const int block_step = (1 << tx_size); const int row_step = step * num_4x4_w >> tx_size; int block = 0; const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); int eob_cost = 0; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; const int use_hbd = is_cur_buf_hbd(xd); int num_blk_skip_w = num_4x4_w; #if CONFIG_AV1_HIGHBITDEPTH if (use_hbd) { aom_highbd_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } else { aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } #else aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); #endif // Keep the intermediate value on the stack here. Writing directly to // skippable causes speed regression due to load-and-store issues in // update_yrd_loop_vars. int temp_skippable = 1; this_rdc->dist = 0; this_rdc->rate = 0; // For block sizes 8x16 or above, Hadamard txfm of two adjacent 8x8 blocks // can be done per function call. Hence the call of Hadamard txfm is // abstracted here for the specified cases. int is_tx_8x8_dual_applicable = (tx_size == TX_8X8 && block_size_wide[bsize] >= 16 && block_size_high[bsize] >= 8); #if CONFIG_AV1_HIGHBITDEPTH // As of now, dual implementation of hadamard txfm is available for low // bitdepth. if (use_hbd) is_tx_8x8_dual_applicable = 0; #endif if (is_tx_8x8_dual_applicable) { aom_process_hadamard_lp_8x16(x, max_blocks_high, max_blocks_wide, num_4x4_w, step, block_step); } const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; DECLARE_BLOCK_YRD_BUFFERS() DECLARE_BLOCK_YRD_VARS() #if CONFIG_AV1_HIGHBITDEPTH DECLARE_BLOCK_YRD_HBD_VARS() #else (void)use_hbd; #endif // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { DECLARE_LOOP_VARS_BLOCK_YRD() switch (tx_size) { #if CONFIG_AV1_HIGHBITDEPTH case TX_16X16: if (use_hbd) { aom_hadamard_16x16(src_diff, diff_stride, coeff); av1_quantize_fp(coeff, 16 * 16, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, // default_scan_fp_16x16_transpose and // av1_default_iscan_fp_16x16_transpose have to be // used together. default_scan_fp_16x16_transpose, av1_default_iscan_fp_16x16_transpose); } else { aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, // default_scan_lp_16x16_transpose and // av1_default_iscan_lp_16x16_transpose have to be // used together. default_scan_lp_16x16_transpose, av1_default_iscan_lp_16x16_transpose); } break; case TX_8X8: if (use_hbd) { aom_hadamard_8x8(src_diff, diff_stride, coeff); av1_quantize_fp( coeff, 8 * 8, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); } else { if (is_tx_8x8_dual_applicable) { // The coeffs are pre-computed for the whole block, so re-assign // low_coeff to the appropriate location. const int block_offset = BLOCK_OFFSET(block + s); low_coeff = (int16_t *)p->coeff + block_offset; } else { aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); } av1_quantize_lp( low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, // default_scan_8x8_transpose and // av1_default_iscan_8x8_transpose have to be used together. default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); } break; default: assert(tx_size == TX_4X4); // In tx_size=4x4 case, aom_fdct4x4 and aom_fdct4x4_lp generate // normal coefficients order, so we don't need to change the scan // order here. if (use_hbd) { aom_fdct4x4(src_diff, coeff, diff_stride); av1_quantize_fp(coeff, 4 * 4, p->zbin_QTX, p->round_fp_QTX, p->quant_fp_QTX, p->quant_shift_QTX, qcoeff, dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); } else { aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); } break; #else case TX_16X16: aom_hadamard_lp_16x16(src_diff, diff_stride, low_coeff); av1_quantize_lp(low_coeff, 16 * 16, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, default_scan_lp_16x16_transpose, av1_default_iscan_lp_16x16_transpose); break; case