/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "aom_dsp/txfm_common.h" #include "av1/common/av1_common_int.h" #include "av1/common/blockd.h" #include "av1/common/enums.h" #include "av1/common/reconintra.h" #include "av1/encoder/aq_complexity.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/context_tree.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/intra_mode_search_utils.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/nonrd_opt.h" #include "av1/encoder/partition_search.h" #include "av1/encoder/partition_strategy.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/tokenize.h" #include "av1/encoder/var_based_part.h" #include "av1/encoder/av1_ml_partition_models.h" #if CONFIG_TUNE_VMAF #include "av1/encoder/tune_vmaf.h" #endif #define COLLECT_MOTION_SEARCH_FEATURE_SB 0 void av1_reset_part_sf(PARTITION_SPEED_FEATURES *part_sf) { part_sf->partition_search_type = SEARCH_PARTITION; part_sf->less_rectangular_check_level = 0; part_sf->use_square_partition_only_threshold = BLOCK_128X128; part_sf->auto_max_partition_based_on_simple_motion = NOT_IN_USE; part_sf->default_max_partition_size = BLOCK_LARGEST; part_sf->default_min_partition_size = BLOCK_4X4; part_sf->adjust_var_based_rd_partitioning = 0; part_sf->max_intra_bsize = BLOCK_LARGEST; // This setting only takes effect when partition_search_type is set // to FIXED_PARTITION. part_sf->fixed_partition_size = BLOCK_16X16; // Recode loop tolerance %. part_sf->partition_search_breakout_dist_thr = 0; part_sf->partition_search_breakout_rate_thr = 0; part_sf->prune_ext_partition_types_search_level = 0; part_sf->prune_part4_search = 0; part_sf->ml_prune_partition = 0; part_sf->ml_early_term_after_part_split_level = 0; for (int i = 0; i < PARTITION_BLOCK_SIZES; ++i) { part_sf->ml_partition_search_breakout_thresh[i] = -1; // -1 means not enabled. } part_sf->simple_motion_search_prune_agg = SIMPLE_AGG_LVL0; part_sf->simple_motion_search_split = 0; part_sf->simple_motion_search_prune_rect = 0; part_sf->simple_motion_search_early_term_none = 0; part_sf->simple_motion_search_reduce_search_steps = 0; part_sf->intra_cnn_based_part_prune_level = 0; part_sf->ext_partition_eval_thresh = BLOCK_8X8; part_sf->rect_partition_eval_thresh = BLOCK_128X128; part_sf->ext_part_eval_based_on_cur_best = 0; part_sf->prune_ext_part_using_split_info = 0; part_sf->prune_rectangular_split_based_on_qidx = 0; part_sf->early_term_after_none_split = 0; part_sf->ml_predict_breakout_level = 0; part_sf->prune_sub_8x8_partition_level = 0; part_sf->simple_motion_search_rect_split = 0; part_sf->reuse_prev_rd_results_for_part_ab = 0; part_sf->reuse_best_prediction_for_part_ab = 0; part_sf->use_best_rd_for_pruning = 0; part_sf->skip_non_sq_part_based_on_none = 0; } // Reset speed features that works for the baseline encoding, but // blocks the external partition search. void av1_reset_sf_for_ext_part(AV1_COMP *const cpi) { cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions = 0; } #if !CONFIG_REALTIME_ONLY // If input |features| is NULL, write tpl stats to file for each super block. // Otherwise, store tpl stats to |features|. // The tpl stats is computed in the unit of tpl_bsize_1d (16x16). // When writing to text file: // The first row contains super block position, super block size, // tpl unit length, number of units in the super block. // The second row contains the intra prediction cost for each unit. // The third row contains the inter prediction cost for each unit. // The forth row contains the motion compensated dependency cost for each unit. static void collect_tpl_stats_sb(const AV1_COMP *const cpi, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, aom_partition_features_t *features) { const AV1_COMMON *const cm = &cpi->common; GF_GROUP *gf_group = &cpi->ppi->gf_group; if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { return; } TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; // If tpl stats is not established, early return if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { if (features != NULL) features->sb_features.tpl_features.available = 0; return; } const int tpl_stride = tpl_frame->stride; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; const int mi_width = AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); const int mi_height = AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); const int col_steps = (mi_width / step) + ((mi_width % step) > 0); const int row_steps = (mi_height / step) + ((mi_height % step) > 0); const int num_blocks = col_steps * row_steps; if (features == NULL) { char filename[256]; snprintf(filename, sizeof(filename), "%s/tpl_feature_sb%d", cpi->oxcf.partition_info_path, cpi->sb_counter); FILE *pfile = fopen(filename, "w"); fprintf(pfile, "%d,%d,%d,%d,%d\n", mi_row, mi_col, bsize, tpl_data->tpl_bsize_1d, num_blocks); int count = 0; for (int row = 0; row < mi_height; row += step) { for (int col = 0; col < mi_width; col += step) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; fprintf(pfile, "%.0f", (double)this_stats->intra_cost); if (count < num_blocks - 1) fprintf(pfile, ","); ++count; } } fprintf(pfile, "\n"); count = 0; for (int row = 0; row < mi_height; row += step) { for (int col = 0; col < mi_width; col += step) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; fprintf(pfile, "%.0f", (double)this_stats->inter_cost); if (count < num_blocks - 1) fprintf(pfile, ","); ++count; } } fprintf(pfile, "\n"); count = 0; for (int row = 0; row < mi_height; row += step) { for (int col = 0; col < mi_width; col += step) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; const int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); fprintf(pfile, "%.0f", (double)mc_dep_delta); if (count < num_blocks - 1) fprintf(pfile, ","); ++count; } } fclose(pfile); } else { features->sb_features.tpl_features.available = 1; features->sb_features.tpl_features.tpl_unit_length = tpl_data->tpl_bsize_1d; features->sb_features.tpl_features.num_units = num_blocks; int count = 0; for (int row = 0; row < mi_height; row += step) { for (int col = 0; col < mi_width; col += step) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; const int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); features->sb_features.tpl_features.intra_cost[count] = this_stats->intra_cost; features->sb_features.tpl_features.inter_cost[count] = this_stats->inter_cost; features->sb_features.tpl_features.mc_dep_cost[count] = mc_dep_delta; ++count; } } } } #endif // !CONFIG_REALTIME_ONLY static void update_txfm_count(MACROBLOCK *x, MACROBLOCKD *xd, FRAME_COUNTS *counts, TX_SIZE tx_size, int depth, int blk_row, int blk_col, uint8_t allow_update_cdf) { MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; const int max_blocks_high = max_block_high(xd, bsize, 0); const int max_blocks_wide = max_block_wide(xd, bsize, 0); int ctx = txfm_partition_context(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, mbmi->bsize, tx_size); const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; assert(tx_size > TX_4X4); if (depth == MAX_VARTX_DEPTH) { // Don't add to counts in this case mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); return; } if (tx_size == plane_tx_size) { #if CONFIG_ENTROPY_STATS ++counts->txfm_partition[ctx][0]; #endif if (allow_update_cdf) update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 0, 2); mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); } else { const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; #if CONFIG_ENTROPY_STATS ++counts->txfm_partition[ctx][1]; #endif if (allow_update_cdf) update_cdf(xd->tile_ctx->txfm_partition_cdf[ctx], 1, 2); ++x->txfm_search_info.txb_split_count; if (sub_txs == TX_4X4) { mbmi->inter_tx_size[txb_size_index] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, TX_4X4, tx_size); return; } for (int row = 0; row < tx_size_high_unit[tx_size]; row += bsh) { for (int col = 0; col < tx_size_wide_unit[tx_size]; col += bsw) { int offsetr = row; int offsetc = col; update_txfm_count(x, xd, counts, sub_txs, depth + 1, blk_row + offsetr, blk_col + offsetc, allow_update_cdf); } } } } static void tx_partition_count_update(const AV1_COMMON *const cm, MACROBLOCK *x, BLOCK_SIZE plane_bsize, FRAME_COUNTS *td_counts, uint8_t allow_update_cdf) { MACROBLOCKD *xd = &x->e_mbd; const int mi_width = mi_size_wide[plane_bsize]; const int mi_height = mi_size_high[plane_bsize]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); for (int idy = 0; idy < mi_height; idy += bh) { for (int idx = 0; idx < mi_width; idx += bw) { update_txfm_count(x, xd, td_counts, max_tx_size, 0, idy, idx, allow_update_cdf); } } } static void set_txfm_context(MACROBLOCKD *xd, TX_SIZE tx_size, int blk_row, int blk_col) { MB_MODE_INFO *mbmi = xd->mi[0]; const BLOCK_SIZE bsize = mbmi->bsize; const int max_blocks_high = max_block_high(xd, bsize, 0); const int max_blocks_wide = max_block_wide(xd, bsize, 0); const int txb_size_index = av1_get_txb_size_index(bsize, blk_row, blk_col); const TX_SIZE plane_tx_size = mbmi->inter_tx_size[txb_size_index]; if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; if (tx_size == plane_tx_size) { mbmi->tx_size = tx_size; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, tx_size, tx_size); } else { if (tx_size == TX_8X8) { mbmi->inter_tx_size[txb_size_index] = TX_4X4; mbmi->tx_size = TX_4X4; txfm_partition_update(xd->above_txfm_context + blk_col, xd->left_txfm_context + blk_row, TX_4X4, tx_size); return; } const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int row_end = AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); const int col_end = AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); for (int row = 0; row < row_end; row += bsh) { const int offsetr = blk_row + row; for (int col = 0; col < col_end; col += bsw) { const int offsetc = blk_col + col; set_txfm_context(xd, sub_txs, offsetr, offsetc); } } } } static void tx_partition_set_contexts(const AV1_COMMON *const cm, MACROBLOCKD *xd, BLOCK_SIZE plane_bsize) { const int mi_width = mi_size_wide[plane_bsize]; const int mi_height = mi_size_high[plane_bsize]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, 0); const int bh = tx_size_high_unit[max_tx_size]; const int bw = tx_size_wide_unit[max_tx_size]; xd->above_txfm_context = cm->above_contexts.txfm[xd->tile.tile_row] + xd->mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (xd->mi_row & MAX_MIB_MASK); for (int idy = 0; idy < mi_height; idy += bh) { for (int idx = 0; idx < mi_width; idx += bw) { set_txfm_context(xd, max_tx_size, idy, idx); } } } static void update_zeromv_cnt(const AV1_COMP *const cpi, const MB_MODE_INFO *const mi, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (mi->ref_frame[0] != LAST_FRAME || !is_inter_block(mi) || mi->segment_id > CR_SEGMENT_ID_BOOST2) { return; } const AV1_COMMON *const cm = &cpi->common; const MV mv = mi->mv[0].as_mv; const int bw = mi_size_wide[bsize] >> 1; const int bh = mi_size_high[bsize] >> 1; const int xmis = AOMMIN((cm->mi_params.mi_cols - mi_col) >> 1, bw); const int ymis = AOMMIN((cm->mi_params.mi_rows - mi_row) >> 1, bh); const int block_index = (mi_row >> 1) * (cm->mi_params.mi_cols >> 1) + (mi_col >> 1); for (int y = 0; y < ymis; y++) { for (int x = 0; x < xmis; x++) { // consec_zero_mv is in the scale of 8x8 blocks const int map_offset = block_index + y * (cm->mi_params.mi_cols >> 1) + x; if (abs(mv.row) < 10 && abs(mv.col) < 10) { if (cpi->consec_zero_mv[map_offset] < 255) cpi->consec_zero_mv[map_offset]++; } else { cpi->consec_zero_mv[map_offset] = 0; } } } } static void encode_superblock(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TokenExtra **t, RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO **mi_4x4 = xd->mi; MB_MODE_INFO *mbmi = mi_4x4[0]; const int seg_skip = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); const int mis = cm->mi_params.mi_stride; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; const int is_inter = is_inter_block(mbmi); // Initialize tx_mode and tx_size_search_method TxfmSearchParams *txfm_params = &x->txfm_search_params; set_tx_size_search_method( cm, &cpi->winner_mode_params, txfm_params, cpi->sf.winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; if (!is_inter) { xd->cfl.store_y = store_cfl_required(cm, xd); mbmi->skip_txfm = 1; for (int plane = 0; plane < num_planes; ++plane) { av1_encode_intra_block_plane(cpi, x, bsize, plane, dry_run, cpi->optimize_seg_arr[mbmi->segment_id]); } // If there is at least one lossless segment, force the skip for intra // block to be 0, in order to avoid the segment_id to be changed by in // write_segment_id(). if (!cpi->common.seg.segid_preskip && cpi->common.seg.update_map && cpi->enc_seg.has_lossless_segment) mbmi->skip_txfm = 0; xd->cfl.store_y = 0; if (av1_allow_palette(cm->features.allow_screen_content_tools, bsize)) { for (int plane = 0; plane < AOMMIN(2, num_planes); ++plane) { if (mbmi->palette_mode_info.palette_size[plane] > 0) { if (!dry_run) { av1_tokenize_color_map(x, plane, t, bsize, mbmi->tx_size, PALETTE_MAP, tile_data->allow_update_cdf, td->counts); } else if (dry_run == DRY_RUN_COSTCOEFFS) { *rate += av1_cost_color_map(x, plane, bsize, mbmi->tx_size, PALETTE_MAP); } } } } av1_update_intra_mb_txb_context(cpi, td, dry_run, bsize, tile_data->allow_update_cdf); } else { int ref; const int is_compound = has_second_ref(mbmi); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); for (ref = 0; ref < 1 + is_compound; ++ref) { const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, mbmi->ref_frame[ref]); assert(IMPLIES(!is_intrabc_block(mbmi), cfg)); av1_setup_pre_planes(xd, ref, cfg, mi_row, mi_col, xd->block_ref_scale_factors[ref], num_planes); } // Predicted sample of inter mode (for Luma plane) cannot be reused if // nonrd_check_partition_split speed feature is enabled, Since in such cases // the buffer may not contain the predicted sample of best mode. const int start_plane = (x->reuse_inter_pred && (!cpi->sf.rt_sf.nonrd_check_partition_split) && cm->seq_params->bit_depth == AOM_BITS_8) ? 1 : 0; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, start_plane, av1_num_planes(cm) - 1); if (mbmi->motion_mode == OBMC_CAUSAL) { assert(cpi->oxcf.motion_mode_cfg.enable_obmc); av1_build_obmc_inter_predictors_sb(cm, xd); } #if CONFIG_MISMATCH_DEBUG if (dry_run == OUTPUT_ENABLED) { for (int plane = 0; plane < num_planes; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; int pixel_c, pixel_r; mi_to_pixel_loc(&pixel_c, &pixel_r, mi_col, mi_row, 0, 0, pd->subsampling_x, pd->subsampling_y); if (!is_chroma_reference(mi_row, mi_col, bsize, pd->subsampling_x, pd->subsampling_y)) continue; mismatch_record_block_pre(pd->dst.buf, pd->dst.stride, cm->current_frame.order_hint, plane, pixel_c, pixel_r, pd->width, pd->height, xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH); } } #else (void)num_planes; #endif av1_encode_sb(cpi, x, bsize, dry_run); av1_tokenize_sb_vartx(cpi, td, dry_run, bsize, rate, tile_data->allow_update_cdf); } if (!dry_run) { if (av1_allow_intrabc(cm) && is_intrabc_block(mbmi)) td->intrabc_used = 1; if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id] && mbmi->bsize > BLOCK_4X4 && !(is_inter && (mbmi->skip_txfm || seg_skip))) { if (is_inter) { tx_partition_count_update(cm, x, bsize, td->counts, tile_data->allow_update_cdf); } else { if (mbmi->tx_size != max_txsize_rect_lookup[bsize]) ++x->txfm_search_info.txb_split_count; if (block_signals_txsize(bsize)) { const int tx_size_ctx = get_tx_size_context(xd); const int32_t tx_size_cat = bsize_to_tx_size_cat(bsize); const int depth = tx_size_to_depth(mbmi->tx_size, bsize); const int max_depths = bsize_to_max_depth(bsize); if (tile_data->allow_update_cdf) update_cdf(xd->tile_ctx->tx_size_cdf[tx_size_cat][tx_size_ctx], depth, max_depths + 1); #if CONFIG_ENTROPY_STATS ++td->counts->intra_tx_size[tx_size_cat][tx_size_ctx][depth]; #endif } } assert(IMPLIES(is_rect_tx(mbmi->tx_size), is_rect_tx_allowed(xd, mbmi))); } else { int i, j; TX_SIZE intra_tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) { if (xd->lossless[mbmi->segment_id]) { intra_tx_size = TX_4X4; } else { intra_tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); } } else { intra_tx_size = mbmi->tx_size; } const int cols = AOMMIN(cm->mi_params.mi_cols - mi_col, mi_width); const int rows = AOMMIN(cm->mi_params.mi_rows - mi_row, mi_height); for (j = 0; j < rows; j++) { for (i = 0; i < cols; i++) mi_4x4[mis * j + i]->tx_size = intra_tx_size; } if (intra_tx_size != max_txsize_rect_lookup[bsize]) ++x->txfm_search_info.txb_split_count; } } if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && block_signals_txsize(mbmi->bsize) && is_inter && !(mbmi->skip_txfm || seg_skip) && !xd->lossless[mbmi->segment_id]) { if (dry_run) tx_partition_set_contexts(cm, xd, bsize); } else { TX_SIZE tx_size = mbmi->tx_size; // The new intra coding scheme requires no change of transform size if (is_inter) { if (xd->lossless[mbmi->segment_id]) { tx_size = TX_4X4; } else { tx_size = tx_size_from_tx_mode(bsize, txfm_params->tx_mode_search_type); } } else { tx_size = (bsize > BLOCK_4X4) ? tx_size : TX_4X4; } mbmi->tx_size = tx_size; set_txfm_ctxs(tx_size, xd->width, xd->height, (mbmi->skip_txfm || seg_skip) && is_inter_block(mbmi), xd); } if (is_inter_block(mbmi) && !xd->is_chroma_ref && is_cfl_allowed(xd)) { cfl_store_block(xd, mbmi->bsize, mbmi->tx_size); } if (!dry_run) { if (cpi->oxcf.pass == AOM_RC_ONE_PASS && cpi->svc.temporal_layer_id == 0 && cpi->sf.rt_sf.use_temporal_noise_estimate && (!cpi->ppi->use_svc || (cpi->ppi->use_svc && !cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1))) update_zeromv_cnt(cpi, mbmi, mi_row, mi_col, bsize); } } static void setup_block_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize, AQ_MODE aq_mode, MB_MODE_INFO *mbmi) { x->rdmult = cpi->rd.RDMULT; if (aq_mode != NO_AQ) { assert(mbmi != NULL); if (aq_mode == VARIANCE_AQ) { if (cpi->vaq_refresh) { const int energy = bsize <= BLOCK_16X16 ? x->mb_energy : av1_log_block_var(cpi, x, bsize); mbmi->segment_id = energy; } x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == COMPLEXITY_AQ) { x->rdmult = set_rdmult(cpi, x, mbmi->segment_id); } else if (aq_mode == CYCLIC_REFRESH_AQ) { // If segment is boosted, use rdmult for that segment. if (cyclic_refresh_segment_id_boosted(mbmi->segment_id)) x->rdmult = av1_cyclic_refresh_get_rdmult(cpi->cyclic_refresh); } } #if !CONFIG_REALTIME_ONLY if (cpi->common.delta_q_info.delta_q_present_flag && !cpi->sf.rt_sf.use_nonrd_pick_mode) { x->rdmult = av1_get_cb_rdmult(cpi, x, bsize, mi_row, mi_col); } #endif // !CONFIG_REALTIME_ONLY if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_SSIM) { av1_set_ssim_rdmult(cpi, &x->errorperbit, bsize, mi_row, mi_col, &x->rdmult); } #if CONFIG_SALIENCY_MAP else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_SALIENCY_MAP) { av1_set_saliency_map_vmaf_rdmult(cpi, &x->errorperbit, cpi->common.seq_params->sb_size, mi_row, mi_col, &x->rdmult); } #endif #if CONFIG_TUNE_VMAF else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_WITHOUT_PREPROCESSING || cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_MAX_GAIN || cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { av1_set_vmaf_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); } #endif #if CONFIG_TUNE_BUTTERAUGLI else if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI) { av1_set_butteraugli_rdmult(cpi, x, bsize, mi_row, mi_col, &x->rdmult); } #endif if (cpi->oxcf.mode == ALLINTRA) { x->rdmult = (int)(((int64_t)x->rdmult * x->intra_sb_rdmult_modifier) >> 7); } // Check to make sure that the adjustments above have not caused the // rd multiplier to be truncated to 0. x->rdmult = (x->rdmult > 0) ? x->rdmult : 1; } void av1_set_offsets_without_segment_id(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; assert(bsize < BLOCK_SIZES_ALL); const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, mi_col); set_entropy_context(xd, mi_row, mi_col, num_planes); xd->above_txfm_context = cm->above_contexts.txfm[tile->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); // Set up destination pointers. av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, num_planes); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. av1_set_mv_limits(&cm->mi_params, &x->mv_limits, mi_row, mi_col, mi_height, mi_width, cpi->oxcf.border_in_pixels); set_plane_n4(xd, mi_width, mi_height, num_planes); // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); set_mi_row_col(xd, tile, mi_row, mi_height, mi_col, mi_width, cm->mi_params.mi_rows, cm->mi_params.mi_cols); // Set up source buffers. av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); // required by av1_append_sub8x8_mvs_for_idx() and av1_find_best_ref_mvs() xd->tile = *tile; } void av1_set_offsets(const AV1_COMP *const cpi, const TileInfo *const tile, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const struct segmentation *const seg = &cm->seg; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); // Setup segment ID. mbmi = xd->mi[0]; mbmi->segment_id = 0; if (seg->enabled) { if (seg->enabled && !cpi->vaq_refresh) { const uint8_t *const map = seg->update_map ? cpi->enc_seg.map : cm->last_frame_seg_map; mbmi->segment_id = map ? get_segment_id(&cm->mi_params, map, bsize, mi_row, mi_col) : 0; } av1_init_plane_quantizers(cpi, x, mbmi->segment_id, 0); } #ifndef NDEBUG x->last_set_offsets_loc.mi_row = mi_row; x->last_set_offsets_loc.mi_col = mi_col; x->last_set_offsets_loc.bsize = bsize; #endif // NDEBUG } /*!\brief Hybrid intra mode search. * * \ingroup intra_mode_search * \callgraph * \callergraph * This is top level function for mode search for intra frames in non-RD * optimized case. Depending on speed feature and block size it calls * either non-RD or RD optimized intra mode search. * * \param[in] cpi Top-level encoder structure * \param[in] x Pointer to structure holding all the data for the current macroblock * \param[in] rd_cost Struct to keep track of the RD information * \param[in] bsize Current block size * \param[in] ctx Structure to hold snapshot of coding context during the mode picking process * * \remark Nothing is returned. Instead, the MB_MODE_INFO struct inside x * is modified to store information about the best mode computed * in this function. The rd_cost struct is also updated with the RD stats * corresponding to the best mode found. */ static AOM_INLINE void hybrid_intra_mode_search(AV1_COMP *cpi, MACROBLOCK *const x, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { int use_rdopt = 0; const int hybrid_intra_pickmode = cpi->sf.rt_sf.hybrid_intra_pickmode; // Use rd pick for intra mode search based on block size and variance. if (hybrid_intra_pickmode && bsize < BLOCK_16X16) { unsigned int var_thresh[3] = { 0, 101, 201 }; assert(hybrid_intra_pickmode <= 3); if (x->source_variance >= var_thresh[hybrid_intra_pickmode - 1]) use_rdopt = 1; } if (use_rdopt) av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, INT64_MAX); else av1_nonrd_pick_intra_mode(cpi, x, rd_cost, bsize, ctx); } // For real time/allintra row-mt enabled multi-threaded encoding with cost // update frequency set to COST_UPD_TILE/COST_UPD_OFF, tile ctxt is not updated // at superblock level. Thus, it is not required for the encoding of top-right // superblock be complete for updating tile ctxt. However, when encoding a block // whose right edge is also the superblock edge, intra and inter mode evaluation // (ref mv list population) require the encoding of the top-right superblock to // be complete. So, here, we delay the waiting of threads until the need for the // data from the top-right superblock region. static AOM_INLINE void wait_for_top_right_sb( AV1EncRowMultiThreadInfo *enc_row_mt, AV1EncRowMultiThreadSync *row_mt_sync, TileInfo *tile_info, BLOCK_SIZE sb_size, int sb_mi_size_log2, BLOCK_SIZE bsize, int mi_row, int mi_col) { const int sb_size_in_mi = mi_size_wide[sb_size]; const int bw_in_mi = mi_size_wide[bsize]; const int blk_row_in_sb = mi_row & (sb_size_in_mi - 1); const int blk_col_in_sb = mi_col & (sb_size_in_mi - 1); const int top_right_block_in_sb = (blk_row_in_sb == 0) && (blk_col_in_sb + bw_in_mi >= sb_size_in_mi); // Don't wait if the block is the not the top-right block in the superblock. if (!top_right_block_in_sb) return; // Wait for the top-right superblock to finish encoding. const int sb_row_in_tile = (mi_row - tile_info->mi_row_start) >> sb_mi_size_log2; const int sb_col_in_tile = (mi_col - tile_info->mi_col_start) >> sb_mi_size_log2; enc_row_mt->sync_read_ptr(row_mt_sync, sb_row_in_tile, sb_col_in_tile); } /*!\brief Interface for AV1 mode search for an individual coding block * * \ingroup partition_search * \callgraph * \callergraph * Searches prediction modes, transform, and coefficient coding modes for an * individual coding block. This function is the top-level interface that * directs the encoder to the proper mode search function, among these * implemented for inter/intra + rd/non-rd + non-skip segment/skip segment. * * \param[in] cpi Top-level encoder structure * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during * encoding * \param[in] x Pointer to structure holding all the data for * the current macroblock * \param[in] mi_row Row coordinate of the block in a step size of * MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of * MI_SIZE * \param[in] rd_cost Pointer to structure holding rate and distortion * stats for the current block * \param[in] partition Partition mode of the parent block * \param[in] bsize Current block size * \param[in] ctx Pointer to structure holding coding contexts and * chosen modes for the current block * \param[in] best_rd Upper bound of rd cost of a valid partition * * \remark Nothing is returned. Instead, the chosen modes and contexts necessary * for reconstruction are stored in ctx, the rate-distortion stats are stored in * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be * signalled by an INT64_MAX rd_cost->rdcost. */ static void pick_sb_modes(AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_STATS *rd_cost, PARTITION_TYPE partition, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, RD_STATS best_rd) { if (cpi->sf.part_sf.use_best_rd_for_pruning && best_rd.rdcost < 0) { ctx->rd_stats.rdcost = INT64_MAX; ctx->rd_stats.skip_txfm = 0; av1_invalid_rd_stats(rd_cost); return; } av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab && ctx->rd_mode_is_ready) { assert(ctx->mic.bsize == bsize); assert(ctx->mic.partition == partition); rd_cost->rate = ctx->rd_stats.rate; rd_cost->dist = ctx->rd_stats.dist; rd_cost->rdcost = ctx->rd_stats.rdcost; return; } AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; TxfmSearchInfo *txfm_info = &x->txfm_search_info; int i; // This is only needed for real time/allintra row-mt enabled multi-threaded // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, &tile_data->tile_info, cm->seq_params->sb_size, cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, rd_pick_sb_modes_time); #endif mbmi = xd->mi[0]; mbmi->bsize = bsize; mbmi->partition = partition; #if CONFIG_RD_DEBUG mbmi->mi_row = mi_row; mbmi->mi_col = mi_col; #endif // Sets up the tx_type_map buffer in MACROBLOCKD. xd->tx_type_map = txfm_info->tx_type_map_; xd->tx_type_map_stride = mi_size_wide[bsize]; for (i = 0; i < num_planes; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; p[i].dqcoeff = ctx->dqcoeff[i]; p[i].eobs = ctx->eobs[i]; p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; } for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; ctx->skippable = 0; // Set to zero to make sure we do not use the previous encoded frame stats mbmi->skip_txfm = 0; // Reset skip mode flag. mbmi->skip_mode = 0; x->source_variance = av1_get_perpixel_variance_facade( cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); // Initialize default mode evaluation params set_mode_eval_params(cpi, x, DEFAULT_EVAL); // Save rdmult before it might be changed, so it can be restored later. const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); // Set error per bit for current rdmult av1_set_error_per_bit(&x->errorperbit, x->rdmult); av1_rd_cost_update(x->rdmult, &best_rd); // If set best_rd.rdcost to INT64_MAX, the encoder will not use any previous // rdcost information for the following mode search. // Disabling the feature could get some coding gain, with encoder slowdown. if (!cpi->sf.part_sf.use_best_rd_for_pruning) { av1_invalid_rd_stats(&best_rd); } // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_rd_pick_intra_mode_sb_time); #endif av1_rd_pick_intra_mode_sb(cpi, x, rd_cost, bsize, ctx, best_rd.rdcost); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_rd_pick_intra_mode_sb_time); #endif } else { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_rd_pick_inter_mode_sb_time); #endif if (segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { av1_rd_pick_inter_mode_sb_seg_skip(cpi, tile_data, x, mi_row, mi_col, rd_cost, bsize, ctx, best_rd.rdcost); } else { av1_rd_pick_inter_mode(cpi, tile_data, x, rd_cost, bsize, ctx, best_rd.rdcost); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_rd_pick_inter_mode_sb_time); #endif } // Examine the resulting rate and for AQ mode 2 make a segment choice. if (rd_cost->rate != INT_MAX && aq_mode == COMPLEXITY_AQ && bsize >= BLOCK_16X16) { av1_caq_select_segment(cpi, x, bsize, mi_row, mi_col, rd_cost->rate); } x->rdmult = orig_rdmult; // TODO(jingning) The rate-distortion optimization flow needs to be // refactored to provide proper exit/return handle. if (rd_cost->rate == INT_MAX) rd_cost->rdcost = INT64_MAX; ctx->rd_stats.rate = rd_cost->rate; ctx->rd_stats.dist = rd_cost->dist; ctx->rd_stats.rdcost = rd_cost->rdcost; #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, rd_pick_sb_modes_time); #endif } static void update_stats(const AV1_COMMON *const cm, ThreadData *td) { MACROBLOCK *x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const CurrentFrame *const current_frame = &cm->current_frame; const BLOCK_SIZE bsize = mbmi->bsize; FRAME_CONTEXT *fc = xd->tile_ctx; const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (current_frame->skip_mode_info.skip_mode_flag && !seg_ref_active && is_comp_ref_allowed(bsize)) { const int skip_mode_ctx = av1_get_skip_mode_context(xd); #if CONFIG_ENTROPY_STATS td->counts->skip_mode[skip_mode_ctx][mbmi->skip_mode]++; #endif update_cdf(fc->skip_mode_cdfs[skip_mode_ctx], mbmi->skip_mode, 2); } if (!mbmi->skip_mode && !seg_ref_active) { const int skip_ctx = av1_get_skip_txfm_context(xd); #if CONFIG_ENTROPY_STATS td->counts->skip_txfm[skip_ctx][mbmi->skip_txfm]++; #endif update_cdf(fc->skip_txfm_cdfs[skip_ctx], mbmi->skip_txfm, 2); } #if CONFIG_ENTROPY_STATS // delta quant applies to both intra and inter const int super_block_upper_left = ((xd->mi_row & (cm->seq_params->mib_size - 1)) == 0) && ((xd->mi_col & (cm->seq_params->mib_size - 1)) == 0); const DeltaQInfo *const delta_q_info = &cm->delta_q_info; if (delta_q_info->delta_q_present_flag && (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && super_block_upper_left) { const int dq = (mbmi->current_qindex - xd->current_base_qindex) / delta_q_info->delta_q_res; const int absdq = abs(dq); for (int i = 0; i < AOMMIN(absdq, DELTA_Q_SMALL); ++i) { td->counts->delta_q[i][1]++; } if (absdq < DELTA_Q_SMALL) td->counts->delta_q[absdq][0]++; if (delta_q_info->delta_lf_present_flag) { if (delta_q_info->delta_lf_multi) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { const int delta_lf = (mbmi->delta_lf[lf_id] - xd->delta_lf[lf_id]) / delta_q_info->delta_lf_res; const int abs_delta_lf = abs(delta_lf); for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { td->counts->delta_lf_multi[lf_id][i][1]++; } if (abs_delta_lf < DELTA_LF_SMALL) td->counts->delta_lf_multi[lf_id][abs_delta_lf][0]++; } } else { const int delta_lf = (mbmi->delta_lf_from_base - xd->delta_lf_from_base) / delta_q_info->delta_lf_res; const int abs_delta_lf = abs(delta_lf); for (int i = 0; i < AOMMIN(abs_delta_lf, DELTA_LF_SMALL); ++i) { td->counts->delta_lf[i][1]++; } if (abs_delta_lf < DELTA_LF_SMALL) td->counts->delta_lf[abs_delta_lf][0]++; } } } #endif if (!is_inter_block(mbmi)) { av1_sum_intra_stats(cm, td->counts, xd, mbmi, xd->above_mbmi, xd->left_mbmi, frame_is_intra_only(cm)); } if (av1_allow_intrabc(cm)) { const int is_intrabc = is_intrabc_block(mbmi); update_cdf(fc->intrabc_cdf, is_intrabc, 2); #if CONFIG_ENTROPY_STATS ++td->counts->intrabc[is_intrabc]; #endif // CONFIG_ENTROPY_STATS if (is_intrabc) { const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); const int_mv dv_ref = mbmi_ext->ref_mv_stack[ref_frame_type][0].this_mv; av1_update_mv_stats(&mbmi->mv[0].as_mv, &dv_ref.as_mv, &fc->ndvc, MV_SUBPEL_NONE); } } if (frame_is_intra_only(cm) || mbmi->skip_mode) return; FRAME_COUNTS *const counts = td->counts; const int inter_block = is_inter_block(mbmi); if (!seg_ref_active) { #if CONFIG_ENTROPY_STATS counts->intra_inter[av1_get_intra_inter_context(xd)][inter_block]++; #endif update_cdf(fc->intra_inter_cdf[av1_get_intra_inter_context(xd)], inter_block, 2); // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (inter_block) { const MV_REFERENCE_FRAME ref0 = mbmi->ref_frame[0]; const MV_REFERENCE_FRAME ref1 = mbmi->ref_frame[1]; if (current_frame->reference_mode == REFERENCE_MODE_SELECT) { if (is_comp_ref_allowed(bsize)) { #if CONFIG_ENTROPY_STATS counts->comp_inter[av1_get_reference_mode_context(xd)] [has_second_ref(mbmi)]++; #endif // CONFIG_ENTROPY_STATS update_cdf(av1_get_reference_mode_cdf(xd), has_second_ref(mbmi), 2); } } if (has_second_ref(mbmi)) { const COMP_REFERENCE_TYPE comp_ref_type = has_uni_comp_refs(mbmi) ? UNIDIR_COMP_REFERENCE : BIDIR_COMP_REFERENCE; update_cdf(av1_get_comp_reference_type_cdf(xd), comp_ref_type, COMP_REFERENCE_TYPES); #if CONFIG_ENTROPY_STATS counts->comp_ref_type[av1_get_comp_reference_type_context(xd)] [comp_ref_type]++; #endif // CONFIG_ENTROPY_STATS if (comp_ref_type == UNIDIR_COMP_REFERENCE) { const int bit = (ref0 == BWDREF_FRAME); update_cdf(av1_get_pred_cdf_uni_comp_ref_p(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts ->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p(xd)][0][bit]++; #endif // CONFIG_ENTROPY_STATS if (!bit) { const int bit1 = (ref1 == LAST3_FRAME || ref1 == GOLDEN_FRAME); update_cdf(av1_get_pred_cdf_uni_comp_ref_p1(xd), bit1, 2); #if CONFIG_ENTROPY_STATS counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p1(xd)][1] [bit1]++; #endif // CONFIG_ENTROPY_STATS if (bit1) { update_cdf(av1_get_pred_cdf_uni_comp_ref_p2(xd), ref1 == GOLDEN_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->uni_comp_ref[av1_get_pred_context_uni_comp_ref_p2(xd)][2] [ref1 == GOLDEN_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } else { const int bit = (ref0 == GOLDEN_FRAME || ref0 == LAST3_FRAME); update_cdf(av1_get_pred_cdf_comp_ref_p(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p(xd)][0][bit]++; #endif // CONFIG_ENTROPY_STATS if (!bit) { update_cdf(av1_get_pred_cdf_comp_ref_p1(xd), ref0 == LAST2_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p1(xd)][1] [ref0 == LAST2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } else { update_cdf(av1_get_pred_cdf_comp_ref_p2(xd), ref0 == GOLDEN_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->comp_ref[av1_get_pred_context_comp_ref_p2(xd)][2] [ref0 == GOLDEN_FRAME]++; #endif // CONFIG_ENTROPY_STATS } update_cdf(av1_get_pred_cdf_comp_bwdref_p(xd), ref1 == ALTREF_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p(xd)][0] [ref1 == ALTREF_FRAME]++; #endif // CONFIG_ENTROPY_STATS if (ref1 != ALTREF_FRAME) { update_cdf(av1_get_pred_cdf_comp_bwdref_p1(xd), ref1 == ALTREF2_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->comp_bwdref[av1_get_pred_context_comp_bwdref_p1(xd)][1] [ref1 == ALTREF2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } else { const int bit = (ref0 >= BWDREF_FRAME); update_cdf(av1_get_pred_cdf_single_ref_p1(xd), bit, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p1(xd)][0][bit]++; #endif // CONFIG_ENTROPY_STATS if (bit) { assert(ref0 <= ALTREF_FRAME); update_cdf(av1_get_pred_cdf_single_ref_p2(xd), ref0 == ALTREF_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p2(xd)][1] [ref0 == ALTREF_FRAME]++; #endif // CONFIG_ENTROPY_STATS if (ref0 != ALTREF_FRAME) { update_cdf(av1_get_pred_cdf_single_ref_p6(xd), ref0 == ALTREF2_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p6(xd)][5] [ref0 == ALTREF2_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } else { const int bit1 = !(ref0 == LAST2_FRAME || ref0 == LAST_FRAME); update_cdf(av1_get_pred_cdf_single_ref_p3(xd), bit1, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p3(xd)][2][bit1]++; #endif // CONFIG_ENTROPY_STATS if (!bit1) { update_cdf(av1_get_pred_cdf_single_ref_p4(xd), ref0 != LAST_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p4(xd)][3] [ref0 != LAST_FRAME]++; #endif // CONFIG_ENTROPY_STATS } else { update_cdf(av1_get_pred_cdf_single_ref_p5(xd), ref0 != LAST3_FRAME, 2); #if CONFIG_ENTROPY_STATS counts->single_ref[av1_get_pred_context_single_ref_p5(xd)][4] [ref0 != LAST3_FRAME]++; #endif // CONFIG_ENTROPY_STATS } } } if (cm->seq_params->enable_interintra_compound && is_interintra_allowed(mbmi)) { const int bsize_group = size_group_lookup[bsize]; if (mbmi->ref_frame[1] == INTRA_FRAME) { #if CONFIG_ENTROPY_STATS counts->interintra[bsize_group][1]++; #endif update_cdf(fc->interintra_cdf[bsize_group], 1, 2); #if CONFIG_ENTROPY_STATS counts->interintra_mode[bsize_group][mbmi->interintra_mode]++; #endif update_cdf(fc->interintra_mode_cdf[bsize_group], mbmi->interintra_mode, INTERINTRA_MODES); if (av1_is_wedge_used(bsize)) { #if CONFIG_ENTROPY_STATS counts->wedge_interintra[bsize][mbmi->use_wedge_interintra]++; #endif update_cdf(fc->wedge_interintra_cdf[bsize], mbmi->use_wedge_interintra, 2); if (mbmi->use_wedge_interintra) { #if CONFIG_ENTROPY_STATS counts->wedge_idx[bsize][mbmi->interintra_wedge_index]++; #endif update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interintra_wedge_index, 16); } } } else { #if CONFIG_ENTROPY_STATS counts->interintra[bsize_group][0]++; #endif update_cdf(fc->interintra_cdf[bsize_group], 0, 2); } } const MOTION_MODE motion_allowed = cm->features.switchable_motion_mode ? motion_mode_allowed(xd->global_motion, xd, mbmi, cm->features.allow_warped_motion) : SIMPLE_TRANSLATION; if (mbmi->ref_frame[1] != INTRA_FRAME) { if (motion_allowed == WARPED_CAUSAL) { #if CONFIG_ENTROPY_STATS counts->motion_mode[bsize][mbmi->motion_mode]++; #endif update_cdf(fc->motion_mode_cdf[bsize], mbmi->motion_mode, MOTION_MODES); } else if (motion_allowed == OBMC_CAUSAL) { #if CONFIG_ENTROPY_STATS counts->obmc[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; #endif update_cdf(fc->obmc_cdf[bsize], mbmi->motion_mode == OBMC_CAUSAL, 2); } } if (has_second_ref(mbmi)) { assert(current_frame->reference_mode != SINGLE_REFERENCE && is_inter_compound_mode(mbmi->mode) && mbmi->motion_mode == SIMPLE_TRANSLATION); const int masked_compound_used = is_any_masked_compound_used(bsize) && cm->seq_params->enable_masked_compound; if (masked_compound_used) { const int comp_group_idx_ctx = get_comp_group_idx_context(xd); #if CONFIG_ENTROPY_STATS ++counts->comp_group_idx[comp_group_idx_ctx][mbmi->comp_group_idx]; #endif update_cdf(fc->comp_group_idx_cdf[comp_group_idx_ctx], mbmi->comp_group_idx, 2); } if (mbmi->comp_group_idx == 0) { const int comp_index_ctx = get_comp_index_context(cm, xd); #if CONFIG_ENTROPY_STATS ++counts->compound_index[comp_index_ctx][mbmi->compound_idx]; #endif update_cdf(fc->compound_index_cdf[comp_index_ctx], mbmi->compound_idx, 2); } else { assert(masked_compound_used); if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { #if CONFIG_ENTROPY_STATS ++counts->compound_type[bsize][mbmi->interinter_comp.type - COMPOUND_WEDGE]; #endif update_cdf(fc->compound_type_cdf[bsize], mbmi->interinter_comp.type - COMPOUND_WEDGE, MASKED_COMPOUND_TYPES); } } } if (mbmi->interinter_comp.type == COMPOUND_WEDGE) { if (is_interinter_compound_used(COMPOUND_WEDGE, bsize)) { #if CONFIG_ENTROPY_STATS counts->wedge_idx[bsize][mbmi->interinter_comp.wedge_index]++; #endif update_cdf(fc->wedge_idx_cdf[bsize], mbmi->interinter_comp.wedge_index, 16); } } } } if (inter_block && cm->features.interp_filter == SWITCHABLE && av1_is_interp_needed(xd)) { update_filter_type_cdf(xd, mbmi, cm->seq_params->enable_dual_filter); } if (inter_block && !segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP)) { const PREDICTION_MODE mode = mbmi->mode; const int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); if (has_second_ref(mbmi)) { #if CONFIG_ENTROPY_STATS ++counts->inter_compound_mode[mode_ctx][INTER_COMPOUND_OFFSET(mode)]; #endif update_cdf(fc->inter_compound_mode_cdf[mode_ctx], INTER_COMPOUND_OFFSET(mode), INTER_COMPOUND_MODES); } else { av1_update_inter_mode_stats(fc, counts, mode, mode_ctx); } const int new_mv = mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV; if (new_mv) { const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); for (int idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { const uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx, 2); #if CONFIG_ENTROPY_STATS ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx]; #endif if (mbmi->ref_mv_idx == idx) break; } } } if (have_nearmv_in_inter_mode(mbmi->mode)) { const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); for (int idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { const uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); update_cdf(fc->drl_cdf[drl_ctx], mbmi->ref_mv_idx != idx - 1, 2); #if CONFIG_ENTROPY_STATS ++counts->drl_mode[drl_ctx][mbmi->ref_mv_idx != idx - 1]; #endif if (mbmi->ref_mv_idx == idx - 1) break; } } } if (have_newmv_in_inter_mode(mbmi->mode)) { const int allow_hp = cm->features.cur_frame_force_integer_mv ? MV_SUBPEL_NONE : cm->features.allow_high_precision_mv; if (new_mv) { for (int ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) { const int_mv ref_mv = av1_get_ref_mv(x, ref); av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, allow_hp); } } else if (mbmi->mode == NEAREST_NEWMV || mbmi->mode == NEAR_NEWMV) { const int ref = 1; const int_mv ref_mv = av1_get_ref_mv(x, ref); av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, allow_hp); } else if (mbmi->mode == NEW_NEARESTMV || mbmi->mode == NEW_NEARMV) { const int ref = 0; const int_mv ref_mv = av1_get_ref_mv(x, ref); av1_update_mv_stats(&mbmi->mv[ref].as_mv, &ref_mv.as_mv, &fc->nmvc, allow_hp); } } } } /*!