TX_8X8: if (is_tx_8x8_dual_applicable) { // The coeffs are pre-computed for the whole block, so re-assign // low_coeff to the appropriate location. const int block_offset = BLOCK_OFFSET(block + s); low_coeff = (int16_t *)p->coeff + block_offset; } else { aom_hadamard_lp_8x8(src_diff, diff_stride, low_coeff); } av1_quantize_lp(low_coeff, 8 * 8, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, default_scan_8x8_transpose, av1_default_iscan_8x8_transpose); break; default: aom_fdct4x4_lp(src_diff, low_coeff, diff_stride); av1_quantize_lp(low_coeff, 4 * 4, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); break; #endif } assert(*eob <= 1024); #if CONFIG_AV1_HIGHBITDEPTH if (use_hbd) update_yrd_loop_vars_hbd(x, &temp_skippable, step, *eob, coeff, qcoeff, dqcoeff, this_rdc, &eob_cost, r * num_blk_skip_w + c); else #endif update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, r * num_blk_skip_w + c); } block += row_step; } this_rdc->skip_txfm = *skippable = temp_skippable; if (this_rdc->sse < INT64_MAX) { this_rdc->sse = (this_rdc->sse << 6) >> 2; if (temp_skippable) { this_rdc->dist = 0; this_rdc->dist = this_rdc->sse; return; } } // If skippable is set, rate gets clobbered later. this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); } // Explicitly enumerate the cases so the compiler can generate SIMD for the // function. According to the disassembler, gcc generates SSE codes for each of // the possible block sizes. The hottest case is tx_width 16, which takes up // about 8% of the self cycle of av1_nonrd_pick_inter_mode_sb. Since // av1_nonrd_pick_inter_mode_sb takes up about 3% of total encoding time, the // potential room of improvement for writing AVX2 optimization is only 3% * 8% = // 0.24% of total encoding time. static AOM_INLINE void scale_square_buf_vals(int16_t *dst, int tx_width, const int16_t *src, int src_stride) { #define DO_SCALING \ do { \ for (int idy = 0; idy < tx_width; ++idy) { \ for (int idx = 0; idx < tx_width; ++idx) { \ dst[idy * tx_width + idx] = src[idy * src_stride + idx] * 8; \ } \ } \ } while (0) if (tx_width == 4) { DO_SCALING; } else if (tx_width == 8) { DO_SCALING; } else if (tx_width == 16) { DO_SCALING; } else { assert(0); } #undef DO_SCALING } /*!\brief Calculates RD Cost when the block uses Identity transform. * Note that this function is only for low bit depth encoding, since it * is called in real-time mode for now, which sets high bit depth to 0: * -DCONFIG_AV1_HIGHBITDEPTH=0 * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost. For low bit depth this function * uses low-precision set of functions (16-bit) and 32 bit for high bit depth * \param[in] x Pointer to structure holding all the data for the current macroblock * \param[in] pred_buf Pointer to the prediction buffer * \param[in] pred_stride Stride for the prediction buffer * \param[in] this_rdc Pointer to calculated RD Cost * \param[in] skippable Pointer to a flag indicating possible tx skip * \param[in] bsize Current block size * \param[in] tx_size Transform size * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c this_rdc. \c skippable flag is set if all coefficients are zero. */ void av1_block_yrd_idtx(MACROBLOCK *x, const uint8_t *const pred_buf, int pred_stride, RD_STATS *this_rdc, int *skippable, BLOCK_SIZE bsize, TX_SIZE tx_size) { MACROBLOCKD *xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; assert(bsize < BLOCK_SIZES_ALL); const int num_4x4_w = mi_size_wide[bsize]; const int num_4x4_h = mi_size_high[bsize]; const int step = 1 << (tx_size << 1); const int block_step = (1 << tx_size); const int max_blocks_wide = num_4x4_w + (xd->mb_to_right_edge >= 0 ? 0 : xd->mb_to_right_edge >> 5); const int max_blocks_high = num_4x4_h + (xd->mb_to_bottom_edge >= 0 ? 0 : xd->mb_to_bottom_edge >> 5); int eob_cost = 0; const int bw = 4 * num_4x4_w; const int bh = 4 * num_4x4_h; const int num_blk_skip_w = num_4x4_w; // Keep the intermediate value on the stack here. Writing directly to // skippable causes speed regression due to load-and-store issues in // update_yrd_loop_vars. int temp_skippable = 1; int tx_wd = 0; const SCAN_ORDER *scan_order = NULL; switch (tx_size) { case TX_64X64: assert(0); // Not implemented break; case TX_32X32: assert(0); // Not used break; case TX_16X16: scan_order = &av1_fast_idtx_scan_order_16x16; tx_wd = 16; break; case TX_8X8: scan_order = &av1_fast_idtx_scan_order_8x8; tx_wd = 8; break; default: assert(tx_size == TX_4X4); scan_order = &av1_fast_idtx_scan_order_4x4; tx_wd = 4; break; } assert(scan_order != NULL); this_rdc->dist = 0; this_rdc->rate = 0; aom_subtract_block(bh, bw, p->src_diff, bw, p->src.buf, p->src.stride, pred_buf, pred_stride); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. DECLARE_BLOCK_YRD_BUFFERS() DECLARE_BLOCK_YRD_VARS() for (int r = 0; r < max_blocks_high; r += block_step) { for (int c = 0, s = 0; c < max_blocks_wide; c += block_step, s += step) { DECLARE_LOOP_VARS_BLOCK_YRD() scale_square_buf_vals(low_coeff, tx_wd, src_diff, diff_stride); av1_quantize_lp(low_coeff, tx_wd * tx_wd, p->round_fp_QTX, p->quant_fp_QTX, low_qcoeff, low_dqcoeff, p->dequant_QTX, eob, scan_order->scan, scan_order->iscan); assert(*eob <= 1024); update_yrd_loop_vars(x, &temp_skippable, step, *eob, low_coeff, low_qcoeff, low_dqcoeff, this_rdc, &eob_cost, r * num_blk_skip_w + c); } } this_rdc->skip_txfm = *skippable = temp_skippable; if (this_rdc->sse < INT64_MAX) { this_rdc->sse = (this_rdc->sse << 6) >> 2; if (temp_skippable) { this_rdc->dist = 0; this_rdc->dist = this_rdc->sse; return; } } // If skippable is set, rate gets clobbered later. this_rdc->rate <<= (2 + AV1_PROB_COST_SHIFT); this_rdc->rate += (eob_cost << AV1_PROB_COST_SHIFT); } int64_t av1_model_rd_for_sb_uv(AV1_COMP *cpi, BLOCK_SIZE plane_bsize, MACROBLOCK *x, MACROBLOCKD *xd, RD_STATS *this_rdc, int start_plane, int stop_plane) { // Note our transform coeffs are 8 times an orthogonal transform. // Hence quantizer step is also 8 times. To get effective quantizer // we need to divide by 8 before sending to modeling function. unsigned int sse; int rate; int64_t dist; int plane; int64_t tot_sse = 0; this_rdc->rate = 0; this_rdc->dist = 0; this_rdc->skip_txfm = 0; for (plane = start_plane; plane <= stop_plane; ++plane) { struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const uint32_t dc_quant = p->dequant_QTX[0]; const uint32_t ac_quant = p->dequant_QTX[1]; const BLOCK_SIZE bs = plane_bsize; unsigned int var; if (!x->color_sensitivity[COLOR_SENS_IDX(plane)]) continue; var = cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); assert(sse >= var); tot_sse += sse; av1_model_rd_from_var_lapndz(sse - var, num_pels_log2_lookup[bs], dc_quant >> 3, &rate, &dist); this_rdc->rate += rate >> 1; this_rdc->dist += dist << 3; av1_model_rd_from_var_lapndz(var, num_pels_log2_lookup[bs], ac_quant >> 3, &rate, &dist); this_rdc->rate += rate; this_rdc->dist += dist << 4; } if (this_rdc->rate == 0) { this_rdc->skip_txfm = 1; } if (RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist) >= RDCOST(x->rdmult, 0, tot_sse << 4)) { this_rdc->rate = 0; this_rdc->dist = tot_sse << 4; this_rdc->skip_txfm = 1; } return tot_sse; } static void compute_intra_yprediction(const AV1_COMMON *cm, PREDICTION_MODE mode, BLOCK_SIZE bsize, MACROBLOCK *x, MACROBLOCKD *xd) { const SequenceHeader *seq_params = cm->seq_params; struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; uint8_t *const src_buf_base = p->src.buf; uint8_t *const dst_buf_base = pd->dst.buf; const int src_stride = p->src.stride; const int dst_stride = pd->dst.stride; int plane = 0; int row, col; // block and transform sizes, in number of 4x4 blocks log 2 ("*_b") // 4x4=0, 8x8=2, 16x16=4, 32x32=6, 64x64=8 // transform size varies per plane, look it up in a common way. const TX_SIZE tx_size = max_txsize_lookup[bsize]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); // If mb_to_right_edge is < 0 we are in a situation in which // the current block size extends into the UMV and we won't // visit the sub blocks that are wholly within the UMV. const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); const int max_blocks_high = max_block_high(xd, plane_bsize, plane); // Keep track of the row and column of the blocks we use so that we know // if we are in the unrestricted motion border. for (row = 0; row < max_blocks_high; row += (1 << tx_size)) { // Skip visiting the sub blocks that are wholly within the UMV. for (col = 0; col < max_blocks_wide; col += (1 << tx_size)) { p->src.buf = &src_buf_base[4 * (row * (int64_t)src_stride + col)]; pd->dst.buf = &dst_buf_base[4 * (row * (int64_t)dst_stride + col)]; av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, FILTER_INTRA_MODES, pd->dst.buf, dst_stride, pd->dst.buf, dst_stride, 0, 0, plane); } } p->src.buf = src_buf_base; pd->dst.buf = dst_buf_base; } // Checks whether Intra mode needs to be pruned based on // 'intra_y_mode_bsize_mask_nrd' and 'prune_hv_pred_modes_using_blksad' // speed features. static INLINE bool is_prune_intra_mode( AV1_COMP *cpi, int mode_index, int force_intra_check, BLOCK_SIZE bsize, uint8_t segment_id, SOURCE_SAD source_sad_nonrd, uint8_t color_sensitivity[MAX_MB_PLANE - 1]) { const PREDICTION_MODE this_mode = intra_mode_list[mode_index]; if (mode_index > 2 || force_intra_check == 0) { if (!((1 << this_mode) & cpi->sf.rt_sf.intra_y_mode_bsize_mask_nrd[bsize])) return true; if (this_mode == DC_PRED) return false; if (!cpi->sf.rt_sf.prune_hv_pred_modes_using_src_sad) return false; const bool has_color_sensitivity = color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] && color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]; if (has_color_sensitivity && (cpi->rc.frame_source_sad > 1.1 * cpi->rc.avg_source_sad || cyclic_refresh_segment_id_boosted(segment_id) || source_sad_nonrd > kMedSad)) return false; return true; } return false; } /*!\brief Estimation of RD cost of an intra mode for Non-RD optimized case. * * \ingroup nonrd_mode_search * \callgraph * \callergraph * Calculates RD Cost for an intra mode for a single TX block using Hadamard * transform. * \param[in] plane Color plane * \param[in] block Index of a TX block in a prediction block * \param[in] row Row of a current TX block * \param[in] col Column of a current TX block * \param[in] plane_bsize Block size of a current prediction block * \param[in] tx_size Transform size * \param[in] arg Pointer to a structure that holds parameters * for intra mode search * * \remark Nothing is returned. Instead, best mode and RD Cost of the best mode * are set in \c args->rdc and \c args->mode */ void av1_estimate_block_intra(int plane, int block, int row, int col, BLOCK_SIZE plane_bsize, TX_SIZE tx_size, void *arg) { struct estimate_block_intra_args *const args = arg; AV1_COMP *const cpi = args->cpi; AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = args->x; MACROBLOCKD *const xd = &x->e_mbd; struct macroblock_plane *const p = &x->plane[plane]; struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bsize_tx = txsize_to_bsize[tx_size]; uint8_t *const src_buf_base = p->src.buf; uint8_t *const dst_buf_base = pd->dst.buf; const int64_t src_stride = p->src.stride; const int64_t