\brief Reconstructs an individual coding block * * \ingroup partition_search * Reconstructs an individual coding block by applying the chosen modes stored * in ctx, also updates mode counts and entropy models. * * \param[in] cpi Top-level encoder structure * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during encoding * \param[in] td Pointer to thread data * \param[in] tp Pointer to the starting token * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of * MI_SIZE * \param[in] dry_run A code indicating whether it is part of the final * pass for reconstructing the superblock * \param[in] bsize Current block size * \param[in] partition Partition mode of the parent block * \param[in] ctx Pointer to structure holding coding contexts and the * chosen modes for the current block * \param[in] rate Pointer to the total rate for the current block * * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) * will be updated in the pixel buffers in td->mb.e_mbd. Also, the chosen modes * will be stored in the MB_MODE_INFO buffer td->mb.e_mbd.mi[0]. */ static void encode_b(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx, int *rate) { const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; const int subsampling_x = cm->seq_params->subsampling_x; const int subsampling_y = cm->seq_params->subsampling_y; av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); const int origin_mult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); MB_MODE_INFO *mbmi = xd->mi[0]; mbmi->partition = partition; av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); if (!dry_run) { set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], x->cb_offset[PLANE_TYPE_UV]); assert(x->cb_offset[PLANE_TYPE_Y] < (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); assert(x->cb_offset[PLANE_TYPE_UV] < ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> (subsampling_x + subsampling_y))); } encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); if (!dry_run) { update_cb_offsets(x, bsize, subsampling_x, subsampling_y); if (bsize == cpi->common.seq_params->sb_size && mbmi->skip_txfm == 1 && cm->delta_q_info.delta_lf_present_flag) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) mbmi->delta_lf[lf_id] = xd->delta_lf[lf_id]; mbmi->delta_lf_from_base = xd->delta_lf_from_base; } if (has_second_ref(mbmi)) { if (mbmi->compound_idx == 0 || mbmi->interinter_comp.type == COMPOUND_AVERAGE) mbmi->comp_group_idx = 0; else mbmi->comp_group_idx = 1; } // delta quant applies to both intra and inter const int super_block_upper_left = ((mi_row & (cm->seq_params->mib_size - 1)) == 0) && ((mi_col & (cm->seq_params->mib_size - 1)) == 0); const DeltaQInfo *const delta_q_info = &cm->delta_q_info; if (delta_q_info->delta_q_present_flag && (bsize != cm->seq_params->sb_size || !mbmi->skip_txfm) && super_block_upper_left) { xd->current_base_qindex = mbmi->current_qindex; if (delta_q_info->delta_lf_present_flag) { if (delta_q_info->delta_lf_multi) { const int frame_lf_count = av1_num_planes(cm) > 1 ? FRAME_LF_COUNT : FRAME_LF_COUNT - 2; for (int lf_id = 0; lf_id < frame_lf_count; ++lf_id) { xd->delta_lf[lf_id] = mbmi->delta_lf[lf_id]; } } else { xd->delta_lf_from_base = mbmi->delta_lf_from_base; } } } RD_COUNTS *rdc = &td->rd_counts; if (mbmi->skip_mode) { assert(!frame_is_intra_only(cm)); rdc->skip_mode_used_flag = 1; if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { assert(has_second_ref(mbmi)); rdc->compound_ref_used_flag = 1; } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); } else { const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (is_inter_block(mbmi)) { av1_collect_neighbors_ref_counts(xd); if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) { if (has_second_ref(mbmi)) { // This flag is also updated for 4x4 blocks rdc->compound_ref_used_flag = 1; } } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); } } } if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); // Gather obmc and warped motion count to update the probability. if ((cpi->sf.inter_sf.prune_obmc_prob_thresh > 0 && cpi->sf.inter_sf.prune_obmc_prob_thresh < INT_MAX) || (cm->features.allow_warped_motion && cpi->sf.inter_sf.prune_warped_prob_thresh > 0)) { const int inter_block = is_inter_block(mbmi); const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active && inter_block) { const MOTION_MODE motion_allowed = cm->features.switchable_motion_mode ? motion_mode_allowed(xd->global_motion, xd, mbmi, cm->features.allow_warped_motion) : SIMPLE_TRANSLATION; if (mbmi->ref_frame[1] != INTRA_FRAME) { if (motion_allowed >= OBMC_CAUSAL) { td->rd_counts.obmc_used[bsize][mbmi->motion_mode == OBMC_CAUSAL]++; } if (motion_allowed == WARPED_CAUSAL) { td->rd_counts.warped_used[mbmi->motion_mode == WARPED_CAUSAL]++; } } } } } // TODO(Ravi/Remya): Move this copy function to a better logical place // This function will copy the best mode information from block // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during // bitstream preparation. av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, av1_ref_frame_type(xd->mi[0]->ref_frame)); x->rdmult = origin_mult; } /*!\brief Reconstructs a partition (may contain multiple coding blocks) * * \ingroup partition_search * Reconstructs a sub-partition of the superblock by applying the chosen modes * and partition trees stored in pc_tree. * * \param[in] cpi Top-level encoder structure * \param[in] td Pointer to thread data * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during encoding * \param[in] tp Pointer to the starting token * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of * MI_SIZE * \param[in] dry_run A code indicating whether it is part of the final * pass for reconstructing the superblock * \param[in] bsize Current block size * \param[in] pc_tree Pointer to the PC_TREE node storing the picked * partitions and mode info for the current block * \param[in] rate Pointer to the total rate for the current block * * \remark Nothing is returned. Instead, reconstructions (w/o in-loop filters) * will be updated in the pixel buffers in td->mb.e_mbd. */ static void encode_sb(const AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PC_TREE *pc_tree, int *rate) { assert(bsize < BLOCK_SIZES_ALL); const AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; assert(bsize < BLOCK_SIZES_ALL); const int hbs = mi_size_wide[bsize] / 2; const int is_partition_root = bsize >= BLOCK_8X8; const int ctx = is_partition_root ? partition_plane_context(xd, mi_row, mi_col, bsize) : -1; const PARTITION_TYPE partition = pc_tree->partitioning; const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); #if !CONFIG_REALTIME_ONLY int quarter_step = mi_size_wide[bsize] / 4; int i; BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT); #endif if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; if (subsize == BLOCK_INVALID) return; if (!dry_run && ctx >= 0) { const int has_rows = (mi_row + hbs) < mi_params->mi_rows; const int has_cols = (mi_col + hbs) < mi_params->mi_cols; if (has_rows && has_cols) { #if CONFIG_ENTROPY_STATS td->counts->partition[ctx][partition]++; #endif if (tile_data->allow_update_cdf) { FRAME_CONTEXT *fc = xd->tile_ctx; update_cdf(fc->partition_cdf[ctx], partition, partition_cdf_length(bsize)); } } } switch (partition) { case PARTITION_NONE: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, pc_tree->none, rate); break; case PARTITION_VERT: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, pc_tree->vertical[0], rate); if (mi_col + hbs < mi_params->mi_cols) { encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, partition, pc_tree->vertical[1], rate); } break; case PARTITION_HORZ: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, pc_tree->horizontal[0], rate); if (mi_row + hbs < mi_params->mi_rows) { encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, partition, pc_tree->horizontal[1], rate); } break; case PARTITION_SPLIT: encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, dry_run, subsize, pc_tree->split[0], rate); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col + hbs, dry_run, subsize, pc_tree->split[1], rate); encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col, dry_run, subsize, pc_tree->split[2], rate); encode_sb(cpi, td, tile_data, tp, mi_row + hbs, mi_col + hbs, dry_run, subsize, pc_tree->split[3], rate); break; #if !CONFIG_REALTIME_ONLY case PARTITION_HORZ_A: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, partition, pc_tree->horizontala[0], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, pc_tree->horizontala[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, subsize, partition, pc_tree->horizontala[2], rate); break; case PARTITION_HORZ_B: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, pc_tree->horizontalb[0], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, pc_tree->horizontalb[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, pc_tree->horizontalb[2], rate); break; case PARTITION_VERT_A: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, bsize2, partition, pc_tree->verticala[0], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col, dry_run, bsize2, partition, pc_tree->verticala[1], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, subsize, partition, pc_tree->verticala[2], rate); break; case PARTITION_VERT_B: encode_b(cpi, tile_data, td, tp, mi_row, mi_col, dry_run, subsize, partition, pc_tree->verticalb[0], rate); encode_b(cpi, tile_data, td, tp, mi_row, mi_col + hbs, dry_run, bsize2, partition, pc_tree->verticalb[1], rate); encode_b(cpi, tile_data, td, tp, mi_row + hbs, mi_col + hbs, dry_run, bsize2, partition, pc_tree->verticalb[2], rate); break; case PARTITION_HORZ_4: for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { int this_mi_row = mi_row + i * quarter_step; if (i > 0 && this_mi_row >= mi_params->mi_rows) break; encode_b(cpi, tile_data, td, tp, this_mi_row, mi_col, dry_run, subsize, partition, pc_tree->horizontal4[i], rate); } break; case PARTITION_VERT_4: for (i = 0; i < SUB_PARTITIONS_PART4; ++i) { int this_mi_col = mi_col + i * quarter_step; if (i > 0 && this_mi_col >= mi_params->mi_cols) break; encode_b(cpi, tile_data, td, tp, mi_row, this_mi_col, dry_run, subsize, partition, pc_tree->vertical4[i], rate); } break; #endif default: assert(0 && "Invalid partition type."); break; } update_ext_partition_context(xd, mi_row, mi_col, subsize, bsize, partition); } static AOM_INLINE int is_adjust_var_based_part_enabled( AV1_COMMON *const cm, const PARTITION_SPEED_FEATURES *const part_sf, BLOCK_SIZE bsize) { if (part_sf->partition_search_type != VAR_BASED_PARTITION) return 0; if (part_sf->adjust_var_based_rd_partitioning == 0 || part_sf->adjust_var_based_rd_partitioning > 2) return 0; if (bsize <= BLOCK_32X32) return 1; if (part_sf->adjust_var_based_rd_partitioning == 2) { const int is_larger_qindex = cm->quant_params.base_qindex > 190; const int is_360p_or_larger = AOMMIN(cm->width, cm->height) >= 360; return is_360p_or_larger && is_larger_qindex && bsize == BLOCK_64X64; } return 0; } /*!