dst_stride = pd->dst.stride; (void)block; av1_predict_intra_block_facade(cm, xd, plane, col, row, tx_size); if (args->prune_mode_based_on_sad) { unsigned int this_sad = cpi->ppi->fn_ptr[plane_bsize].sdf( p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); const unsigned int sad_threshold = args->best_sad != UINT_MAX ? args->best_sad + (args->best_sad >> 4) : UINT_MAX; // Skip the evaluation of current mode if its SAD is more than a threshold. if (this_sad > sad_threshold) { // For the current mode, set rate and distortion to maximum possible // values and return. // Note: args->rdc->rate is checked in av1_nonrd_pick_intra_mode() to skip // the evaluation of the current mode. args->rdc->rate = INT_MAX; args->rdc->dist = INT64_MAX; return; } if (this_sad < args->best_sad) { args->best_sad = this_sad; } } RD_STATS this_rdc; av1_invalid_rd_stats(&this_rdc); p->src.buf = &src_buf_base[4 * (row * src_stride + col)]; pd->dst.buf = &dst_buf_base[4 * (row * dst_stride + col)]; if (plane == 0) { av1_block_yrd(x, &this_rdc, &args->skippable, bsize_tx, AOMMIN(tx_size, TX_16X16)); } else { av1_model_rd_for_sb_uv(cpi, bsize_tx, x, xd, &this_rdc, plane, plane); } p->src.buf = src_buf_base; pd->dst.buf = dst_buf_base; assert(args->rdc->rate != INT_MAX && args->rdc->dist != INT64_MAX); args->rdc->rate += this_rdc.rate; args->rdc->dist += this_rdc.dist; } /*!\brief Estimates best intra mode for inter mode search * * \ingroup nonrd_mode_search * \callgraph * \callergraph * * Using heuristics based on best inter mode, block size, and other decides * whether to check intra modes. If so, estimates and selects best intra mode * from the reduced set of intra modes (max 4 intra modes checked) * * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the * data for the current macroblock * \param[in] bsize Current block size * \param[in] best_early_term Flag, indicating that TX for the * best inter mode was skipped * \param[in] ref_cost_intra Cost of signalling intra mode * \param[in] reuse_prediction Flag, indicating prediction re-use * \param[in] orig_dst Original destination buffer * \param[in] tmp_buffers Pointer to a temporary buffers for * prediction re-use * \param[out] this_mode_pred Pointer to store prediction buffer * for prediction re-use * \param[in] best_rdc Pointer to RD cost for the best * selected intra mode * \param[in] best_pickmode Pointer to a structure containing * best mode picked so far * \param[in] ctx Pointer to structure holding coding * contexts and modes for the block * * \remark Nothing is returned. Instead, calculated RD cost is placed to * \c best_rdc and best selected mode is placed to \c best_pickmode * */ void av1_estimate_intra_mode(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int best_early_term, unsigned int ref_cost_intra, int reuse_prediction, struct buf_2d *orig_dst, PRED_BUFFER *tmp_buffers, PRED_BUFFER **this_mode_pred, RD_STATS *best_rdc, BEST_PICKMODE *best_pickmode, PICK_MODE_CONTEXT *ctx) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; const TxfmSearchParams *txfm_params = &x->txfm_search_params; const unsigned char segment_id = mi->segment_id; const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; const int *const rd_thresh_freq_fact = x->thresh_freq_fact[bsize]; const bool is_screen_content = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; const REAL_TIME_SPEED_FEATURES *const rt_sf = &cpi->sf.rt_sf; const CommonQuantParams *quant_params = &cm->quant_params; RD_STATS this_rdc; int intra_cost_penalty = av1_get_intra_cost_penalty( quant_params->base_qindex, quant_params->y_dc_delta_q, cm->seq_params->bit_depth); int64_t inter_mode_thresh = RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); int perform_intra_pred = rt_sf->check_intra_pred_nonrd; int force_intra_check = 0; // For spatial enhancement layer: turn off intra prediction if the // previous spatial layer as golden ref is not chosen as best reference. // only do this for temporal enhancement layer and on non-key frames. if (cpi->svc.spatial_layer_id > 0 && best_pickmode->best_ref_frame != GOLDEN_FRAME && cpi->svc.temporal_layer_id > 0 && !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) perform_intra_pred = 0; int do_early_exit_rdthresh = 1; uint32_t spatial_var_thresh = 50; int motion_thresh = 32; // Adjust thresholds to make intra mode likely tested if the other // references (golden, alt) are skipped/not checked. For now always // adjust for svc mode. if (cpi->ppi->use_svc || (rt_sf->use_nonrd_altref_frame == 0 && rt_sf->nonrd_prune_ref_frame_search > 0)) { spatial_var_thresh = 150; motion_thresh = 0; } // Some adjustments to checking intra mode based on source variance. if (x->source_variance < spatial_var_thresh) { // If the best inter mode is large motion or non-LAST ref reduce intra cost // penalty, so intra mode is more likely tested. if (best_rdc->rdcost != INT64_MAX && (best_pickmode->best_ref_frame != LAST_FRAME || abs(mi->mv[0].as_mv.row) >= motion_thresh || abs(mi->mv[0].as_mv.col) >= motion_thresh)) { intra_cost_penalty = intra_cost_penalty >> 2; inter_mode_thresh = RDCOST(x->rdmult, ref_cost_intra + intra_cost_penalty, 0); do_early_exit_rdthresh = 0; } if ((x->source_variance < AOMMAX(50, (spatial_var_thresh >> 1)) && x->content_state_sb.source_sad_nonrd >= kHighSad) || (is_screen_content && x->source_variance < 50 && ((bsize >= BLOCK_32X32 && x->content_state_sb.source_sad_nonrd != kZeroSad) || x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 1 || x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 1))) force_intra_check = 1; // For big blocks worth checking intra (since only DC will be checked), // even if best_early_term is set. if (bsize >= BLOCK_32X32) best_early_term = 0; } else if (rt_sf->source_metrics_sb_nonrd && x->content_state_sb.source_sad_nonrd <= kLowSad) { perform_intra_pred = 0; } if (best_rdc->skip_txfm && best_pickmode->best_mode_initial_skip_flag) { if (rt_sf->skip_intra_pred == 1 && best_pickmode->best_mode != NEWMV) perform_intra_pred = 0; else if (rt_sf->skip_intra_pred == 2) perform_intra_pred = 0; } if (!(best_rdc->rdcost == INT64_MAX || force_intra_check || (perform_intra_pred && !best_early_term && bsize <= cpi->sf.part_sf.max_intra_bsize))) { return; } // Early exit based on RD cost calculated using known rate. When // is_screen_content is true, more bias is given to intra modes. Hence, // considered conservative threshold in early exit for the same. const int64_t known_rd = is_screen_content ? CALC_BIASED_RDCOST(inter_mode_thresh) : inter_mode_thresh; if (known_rd > best_rdc->rdcost) return; struct estimate_block_intra_args args; init_estimate_block_intra_args(&args, cpi, x); TX_SIZE intra_tx_size = AOMMIN( AOMMIN(max_txsize_lookup[bsize], tx_mode_to_biggest_tx_size[txfm_params->tx_mode_search_type]), TX_16X16); if (is_screen_content && cpi->rc.high_source_sad && x->source_variance > spatial_var_thresh && bsize <= BLOCK_16X16) intra_tx_size = TX_4X4; PRED_BUFFER *const best_pred = best_pickmode->best_pred; if (reuse_prediction && best_pred != NULL) { const int bh = block_size_high[bsize]; const int bw = block_size_wide[bsize]; if (best_pred->data == orig_dst->buf) { *this_mode_pred = &tmp_buffers[get_pred_buffer(tmp_buffers, 3)]; aom_convolve_copy(best_pred->data, best_pred->stride, (*this_mode_pred)->data, (*this_mode_pred)->stride, bw, bh); best_pickmode->best_pred = *this_mode_pred; } } pd->dst = *orig_dst; for (int midx = 0; midx < RTC_INTRA_MODES; ++midx) { const