\brief AV1 block partition search (partition estimation and partial search). * * \ingroup partition_search * Encode the block by applying pre-calculated partition patterns that are * represented by coding block sizes stored in the mbmi array. Minor partition * adjustments are tested and applied if they lead to lower rd costs. The * partition types are limited to a basic set: none, horz, vert, and split. * * \param[in] cpi Top-level encoder structure * \param[in] td Pointer to thread data * \param[in] tile_data Pointer to struct holding adaptive data/contexts/models for the tile during encoding * \param[in] mib Array representing MB_MODE_INFO pointers for mi blocks starting from the first pixel of the current block * \param[in] tp Pointer to the starting token * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of MI_SIZE * \param[in] bsize Current block size * \param[in] rate Pointer to the final rate for encoding the current block * \param[in] dist Pointer to the final distortion of the current block * \param[in] do_recon Whether the reconstruction function needs to be run, either for finalizing a superblock or providing reference for future sub-partitions * \param[in] pc_tree Pointer to the PC_TREE node holding the picked partitions and mode info for the current block * * \remark Nothing is returned. The pc_tree struct is modified to store the * picked partition and modes. The rate and dist are also updated with those * corresponding to the best partition found. */ void av1_rd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, int *rate, int64_t *dist, int do_recon, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int num_planes = av1_num_planes(cm); TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const ModeCosts *mode_costs = &x->mode_costs; const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; const int pl = (bsize >= BLOCK_8X8) ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; const PARTITION_TYPE partition = (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) : PARTITION_NONE; const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_STATS last_part_rdc, none_rdc, chosen_rdc, invalid_rdc; BLOCK_SIZE bs_type = mib[0]->bsize; int use_partition_none = 0; x->try_merge_partition = 0; if (pc_tree->none == NULL) { pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } PICK_MODE_CONTEXT *ctx_none = pc_tree->none; if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; assert(mi_size_wide[bsize] == mi_size_high[bsize]); // In rt mode, currently the min partition size is BLOCK_8X8. assert(bsize >= cpi->sf.part_sf.default_min_partition_size); av1_invalid_rd_stats(&last_part_rdc); av1_invalid_rd_stats(&none_rdc); av1_invalid_rd_stats(&chosen_rdc); av1_invalid_rd_stats(&invalid_rdc); pc_tree->partitioning = partition; xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) { av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); x->mb_energy = av1_log_block_var(cpi, x, bsize); } // Save rdmult before it might be changed, so it can be restored later. const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); if (partition != PARTITION_NONE && is_adjust_var_based_part_enabled(cm, &cpi->sf.part_sf, bsize) && (mi_row + hbs < mi_params->mi_rows && mi_col + hbs < mi_params->mi_cols)) { assert(bsize > cpi->sf.part_sf.default_min_partition_size); mib[0]->bsize = bsize; pc_tree->partitioning = PARTITION_NONE; x->try_merge_partition = 1; pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &none_rdc, PARTITION_NONE, bsize, ctx_none, invalid_rdc); if (none_rdc.rate < INT_MAX) { none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); } // Try to skip split partition evaluation based on none partition // characteristics. if (none_rdc.rate < INT_MAX && none_rdc.skip_txfm == 1) { use_partition_none = 1; } av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); mib[0]->bsize = bs_type; pc_tree->partitioning = partition; } for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); pc_tree->split[i]->index = i; } switch (partition) { case PARTITION_NONE: pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_NONE, bsize, ctx_none, invalid_rdc); break; case PARTITION_HORZ: if (use_partition_none) { av1_invalid_rd_stats(&last_part_rdc); break; } for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { pc_tree->horizontal[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->horizontal[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_HORZ, subsize, pc_tree->horizontal[0], invalid_rdc); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_row + hbs < mi_params->mi_rows) { RD_STATS tmp_rdc; const PICK_MODE_CONTEXT *const ctx_h = pc_tree->horizontal[0]; av1_init_rd_stats(&tmp_rdc); av1_update_state(cpi, td, ctx_h, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); pick_sb_modes(cpi, tile_data, x, mi_row + hbs, mi_col, &tmp_rdc, PARTITION_HORZ, subsize, pc_tree->horizontal[1], invalid_rdc); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_VERT: if (use_partition_none) { av1_invalid_rd_stats(&last_part_rdc); break; } for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { pc_tree->vertical[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->vertical[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &last_part_rdc, PARTITION_VERT, subsize, pc_tree->vertical[0], invalid_rdc); if (last_part_rdc.rate != INT_MAX && bsize >= BLOCK_8X8 && mi_col + hbs < mi_params->mi_cols) { RD_STATS tmp_rdc; const PICK_MODE_CONTEXT *const ctx_v = pc_tree->vertical[0]; av1_init_rd_stats(&tmp_rdc); av1_update_state(cpi, td, ctx_v, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); pick_sb_modes(cpi, tile_data, x, mi_row, mi_col + hbs, &tmp_rdc, PARTITION_VERT, subsize, pc_tree->vertical[bsize > BLOCK_8X8], invalid_rdc); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; last_part_rdc.rdcost += tmp_rdc.rdcost; } break; case PARTITION_SPLIT: if (use_partition_none) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate = 0; last_part_rdc.dist = 0; last_part_rdc.rdcost = 0; for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; int jj = i >> 1, ii = i & 0x01; RD_STATS tmp_rdc; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; av1_init_rd_stats(&tmp_rdc); av1_rd_use_partition( cpi, td, tile_data, mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, mi_row + y_idx, mi_col + x_idx, subsize, &tmp_rdc.rate, &tmp_rdc.dist, i != (SUB_PARTITIONS_SPLIT - 1), pc_tree->split[i]); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&last_part_rdc); break; } last_part_rdc.rate += tmp_rdc.rate; last_part_rdc.dist += tmp_rdc.dist; } break; case PARTITION_VERT_A: case PARTITION_VERT_B: case PARTITION_HORZ_A: case PARTITION_HORZ_B: case PARTITION_HORZ_4: case PARTITION_VERT_4: assert(0 && "Cannot handle extended partition types"); default: assert(0); break; } if (last_part_rdc.rate < INT_MAX) { last_part_rdc.rate += mode_costs->partition_cost[pl][partition]; last_part_rdc.rdcost = RDCOST(x->rdmult, last_part_rdc.rate, last_part_rdc.dist); } if ((cpi->sf.part_sf.partition_search_type == VAR_BASED_PARTITION && cpi->sf.part_sf.adjust_var_based_rd_partitioning > 2) && partition != PARTITION_SPLIT && bsize > BLOCK_8X8 && (mi_row + bs < mi_params->mi_rows || mi_row + hbs == mi_params->mi_rows) && (mi_col + bs < mi_params->mi_cols || mi_col + hbs == mi_params->mi_cols)) { BLOCK_SIZE split_subsize = get_partition_subsize(bsize, PARTITION_SPLIT); chosen_rdc.rate = 0; chosen_rdc.dist = 0; av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); pc_tree->partitioning = PARTITION_SPLIT; // Split partition. for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; RD_STATS tmp_rdc; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); pc_tree->split[i]->partitioning = PARTITION_NONE; if (pc_tree->split[i]->none == NULL) pc_tree->split[i]->none = av1_alloc_pmc(cpi, split_subsize, &td->shared_coeff_buf); if (!pc_tree->split[i]->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); pick_sb_modes(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &tmp_rdc, PARTITION_SPLIT, split_subsize, pc_tree->split[i]->none, invalid_rdc); av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (tmp_rdc.rate == INT_MAX || tmp_rdc.dist == INT64_MAX) { av1_invalid_rd_stats(&chosen_rdc); break; } chosen_rdc.rate += tmp_rdc.rate; chosen_rdc.dist += tmp_rdc.dist; if (i != SUB_PARTITIONS_SPLIT - 1) encode_sb(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, OUTPUT_ENABLED, split_subsize, pc_tree->split[i], NULL); chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; } if (chosen_rdc.rate < INT_MAX) { chosen_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; chosen_rdc.rdcost = RDCOST(x->rdmult, chosen_rdc.rate, chosen_rdc.dist); } } // If last_part is better set the partitioning to that. if (last_part_rdc.rdcost < chosen_rdc.rdcost) { mib[0]->bsize = bs_type; if (bsize >= BLOCK_8X8) pc_tree->partitioning = partition; chosen_rdc = last_part_rdc; } // If none was better set the partitioning to that. if (none_rdc.rdcost < INT64_MAX && none_rdc.rdcost - (none_rdc.rdcost >> 9) < chosen_rdc.rdcost) { mib[0]->bsize = bsize; if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; chosen_rdc = none_rdc; } av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); // We must have chosen a partitioning and encoding or we'll fail later on. // No other opportunities for success. if (bsize == cm->seq_params->sb_size) assert(chosen_rdc.rate < INT_MAX && chosen_rdc.dist < INT64_MAX); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, encode_sb_time); #endif if (do_recon) { if (bsize == cm->seq_params->sb_size) { // NOTE: To get estimate for rate due to the tokens, use: // int rate_coeffs = 0; // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, // bsize, pc_tree, &rate_coeffs); set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, encode_sb_time); #endif *rate = chosen_rdc.rate; *dist = chosen_rdc.dist; x->rdmult = orig_rdmult; } static void encode_b_nonrd(const AV1_COMP *const cpi, TileDataEnc *tile_data, ThreadData *td, TokenExtra **tp, int mi_row, int mi_col, RUN_TYPE dry_run, BLOCK_SIZE bsize, PARTITION_TYPE partition, PICK_MODE_CONTEXT *const ctx, int *rate) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing((AV1_COMP *)cpi, encode_b_nonrd_time); #endif const AV1_COMMON *const cm = &cpi->common; TileInfo *const tile = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; av1_set_offsets_without_segment_id(cpi, tile, x, mi_row, mi_col, bsize); const int origin_mult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); MB_MODE_INFO *mbmi = xd->mi[0]; mbmi->partition = partition; av1_update_state(cpi, td, ctx, mi_row, mi_col, bsize, dry_run); const int subsampling_x = cpi->common.seq_params->subsampling_x; const int subsampling_y = cpi->common.seq_params->subsampling_y; if (!dry_run) { set_cb_offsets(x->mbmi_ext_frame->cb_offset, x->cb_offset[PLANE_TYPE_Y], x->cb_offset[PLANE_TYPE_UV]); assert(x->cb_offset[PLANE_TYPE_Y] < (1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size])); assert(x->cb_offset[PLANE_TYPE_UV] < ((1 << num_pels_log2_lookup[cpi->common.seq_params->sb_size]) >> (subsampling_x + subsampling_y))); } encode_superblock(cpi, tile_data, td, tp, dry_run, bsize, rate); if (!dry_run) { update_cb_offsets(x, bsize, subsampling_x, subsampling_y); if (has_second_ref(mbmi)) { if (mbmi->compound_idx == 0 || mbmi->interinter_comp.type == COMPOUND_AVERAGE) mbmi->comp_group_idx = 0; else mbmi->comp_group_idx = 1; mbmi->compound_idx = 1; } RD_COUNTS *const rdc = &td->rd_counts; if (mbmi->skip_mode) { assert(!frame_is_intra_only(cm)); rdc->skip_mode_used_flag = 1; if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && has_second_ref(mbmi)) { rdc->compound_ref_used_flag = 1; } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); } else { const int seg_ref_active = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_REF_FRAME); if (!seg_ref_active) { // If the segment reference feature is enabled we have only a single // reference frame allowed for the segment so exclude it from // the reference frame counts used to work out probabilities. if (is_inter_block(mbmi)) { av1_collect_neighbors_ref_counts(xd); if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT && has_second_ref(mbmi)) { // This flag is also updated for 4x4 blocks rdc->compound_ref_used_flag = 1; } set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); } } } if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY && (mbmi->mode == NEWMV || mbmi->mode < INTRA_MODE_END)) { int32_t blocks = mi_size_high[bsize] * mi_size_wide[bsize]; rdc->newmv_or_intra_blocks += blocks; } if (tile_data->allow_update_cdf) update_stats(&cpi->common, td); } if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ || cpi->active_map.enabled) && mbmi->skip_txfm && !cpi->rc.rtc_external_ratectrl && cm->seg.enabled) av1_cyclic_reset_segment_skip(cpi, x, mi_row, mi_col, bsize, dry_run); // TODO(Ravi/Remya): Move this copy function to a better logical place // This function will copy the best mode information from block // level (x->mbmi_ext) to frame level (cpi->mbmi_ext_info.frame_base). This // frame level buffer (cpi->mbmi_ext_info.frame_base) will be used during // bitstream preparation. av1_copy_mbmi_ext_to_mbmi_ext_frame(x->mbmi_ext_frame, &x->mbmi_ext, av1_ref_frame_type(xd->mi[0]->ref_frame)); x->rdmult = origin_mult; #if CONFIG_COLLECT_COMPONENT_TIMING end_timing((AV1_COMP *)cpi, encode_b_nonrd_time); #endif } static int get_force_zeromv_skip_flag_for_blk(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) { // Force zero MV skip based on SB level decision if (x->force_zeromv_skip_for_sb < 2) return x->force_zeromv_skip_for_sb; // For blocks of size equal to superblock size, the decision would have been // already done at superblock level. Hence zeromv-skip decision is skipped. const AV1_COMMON *const cm = &cpi->common; if (bsize == cm->seq_params->sb_size) return 0; const int num_planes = av1_num_planes(cm); const MACROBLOCKD *const xd = &x->e_mbd; const unsigned int thresh_exit_part_y = cpi->zeromv_skip_thresh_exit_part[bsize]; const unsigned int thresh_exit_part_uv = CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y); const unsigned int thresh_exit_part[MAX_MB_PLANE] = { thresh_exit_part_y, thresh_exit_part_uv, thresh_exit_part_uv }; const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); const struct scale_factors *const sf = get_ref_scale_factors_const(cm, LAST_FRAME); struct buf_2d yv12_mb[MAX_MB_PLANE]; av1_setup_pred_block(xd, yv12_mb, yv12, sf, sf, num_planes); for (int plane = 0; plane < num_planes; ++plane) { const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, yv12_mb[plane].buf, yv12_mb[plane].stride); assert(plane < MAX_MB_PLANE); if (plane_sad >= thresh_exit_part[plane]) return 0; } return 1; } /*!