PREDICTION_MODE this_mode = intra_mode_list[midx]; const THR_MODES mode_index = mode_idx[INTRA_FRAME][mode_offset(this_mode)]; const int64_t mode_rd_thresh = rd_threshes[mode_index]; if (is_prune_intra_mode(cpi, midx, force_intra_check, bsize, segment_id, x->content_state_sb.source_sad_nonrd, x->color_sensitivity)) continue; if (is_screen_content && rt_sf->source_metrics_sb_nonrd) { // For spatially flat blocks with zero motion only check // DC mode. if (x->content_state_sb.source_sad_nonrd == kZeroSad && x->source_variance == 0 && this_mode != DC_PRED) continue; // Only test Intra for big blocks if spatial_variance is small. else if (bsize > BLOCK_32X32 && x->source_variance > 50) continue; } if (rd_less_than_thresh(best_rdc->rdcost, mode_rd_thresh, rd_thresh_freq_fact[mode_index]) && (do_early_exit_rdthresh || this_mode == SMOOTH_PRED)) { continue; } const BLOCK_SIZE uv_bsize = get_plane_block_size(bsize, xd->plane[AOM_PLANE_U].subsampling_x, xd->plane[AOM_PLANE_U].subsampling_y); mi->mode = this_mode; mi->ref_frame[0] = INTRA_FRAME; mi->ref_frame[1] = NONE_FRAME; av1_invalid_rd_stats(&this_rdc); args.mode = this_mode; args.skippable = 1; args.rdc = &this_rdc; mi->tx_size = intra_tx_size; compute_intra_yprediction(cm, this_mode, bsize, x, xd); // Look into selecting tx_size here, based on prediction residual. av1_block_yrd(x, &this_rdc, &args.skippable, bsize, mi->tx_size); // TODO(kyslov@) Need to account for skippable if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)]) { av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_U, av1_estimate_block_intra, &args); } if (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)]) { av1_foreach_transformed_block_in_plane(xd, uv_bsize, AOM_PLANE_V, av1_estimate_block_intra, &args); } int mode_cost = 0; if (av1_is_directional_mode(this_mode) && av1_use_angle_delta(bsize)) { mode_cost += x->mode_costs.angle_delta_cost[this_mode - V_PRED] [MAX_ANGLE_DELTA + mi->angle_delta[PLANE_TYPE_Y]]; } if (this_mode == DC_PRED && av1_filter_intra_allowed_bsize(cm, bsize)) { mode_cost += x->mode_costs.filter_intra_cost[bsize][0]; } this_rdc.rate += ref_cost_intra; this_rdc.rate += intra_cost_penalty; this_rdc.rate += mode_cost; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); if (is_screen_content && rt_sf->source_metrics_sb_nonrd) { // For blocks with low spatial variance and color sad, // favor the intra-modes, only on scene/slide change. if (cpi->rc.high_source_sad && x->source_variance < 800 && (x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] || x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)])) this_rdc.rdcost = CALC_BIASED_RDCOST(this_rdc.rdcost); // Otherwise bias against intra for blocks with zero // motion and no color, on non-scene/slide changes. else if (!cpi->rc.high_source_sad && x->source_variance > 0 && x->content_state_sb.source_sad_nonrd == kZeroSad && x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] == 0 && x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] == 0) this_rdc.rdcost = (3 * this_rdc.rdcost) >> 1; } if (this_rdc.rdcost < best_rdc->rdcost) { *best_rdc = this_rdc; best_pickmode->best_mode = this_mode; best_pickmode->best_tx_size = mi->tx_size; best_pickmode->best_ref_frame = INTRA_FRAME; best_pickmode->best_second_ref_frame = NONE; best_pickmode->best_mode_skip_txfm = this_rdc.skip_txfm; mi->uv_mode = this_mode; mi->mv[0].as_int = INVALID_MV; mi->mv[1].as_int = INVALID_MV; if (!this_rdc.skip_txfm) memset(ctx->blk_skip, 0, sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); } } if (best_pickmode->best_ref_frame == INTRA_FRAME) memset(ctx->blk_skip, 0, sizeof(x->txfm_search_info.blk_skip[0]) * ctx->num_4x4_blk); mi->tx_size = best_pickmode->best_tx_size; }