\brief Top level function to pick block mode for non-RD optimized case * * \ingroup partition_search * \callgraph * \callergraph * Searches prediction modes, transform, and coefficient coding modes for an * individual coding block. This function is the top-level function that is * used for non-RD optimized mode search (controlled by * \c cpi->sf.rt_sf.use_nonrd_pick_mode). Depending on frame type it calls * inter/skip/hybrid-intra mode search functions * * \param[in] cpi Top-level encoder structure * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during * encoding * \param[in] x Pointer to structure holding all the data for * the current macroblock * \param[in] mi_row Row coordinate of the block in a step size of * MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of * MI_SIZE * \param[in] rd_cost Pointer to structure holding rate and distortion * stats for the current block * \param[in] bsize Current block size * \param[in] ctx Pointer to structure holding coding contexts and * chosen modes for the current block * * \remark Nothing is returned. Instead, the chosen modes and contexts necessary * for reconstruction are stored in ctx, the rate-distortion stats are stored in * rd_cost. If no valid mode leading to rd_cost <= best_rd, the status will be * signalled by an INT64_MAX rd_cost->rdcost. */ static void pick_sb_modes_nonrd(AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, int mi_row, int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx) { // For nonrd mode, av1_set_offsets is already called at the superblock level // in encode_nonrd_sb when we determine the partitioning. if (bsize != cpi->common.seq_params->sb_size || cpi->sf.rt_sf.nonrd_check_partition_split == 1) { av1_set_offsets(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); } assert(x->last_set_offsets_loc.mi_row == mi_row && x->last_set_offsets_loc.mi_col == mi_col && x->last_set_offsets_loc.bsize == bsize); AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; struct macroblock_plane *const p = x->plane; struct macroblockd_plane *const pd = xd->plane; const AQ_MODE aq_mode = cpi->oxcf.q_cfg.aq_mode; TxfmSearchInfo *txfm_info = &x->txfm_search_info; int i; const int seg_skip = segfeature_active(&cm->seg, mbmi->segment_id, SEG_LVL_SKIP); // This is only needed for real time/allintra row-mt enabled multi-threaded // encoding with cost update frequency set to COST_UPD_TILE/COST_UPD_OFF. wait_for_top_right_sb(&cpi->mt_info.enc_row_mt, &tile_data->row_mt_sync, &tile_data->tile_info, cm->seq_params->sb_size, cm->seq_params->mib_size_log2, bsize, mi_row, mi_col); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, pick_sb_modes_nonrd_time); #endif // Sets up the tx_type_map buffer in MACROBLOCKD. xd->tx_type_map = txfm_info->tx_type_map_; xd->tx_type_map_stride = mi_size_wide[bsize]; for (i = 0; i < num_planes; ++i) { p[i].coeff = ctx->coeff[i]; p[i].qcoeff = ctx->qcoeff[i]; p[i].dqcoeff = ctx->dqcoeff[i]; p[i].eobs = ctx->eobs[i]; p[i].txb_entropy_ctx = ctx->txb_entropy_ctx[i]; } for (i = 0; i < 2; ++i) pd[i].color_index_map = ctx->color_index_map[i]; if (!seg_skip) { x->force_zeromv_skip_for_blk = get_force_zeromv_skip_flag_for_blk(cpi, x, bsize); // Source variance may be already compute at superblock level, so no need // to recompute, unless bsize < sb_size or source_variance is not yet set. if (!x->force_zeromv_skip_for_blk && (x->source_variance == UINT_MAX || bsize < cm->seq_params->sb_size)) x->source_variance = av1_get_perpixel_variance_facade( cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); } // Save rdmult before it might be changed, so it can be restored later. const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, aq_mode, mbmi); // Set error per bit for current rdmult av1_set_error_per_bit(&x->errorperbit, x->rdmult); // Find best coding mode & reconstruct the MB so it is available // as a predictor for MBs that follow in the SB if (frame_is_intra_only(cm)) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, hybrid_intra_mode_search_time); #endif hybrid_intra_mode_search(cpi, x, rd_cost, bsize, ctx); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, hybrid_intra_mode_search_time); #endif } else { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, nonrd_pick_inter_mode_sb_time); #endif if (seg_skip) { x->force_zeromv_skip_for_blk = 1; // TODO(marpan): Consider adding a function for nonrd: // av1_nonrd_pick_inter_mode_sb_seg_skip(), instead of setting // x->force_zeromv_skip flag and entering av1_nonrd_pick_inter_mode_sb(). } av1_nonrd_pick_inter_mode_sb(cpi, tile_data, x, rd_cost, bsize, ctx); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, nonrd_pick_inter_mode_sb_time); #endif } if (cpi->sf.rt_sf.skip_cdef_sb) { // cdef_strength is initialized to 1 which means skip_cdef, and is updated // here. Check to see is skipping cdef is allowed. // Always allow cdef_skip for seg_skip = 1. const int allow_cdef_skipping = seg_skip || (cpi->rc.frames_since_key > 10 && !cpi->rc.high_source_sad && !(x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] || x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)])); // Find the corresponding 64x64 block. It'll be the 128x128 block if that's // the block size. const int mi_row_sb = mi_row - mi_row % MI_SIZE_64X64; const int mi_col_sb = mi_col - mi_col % MI_SIZE_64X64; MB_MODE_INFO **mi_sb = cm->mi_params.mi_grid_base + get_mi_grid_idx(&cm->mi_params, mi_row_sb, mi_col_sb); // Do not skip if intra or new mv is picked, or color sensitivity is set. // Never skip on slide/scene change. if (cpi->sf.rt_sf.skip_cdef_sb >= 2) { mi_sb[0]->cdef_strength = mi_sb[0]->cdef_strength && (allow_cdef_skipping || x->source_variance == 0); } else { mi_sb[0]->cdef_strength = mi_sb[0]->cdef_strength && allow_cdef_skipping && !(mbmi->mode < INTRA_MODES || mbmi->mode == NEWMV); } // Store in the pickmode context. ctx->mic.cdef_strength = mi_sb[0]->cdef_strength; } x->rdmult = orig_rdmult; ctx->rd_stats.rate = rd_cost->rate; ctx->rd_stats.dist = rd_cost->dist; ctx->rd_stats.rdcost = rd_cost->rdcost; #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, pick_sb_modes_nonrd_time); #endif } static int try_split_partition(AV1_COMP *const cpi, ThreadData *const td, TileDataEnc *const tile_data, TileInfo *const tile_info, TokenExtra **tp, MACROBLOCK *const x, MACROBLOCKD *const xd, const CommonModeInfoParams *const mi_params, const int mi_row, const int mi_col, const BLOCK_SIZE bsize, const int pl, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; const ModeCosts *mode_costs = &x->mode_costs; const int hbs = mi_size_wide[bsize] / 2; if (mi_row + mi_size_high[bsize] >= mi_params->mi_rows || mi_col + mi_size_wide[bsize] >= mi_params->mi_cols) return 0; if (bsize <= BLOCK_8X8 || frame_is_intra_only(cm)) return 0; if (x->content_state_sb.source_sad_nonrd <= kLowSad) return 0; // Do not try split partition when the source sad is small, or // the prediction residual is small. const YV12_BUFFER_CONFIG *const yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); const struct scale_factors *const sf = get_ref_scale_factors_const(cm, LAST_FRAME); const int num_planes = av1_num_planes(cm); av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); av1_setup_pre_planes(xd, 0, yv12, mi_row, mi_col, sf, num_planes); int block_sad = 0; for (int plane = 0; plane < num_planes; ++plane) { const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const unsigned int plane_sad = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride); block_sad += plane_sad; } const int blk_pix = block_size_wide[bsize] * block_size_high[bsize]; const int block_avg_sad = block_sad / blk_pix; // TODO(chengchen): find a proper threshold. It might change according to // q as well. const int threshold = 25; if (block_avg_sad < threshold) return 0; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_STATS split_rdc, none_rdc; av1_invalid_rd_stats(&split_rdc); av1_invalid_rd_stats(&none_rdc); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); // Calculate rdcost for none partition pc_tree->partitioning = PARTITION_NONE; av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (!pc_tree->none) { pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->none); } pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, pc_tree->none); none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); // Calculate rdcost for split partition pc_tree->partitioning = PARTITION_SPLIT; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); av1_init_rd_stats(&split_rdc); split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; if (subsize >= BLOCK_8X8) { split_rdc.rate += (mode_costs->partition_cost[pl][PARTITION_NONE] * 4); } for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { if (!pc_tree->split[i]) { pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); } pc_tree->split[i]->index = i; } for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { RD_STATS block_rdc; av1_invalid_rd_stats(&block_rdc); int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; xd->left_txfm_context = xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); if (!pc_tree->split[i]->none) { pc_tree->split[i]->none = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->split[i]->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->split[i]->none); } pc_tree->split[i]->partitioning = PARTITION_NONE; pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &block_rdc, subsize, pc_tree->split[i]->none); split_rdc.rate += block_rdc.rate; split_rdc.dist += block_rdc.dist; av1_rd_cost_update(x->rdmult, &split_rdc); if (none_rdc.rdcost < split_rdc.rdcost) break; if (i != SUB_PARTITIONS_SPLIT - 1) encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); } av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); const int split = split_rdc.rdcost < none_rdc.rdcost; return split; } // Returns if SPLIT partitions should be evaluated static bool calc_do_split_flag(const AV1_COMP *cpi, const MACROBLOCK *x, const PC_TREE *pc_tree, const RD_STATS *none_rdc, const CommonModeInfoParams *mi_params, int mi_row, int mi_col, int hbs, BLOCK_SIZE bsize, PARTITION_TYPE partition) { const AV1_COMMON *const cm = &cpi->common; const int is_larger_qindex = cm->quant_params.base_qindex > 100; const MACROBLOCKD *const xd = &x->e_mbd; bool do_split = (cpi->sf.rt_sf.nonrd_check_partition_merge_mode == 3) ? (bsize <= BLOCK_32X32 || (is_larger_qindex && bsize <= BLOCK_64X64)) : true; if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN || cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || cyclic_refresh_segment_id_boosted(xd->mi[0]->segment_id) || !none_rdc->skip_txfm) return do_split; const int use_model_yrd_large = get_model_rd_flag(cpi, xd, bsize); // When model based skip is not used (i.e.,use_model_yrd_large = 0), skip_txfm // would have been populated based on Hadamard transform and skip_txfm flag is // more reliable. Hence SPLIT evaluation is disabled at all quantizers for 8x8 // and 16x16 blocks. // When model based skip is used (i.e.,use_model_yrd_large = 1), skip_txfm may // not be reliable. Hence SPLIT evaluation is disabled only at lower // quantizers for blocks >= 32x32. if ((!use_model_yrd_large) || (!is_larger_qindex)) return false; // Use residual statistics to decide if SPLIT partition should be evaluated // for 32x32 blocks. The pruning logic is avoided for larger block size to // avoid the visual artifacts if (pc_tree->none->mic.mode == NEWMV && bsize == BLOCK_32X32 && do_split) { const BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); assert(subsize < BLOCK_SIZES_ALL); double min_per_pixel_error = DBL_MAX; double max_per_pixel_error = 0.; int i; for (i = 0; i < SUB_PARTITIONS_SPLIT; i++) { const int x_idx = (i & 1) * hbs; const int y_idx = (i >> 1) * hbs; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) { break; } // Populate the appropriate buffer pointers. // Pass scale factors as NULL as the base pointer of the block would have // been calculated appropriately. struct buf_2d src_split_buf_2d, pred_split_buf_2d; const struct buf_2d *src_none_buf_2d = &x->plane[AOM_PLANE_Y].src; setup_pred_plane(&src_split_buf_2d, subsize, src_none_buf_2d->buf, src_none_buf_2d->width, src_none_buf_2d->height, src_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); const struct buf_2d *pred_none_buf_2d = &xd->plane[AOM_PLANE_Y].dst; setup_pred_plane(&pred_split_buf_2d, subsize, pred_none_buf_2d->buf, pred_none_buf_2d->width, pred_none_buf_2d->height, pred_none_buf_2d->stride, y_idx, x_idx, NULL, 0, 0); unsigned int curr_uint_mse; const unsigned int curr_uint_var = cpi->ppi->fn_ptr[subsize].vf( src_split_buf_2d.buf, src_split_buf_2d.stride, pred_split_buf_2d.buf, pred_split_buf_2d.stride, &curr_uint_mse); const double curr_per_pixel_error = sqrt((double)curr_uint_var / block_size_wide[subsize] / block_size_high[subsize]); if (curr_per_pixel_error < min_per_pixel_error) min_per_pixel_error = curr_per_pixel_error; if (curr_per_pixel_error > max_per_pixel_error) max_per_pixel_error = curr_per_pixel_error; } // Prune based on residual statistics only if all the sub-partitions are // valid. if (i == SUB_PARTITIONS_SPLIT) { if (max_per_pixel_error - min_per_pixel_error <= 1.5) do_split = false; } } return do_split; } static void try_merge(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, TokenExtra **tp, const int mi_row, const int mi_col, const BLOCK_SIZE bsize, PC_TREE *const pc_tree, const PARTITION_TYPE partition, const BLOCK_SIZE subsize, const int pl) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const ModeCosts *mode_costs = &x->mode_costs; const int num_planes = av1_num_planes(cm); // Only square blocks from 8x8 to 128x128 are supported assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; bool do_split = false; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; RD_STATS split_rdc, none_rdc; av1_invalid_rd_stats(&split_rdc); av1_invalid_rd_stats(&none_rdc); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); pc_tree->partitioning = PARTITION_NONE; if (!pc_tree->none) { pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->none); } pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &none_rdc, bsize, pc_tree->none); none_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; none_rdc.rdcost = RDCOST(x->rdmult, none_rdc.rate, none_rdc.dist); av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode < 2 || none_rdc.skip_txfm != 1 || pc_tree->none->mic.mode == NEWMV) { do_split = calc_do_split_flag(cpi, x, pc_tree, &none_rdc, mi_params, mi_row, mi_col, hbs, bsize, partition); if (do_split) { av1_init_rd_stats(&split_rdc); split_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { RD_STATS block_rdc; av1_invalid_rd_stats(&block_rdc); int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col + x_idx; xd->left_txfm_context = xd->left_txfm_context_buffer + ((mi_row + y_idx) & MAX_MIB_MASK); if (!pc_tree->split[i]->none) { pc_tree->split[i]->none = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->split[i]->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->split[i]->none); } pc_tree->split[i]->partitioning = PARTITION_NONE; pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + y_idx, mi_col + x_idx, &block_rdc, subsize, pc_tree->split[i]->none); // TODO(yunqingwang): The rate here did not include the cost of // signaling PARTITION_NONE token in the sub-blocks. split_rdc.rate += block_rdc.rate; split_rdc.dist += block_rdc.dist; av1_rd_cost_update(x->rdmult, &split_rdc); if (none_rdc.rdcost < split_rdc.rdcost) { break; } if (i != SUB_PARTITIONS_SPLIT - 1) encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 1, subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); } av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); split_rdc.rdcost = RDCOST(x->rdmult, split_rdc.rate, split_rdc.dist); } } if (none_rdc.rdcost < split_rdc.rdcost) { /* Predicted samples can not be reused for PARTITION_NONE since same * buffer is being used to store the reconstructed samples of * PARTITION_SPLIT block. */ if (do_split) x->reuse_inter_pred = false; mib[0]->bsize = bsize; pc_tree->partitioning = PARTITION_NONE; encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, pc_tree->none, NULL); } else { mib[0]->bsize = subsize; pc_tree->partitioning = PARTITION_SPLIT; /* Predicted samples can not be reused for PARTITION_SPLIT since same * buffer is being used to write the reconstructed samples. */ // TODO(Cherma): Store and reuse predicted samples generated by // encode_b_nonrd() in DRY_RUN_NORMAL mode. x->reuse_inter_pred = false; for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; // Note: We don't reset pc_tree->split[i]->none here because it // could contain results from the additional check. Instead, it is // reset before we enter the nonrd_check_partition_merge_mode // condition. if (!pc_tree->split[i]->none) { pc_tree->split[i]->none = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->split[i]->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } encode_b_nonrd(cpi, tile_data, td, tp, mi_row + y_idx, mi_col + x_idx, 0, subsize, PARTITION_NONE, pc_tree->split[i]->none, NULL); } } } // Evaluate if the sub-partitions can be merged directly into a large partition // without calculating the RD cost. static void direct_partition_merging(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, int mi_row, int mi_col, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; const PARTITION_TYPE partition = (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) : PARTITION_NONE; BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); MB_MODE_INFO **b0 = mib; MB_MODE_INFO **b1 = mib + hbs; MB_MODE_INFO **b2 = mib + hbs * mi_params->mi_stride; MB_MODE_INFO **b3 = mib + hbs * mi_params->mi_stride + hbs; // Check if the following conditions are met. This can be updated // later with more support added. const int further_split = b0[0]->bsize < subsize || b1[0]->bsize < subsize || b2[0]->bsize < subsize || b3[0]->bsize < subsize; if (further_split) return; const int no_skip = !b0[0]->skip_txfm || !b1[0]->skip_txfm || !b2[0]->skip_txfm || !b3[0]->skip_txfm; if (no_skip) return; const int compound = (b0[0]->ref_frame[1] != b1[0]->ref_frame[1] || b0[0]->ref_frame[1] != b2[0]->ref_frame[1] || b0[0]->ref_frame[1] != b3[0]->ref_frame[1] || b0[0]->ref_frame[1] > NONE_FRAME); if (compound) return; // Intra modes aren't considered here. const int different_ref = (b0[0]->ref_frame[0] != b1[0]->ref_frame[0] || b0[0]->ref_frame[0] != b2[0]->ref_frame[0] || b0[0]->ref_frame[0] != b3[0]->ref_frame[0] || b0[0]->ref_frame[0] <= INTRA_FRAME); if (different_ref) return; const int different_mode = (b0[0]->mode != b1[0]->mode || b0[0]->mode != b2[0]->mode || b0[0]->mode != b3[0]->mode); if (different_mode) return; const int unsupported_mode = (b0[0]->mode != NEARESTMV && b0[0]->mode != GLOBALMV); if (unsupported_mode) return; const int different_mv = (b0[0]->mv[0].as_int != b1[0]->mv[0].as_int || b0[0]->mv[0].as_int != b2[0]->mv[0].as_int || b0[0]->mv[0].as_int != b3[0]->mv[0].as_int); if (different_mv) return; const int unsupported_motion_mode = (b0[0]->motion_mode != b1[0]->motion_mode || b0[0]->motion_mode != b2[0]->motion_mode || b0[0]->motion_mode != b3[0]->motion_mode || b0[0]->motion_mode != SIMPLE_TRANSLATION); if (unsupported_motion_mode) return; const int diffent_filter = (b0[0]->interp_filters.as_int != b1[0]->interp_filters.as_int || b0[0]->interp_filters.as_int != b2[0]->interp_filters.as_int || b0[0]->interp_filters.as_int != b3[0]->interp_filters.as_int); if (diffent_filter) return; const int different_seg = (b0[0]->segment_id != b1[0]->segment_id || b0[0]->segment_id != b2[0]->segment_id || b0[0]->segment_id != b3[0]->segment_id); if (different_seg) return; // Evaluate the ref_mv. MB_MODE_INFO **this_mi = mib; BLOCK_SIZE orig_bsize = this_mi[0]->bsize; const PARTITION_TYPE orig_partition = this_mi[0]->partition; this_mi[0]->bsize = bsize; this_mi[0]->partition = PARTITION_NONE; this_mi[0]->skip_txfm = 1; // TODO(yunqing): functions called below can be optimized by // removing unrelated operations. av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, mi_col, bsize); const MV_REFERENCE_FRAME ref_frame = this_mi[0]->ref_frame[0]; int_mv frame_mv[MB_MODE_COUNT][REF_FRAMES]; struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; int force_skip_low_temp_var = 0; int skip_pred_mv = 0; bool use_scaled_ref; for (int i = 0; i < MB_MODE_COUNT; ++i) { for (int j = 0; j < REF_FRAMES; ++j) { frame_mv[i][j].as_int = INVALID_MV; } } av1_copy(x->color_sensitivity, x->color_sensitivity_sb); skip_pred_mv = (x->nonrd_prune_ref_frame_search > 2 && x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_U)] != 2 && x->color_sensitivity[COLOR_SENS_IDX(AOM_PLANE_V)] != 2); find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, bsize, force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); int continue_merging = 1; if (frame_mv[NEARESTMV][ref_frame].as_mv.row != b0[0]->mv[0].as_mv.row || frame_mv[NEARESTMV][ref_frame].as_mv.col != b0[0]->mv[0].as_mv.col) continue_merging = 0; if (!continue_merging) { this_mi[0]->bsize = orig_bsize; this_mi[0]->partition = orig_partition; // TODO(yunqing): Store the results and restore here instead of // calling find_predictors() again. av1_set_offsets_without_segment_id(cpi, &tile_data->tile_info, x, mi_row, mi_col, this_mi[0]->bsize); find_predictors(cpi, x, ref_frame, frame_mv, yv12_mb, this_mi[0]->bsize, force_skip_low_temp_var, skip_pred_mv, &use_scaled_ref); } else { struct scale_factors *sf = get_ref_scale_factors(cm, ref_frame); const int is_scaled = av1_is_scaled(sf); const int is_y_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 8) || (abs(this_mi[0]->mv[0].as_mv.col) % 8); const int is_uv_subpel_mv = (abs(this_mi[0]->mv[0].as_mv.row) % 16) || (abs(this_mi[0]->mv[0].as_mv.col) % 16); if (cpi->ppi->use_svc || is_scaled || is_y_subpel_mv || is_uv_subpel_mv) { const int num_planes = av1_num_planes(cm); set_ref_ptrs(cm, xd, ref_frame, this_mi[0]->ref_frame[1]); const YV12_BUFFER_CONFIG *cfg = get_ref_frame_yv12_buf(cm, ref_frame); av1_setup_pre_planes(xd, 0, cfg, mi_row, mi_col, xd->block_ref_scale_factors[0], num_planes); if (!cpi->ppi->use_svc && !is_scaled && !is_y_subpel_mv) { assert(is_uv_subpel_mv == 1); av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 1, num_planes - 1); } else { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, num_planes - 1); } } // Copy out mbmi_ext information. MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; MB_MODE_INFO_EXT_FRAME *mbmi_ext_frame = x->mbmi_ext_frame; av1_copy_mbmi_ext_to_mbmi_ext_frame( mbmi_ext_frame, mbmi_ext, av1_ref_frame_type(this_mi[0]->ref_frame)); const BLOCK_SIZE this_subsize = get_partition_subsize(bsize, this_mi[0]->partition); // Update partition contexts. update_ext_partition_context(xd, mi_row, mi_col, this_subsize, bsize, this_mi[0]->partition); const int num_planes = av1_num_planes(cm); av1_reset_entropy_context(xd, bsize, num_planes); // Note: use x->txfm_search_params.tx_mode_search_type instead of // cm->features.tx_mode here. TX_SIZE tx_size = tx_size_from_tx_mode(bsize, x->txfm_search_params.tx_mode_search_type); if (xd->lossless[this_mi[0]->segment_id]) tx_size = TX_4X4; this_mi[0]->tx_size = tx_size; memset(this_mi[0]->inter_tx_size, this_mi[0]->tx_size, sizeof(this_mi[0]->inter_tx_size)); // Update txfm contexts. xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); set_txfm_ctxs(this_mi[0]->tx_size, xd->width, xd->height, this_mi[0]->skip_txfm && is_inter_block(this_mi[0]), xd); // Update mi for this partition block. for (int y = 0; y < bs; y++) { for (int x_idx = 0; x_idx < bs; x_idx++) { this_mi[x_idx + y * mi_params->mi_stride] = this_mi[0]; } } } } /*!\brief AV1 block partition application (minimal RD search). * * \ingroup partition_search * \callgraph * \callergraph * Encode the block by applying pre-calculated partition patterns that are * represented by coding block sizes stored in the mbmi array. The only * partition adjustment allowed is merging leaf split nodes if it leads to a * lower rd cost. The partition types are limited to a basic set: none, horz, * vert, and split. This function is only used in the real-time mode. * * \param[in] cpi Top-level encoder structure * \param[in] td Pointer to thread data * \param[in] tile_data Pointer to struct holding adaptive data/contexts/models for the tile during encoding * \param[in] mib Array representing MB_MODE_INFO pointers for mi blocks starting from the first pixel of the current block * \param[in] tp Pointer to the starting token * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of MI_SIZE * \param[in] bsize Current block size * \param[in] pc_tree Pointer to the PC_TREE node holding the picked partitions and mode info for the current block * * \remark Nothing is returned. The pc_tree struct is modified to store the * picked partition and modes. */ void av1_nonrd_use_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, MB_MODE_INFO **mib, TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const ModeCosts *mode_costs = &x->mode_costs; // Only square blocks from 8x8 to 128x128 are supported assert(bsize >= BLOCK_8X8 && bsize <= BLOCK_128X128); const int bs = mi_size_wide[bsize]; const int hbs = bs / 2; PARTITION_TYPE partition = (bsize >= BLOCK_8X8) ? get_partition(cm, mi_row, mi_col, bsize) : PARTITION_NONE; BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); assert(subsize <= BLOCK_LARGEST); const int pl = (bsize >= BLOCK_8X8) ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; RD_STATS dummy_cost; av1_invalid_rd_stats(&dummy_cost); if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols) return; assert(mi_size_wide[bsize] == mi_size_high[bsize]); xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); // Initialize default mode evaluation params set_mode_eval_params(cpi, x, DEFAULT_EVAL); x->reuse_inter_pred = cpi->sf.rt_sf.reuse_inter_pred_nonrd; int change_none_to_split = 0; if (partition == PARTITION_NONE && cpi->sf.rt_sf.nonrd_check_partition_split == 1) { change_none_to_split = try_split_partition(cpi, td, tile_data, tile_info, tp, x, xd, mi_params, mi_row, mi_col, bsize, pl, pc_tree); if (change_none_to_split) { partition = PARTITION_SPLIT; subsize = get_partition_subsize(bsize, partition); assert(subsize <= BLOCK_LARGEST); } } pc_tree->partitioning = partition; switch (partition) { case PARTITION_NONE: if (!pc_tree->none) { pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->none); } pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, bsize, pc_tree->none); encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, bsize, partition, pc_tree->none, NULL); break; case PARTITION_VERT: for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { if (!pc_tree->vertical[i]) { pc_tree->vertical[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->vertical[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->vertical[i]); } } pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, subsize, pc_tree->vertical[0]); encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, PARTITION_VERT, pc_tree->vertical[0], NULL); if (mi_col + hbs < mi_params->mi_cols && bsize > BLOCK_8X8) { pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col + hbs, &dummy_cost, subsize, pc_tree->vertical[1]); encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col + hbs, 0, subsize, PARTITION_VERT, pc_tree->vertical[1], NULL); } break; case PARTITION_HORZ: for (int i = 0; i < SUB_PARTITIONS_RECT; ++i) { if (!pc_tree->horizontal[i]) { pc_tree->horizontal[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!pc_tree->horizontal[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } else { av1_reset_pmc(pc_tree->horizontal[i]); } } pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &dummy_cost, subsize, pc_tree->horizontal[0]); encode_b_nonrd(cpi, tile_data, td, tp, mi_row, mi_col, 0, subsize, PARTITION_HORZ, pc_tree->horizontal[0], NULL); if (mi_row + hbs < mi_params->mi_rows && bsize > BLOCK_8X8) { pick_sb_modes_nonrd(cpi, tile_data, x, mi_row + hbs, mi_col, &dummy_cost, subsize, pc_tree->horizontal[1]); encode_b_nonrd(cpi, tile_data, td, tp, mi_row + hbs, mi_col, 0, subsize, PARTITION_HORZ, pc_tree->horizontal[1], NULL); } break; case PARTITION_SPLIT: for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { if (!pc_tree->split[i]) { pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); } pc_tree->split[i]->index = i; } if (cpi->sf.rt_sf.nonrd_check_partition_merge_mode && av1_is_leaf_split_partition(cm, mi_row, mi_col, bsize) && !frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { try_merge(cpi, td, tile_data, mib, tp, mi_row, mi_col, bsize, pc_tree, partition, subsize, pl); } else { for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { int x_idx = (i & 1) * hbs; int y_idx = (i >> 1) * hbs; int jj = i >> 1, ii = i & 0x01; if ((mi_row + y_idx >= mi_params->mi_rows) || (mi_col + x_idx >= mi_params->mi_cols)) continue; av1_nonrd_use_partition( cpi, td, tile_data, mib + jj * hbs * mi_params->mi_stride + ii * hbs, tp, mi_row + y_idx, mi_col + x_idx, subsize, pc_tree->split[i]); } if (!change_none_to_split) { // Note: Palette, cfl are not supported. if (!frame_is_intra_only(cm) && !tile_data->allow_update_cdf && cpi->sf.rt_sf.partition_direct_merging && mode_costs->partition_cost[pl][PARTITION_NONE] < mode_costs->partition_cost[pl][PARTITION_SPLIT] && (mi_row + bs <= mi_params->mi_rows) && (mi_col + bs <= mi_params->mi_cols)) { direct_partition_merging(cpi, td, tile_data, mib, mi_row, mi_col, bsize); } } } break; case PARTITION_VERT_A: case PARTITION_VERT_B: case PARTITION_HORZ_A: case PARTITION_HORZ_B: case PARTITION_HORZ_4: case PARTITION_VERT_4: assert(0 && "Cannot handle extended partition types"); default: assert(0); break; } } #if !CONFIG_REALTIME_ONLY // Try searching for an encoding for the given subblock. Returns zero if the // rdcost is already too high (to tell the caller not to bother searching for // encodings of further subblocks). static int rd_try_subblock(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, int is_last, int mi_row, int mi_col, BLOCK_SIZE subsize, RD_STATS best_rdcost, RD_STATS *sum_rdc, PARTITION_TYPE partition, PICK_MODE_CONTEXT *this_ctx) { MACROBLOCK *const x = &td->mb; const int orig_mult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, subsize, NO_AQ, NULL); av1_rd_cost_update(x->rdmult, &best_rdcost); RD_STATS rdcost_remaining; av1_rd_stats_subtraction(x->rdmult, &best_rdcost, sum_rdc, &rdcost_remaining); RD_STATS this_rdc; pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, partition, subsize, this_ctx, rdcost_remaining); if (this_rdc.rate == INT_MAX) { sum_rdc->rdcost = INT64_MAX; } else { sum_rdc->rate += this_rdc.rate; sum_rdc->dist += this_rdc.dist; av1_rd_cost_update(x->rdmult, sum_rdc); } if (sum_rdc->rdcost >= best_rdcost.rdcost) { x->rdmult = orig_mult; return 0; } if (!is_last) { av1_update_state(cpi, td, this_ctx, mi_row, mi_col, subsize, 1); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, subsize, NULL); } x->rdmult = orig_mult; return 1; } // Tests an AB partition, and updates the encoder status, the pick mode // contexts, the best rdcost, and the best partition. static bool rd_test_partition3(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, PC_TREE *pc_tree, RD_STATS *best_rdc, int64_t *this_rdcost, PICK_MODE_CONTEXT *ctxs[SUB_PARTITIONS_AB], int mi_row, int mi_col, BLOCK_SIZE bsize, PARTITION_TYPE partition, const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], const int ab_mi_pos[SUB_PARTITIONS_AB][2], const MB_MODE_INFO **mode_cache) { MACROBLOCK *const x = &td->mb; const MACROBLOCKD *const xd = &x->e_mbd; const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); RD_STATS sum_rdc; av1_init_rd_stats(&sum_rdc); sum_rdc.rate = x->mode_costs.partition_cost[pl][partition]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); // Loop over sub-partitions in AB partition type. for (int i = 0; i < SUB_PARTITIONS_AB; i++) { if (mode_cache && mode_cache[i]) { x->use_mb_mode_cache = 1; x->mb_mode_cache = mode_cache[i]; } const int mode_search_success = rd_try_subblock(cpi, td, tile_data, tp, i == SUB_PARTITIONS_AB - 1, ab_mi_pos[i][0], ab_mi_pos[i][1], ab_subsize[i], *best_rdc, &sum_rdc, partition, ctxs[i]); x->use_mb_mode_cache = 0; x->mb_mode_cache = NULL; if (!mode_search_success) { return false; } } av1_rd_cost_update(x->rdmult, &sum_rdc); *this_rdcost = sum_rdc.rdcost; if (sum_rdc.rdcost >= best_rdc->rdcost) return false; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); *this_rdcost = sum_rdc.rdcost; if (sum_rdc.rdcost >= best_rdc->rdcost) return false; *best_rdc = sum_rdc; pc_tree->partitioning = partition; return true; } #if CONFIG_COLLECT_PARTITION_STATS static void init_partition_block_timing_stats( PartitionTimingStats *part_timing_stats) { av1_zero(*part_timing_stats); } static INLINE void start_partition_block_timer( PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type) { assert(!part_timing_stats->timer_is_on); part_timing_stats->partition_attempts[partition_type] += 1; aom_usec_timer_start(&part_timing_stats->timer); part_timing_stats->timer_is_on = 1; } static INLINE void end_partition_block_timer( PartitionTimingStats *part_timing_stats, PARTITION_TYPE partition_type, int64_t rdcost) { if (part_timing_stats->timer_is_on) { aom_usec_timer_mark(&part_timing_stats->timer); const int64_t time = aom_usec_timer_elapsed(&part_timing_stats->timer); part_timing_stats->partition_times[partition_type] += time; part_timing_stats->partition_rdcost[partition_type] = rdcost; part_timing_stats->timer_is_on = 0; } } static INLINE void print_partition_timing_stats_with_rdcost( const PartitionTimingStats *part_timing_stats, int mi_row, int mi_col, BLOCK_SIZE bsize, FRAME_UPDATE_TYPE frame_update_type, int frame_number, const RD_STATS *best_rdc, const char *filename) { FILE *f = fopen(filename, "a"); fprintf(f, "%d,%d,%d,%d,%d,%d,%" PRId64 ",%" PRId64 ",", bsize, frame_number, frame_update_type, mi_row, mi_col, best_rdc->rate, best_rdc->dist, best_rdc->rdcost); for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); } for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); } for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); } for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { if (part_timing_stats->partition_rdcost[idx] == INT64_MAX) { fprintf(f, "%d,", -1); } else { fprintf(f, "%" PRId64 ",", part_timing_stats->partition_rdcost[idx]); } } fprintf(f, "\n"); fclose(f); } static INLINE void print_partition_timing_stats( const PartitionTimingStats *part_timing_stats, int intra_only, int show_frame, const BLOCK_SIZE bsize, const char *filename) { FILE *f = fopen(filename, "a"); fprintf(f, "%d,%d,%d,", bsize, show_frame, intra_only); for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%d,", part_timing_stats->partition_decisions[idx]); } for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%d,", part_timing_stats->partition_attempts[idx]); } for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { fprintf(f, "%" PRId64 ",", part_timing_stats->partition_times[idx]); } fprintf(f, "\n"); fclose(f); } static INLINE void accumulate_partition_timing_stats( FramePartitionTimingStats *fr_part_timing_stats, const PartitionTimingStats *part_timing_stats, BLOCK_SIZE bsize) { const int bsize_idx = av1_get_bsize_idx_for_part_stats(bsize); int *agg_attempts = fr_part_timing_stats->partition_attempts[bsize_idx]; int *agg_decisions = fr_part_timing_stats->partition_decisions[bsize_idx]; int64_t *agg_times = fr_part_timing_stats->partition_times[bsize_idx]; for (int idx = 0; idx < EXT_PARTITION_TYPES; idx++) { agg_attempts[idx] += part_timing_stats->partition_attempts[idx]; agg_decisions[idx] += part_timing_stats->partition_decisions[idx]; agg_times[idx] += part_timing_stats->partition_times[idx]; } } #endif // CONFIG_COLLECT_PARTITION_STATS // Initialize state variables of partition search used in // av1_rd_pick_partition(). static void init_partition_search_state_params( MACROBLOCK *x, AV1_COMP *const cpi, PartitionSearchState *part_search_state, int mi_row, int mi_col, BLOCK_SIZE bsize) { MACROBLOCKD *const xd = &x->e_mbd; const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams *blk_params = &part_search_state->part_blk_params; const CommonModeInfoParams *const mi_params = &cpi->common.mi_params; // Initialization of block size related parameters. blk_params->mi_step = mi_size_wide[bsize] / 2; blk_params->mi_row = mi_row; blk_params->mi_col = mi_col; blk_params->mi_row_edge = mi_row + blk_params->mi_step; blk_params->mi_col_edge = mi_col + blk_params->mi_step; blk_params->width = block_size_wide[bsize]; blk_params->min_partition_size_1d = block_size_wide[x->sb_enc.min_partition_size]; blk_params->subsize = get_partition_subsize(bsize, PARTITION_SPLIT); blk_params->split_bsize2 = blk_params->subsize; blk_params->bsize_at_least_8x8 = (bsize >= BLOCK_8X8); blk_params->bsize = bsize; // Check if the partition corresponds to edge block. blk_params->has_rows = (blk_params->mi_row_edge < mi_params->mi_rows); blk_params->has_cols = (blk_params->mi_col_edge < mi_params->mi_cols); // Update intra partitioning related info. part_search_state->intra_part_info = &x->part_search_info; // Prepare for segmentation CNN-based partitioning for intra-frame. if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { part_search_state->intra_part_info->quad_tree_idx = 0; part_search_state->intra_part_info->cnn_output_valid = 0; } // Set partition plane context index. part_search_state->pl_ctx_idx = blk_params->bsize_at_least_8x8 ? partition_plane_context(xd, mi_row, mi_col, bsize) : 0; // Partition cost buffer update ModeCosts *mode_costs = &x->mode_costs; part_search_state->partition_cost = mode_costs->partition_cost[part_search_state->pl_ctx_idx]; // Initialize HORZ and VERT win flags as true for all split partitions. for (int i = 0; i < SUB_PARTITIONS_SPLIT; i++) { part_search_state->split_part_rect_win[i].rect_part_win[HORZ] = true; part_search_state->split_part_rect_win[i].rect_part_win[VERT] = true; } // Initialize the rd cost. av1_init_rd_stats(&part_search_state->this_rdc); // Initialize RD costs for partition types to 0. part_search_state->none_rd = 0; av1_zero(part_search_state->split_rd); av1_zero(part_search_state->rect_part_rd); // Initialize SPLIT partition to be not ready. av1_zero(part_search_state->is_split_ctx_is_ready); // Initialize HORZ and VERT partitions to be not ready. av1_zero(part_search_state->is_rect_ctx_is_ready); // Chroma subsampling. part_search_state->ss_x = x->e_mbd.plane[1].subsampling_x; part_search_state->ss_y = x->e_mbd.plane[1].subsampling_y; // Initialize partition search flags to defaults. part_search_state->terminate_partition_search = 0; part_search_state->do_square_split = blk_params->bsize_at_least_8x8; part_search_state->do_rectangular_split = cpi->oxcf.part_cfg.enable_rect_partitions && blk_params->bsize_at_least_8x8; av1_zero(part_search_state->prune_rect_part); // Initialize allowed partition types for the partition block. part_search_state->partition_none_allowed = av1_blk_has_rows_and_cols(blk_params); part_search_state->partition_rect_allowed[HORZ] = part_search_state->do_rectangular_split && blk_params->has_cols && get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; part_search_state->partition_rect_allowed[VERT] = part_search_state->do_rectangular_split && blk_params->has_rows && get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; // Reset the flag indicating whether a partition leading to a rdcost lower // than the bound best_rdc has been found. part_search_state->found_best_partition = false; #if CONFIG_COLLECT_PARTITION_STATS init_partition_block_timing_stats(&part_search_state->part_timing_stats); #endif // CONFIG_COLLECT_PARTITION_STATS } // Override partition cost buffer for the edge blocks. static void set_partition_cost_for_edge_blk( AV1_COMMON const *cm, PartitionSearchState *part_search_state) { PartitionBlkParams blk_params = part_search_state->part_blk_params; assert(blk_params.bsize_at_least_8x8 && part_search_state->pl_ctx_idx >= 0); const aom_cdf_prob *partition_cdf = cm->fc->partition_cdf[part_search_state->pl_ctx_idx]; const int max_cost = av1_cost_symbol(0); for (PARTITION_TYPE i = 0; i < PARTITION_TYPES; ++i) part_search_state->tmp_partition_cost[i] = max_cost; if (blk_params.has_cols) { // At the bottom, the two possibilities are HORZ and SPLIT. aom_cdf_prob bot_cdf[2]; partition_gather_vert_alike(bot_cdf, partition_cdf, blk_params.bsize); static const int bot_inv_map[2] = { PARTITION_HORZ, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, bot_cdf, bot_inv_map); } else if (blk_params.has_rows) { // At the right, the two possibilities are VERT and SPLIT. aom_cdf_prob rhs_cdf[2]; partition_gather_horz_alike(rhs_cdf, partition_cdf, blk_params.bsize); static const int rhs_inv_map[2] = { PARTITION_VERT, PARTITION_SPLIT }; av1_cost_tokens_from_cdf(part_search_state->tmp_partition_cost, rhs_cdf, rhs_inv_map); } else { // At the bottom right, we always split. part_search_state->tmp_partition_cost[PARTITION_SPLIT] = 0; } // Override the partition cost buffer. part_search_state->partition_cost = part_search_state->tmp_partition_cost; } // Reset the partition search state flags when // must_find_valid_partition is equal to 1. static AOM_INLINE void reset_part_limitations( AV1_COMP *const cpi, PartitionSearchState *part_search_state) { PartitionBlkParams blk_params = part_search_state->part_blk_params; const int is_rect_part_allowed = blk_params.bsize_at_least_8x8 && cpi->oxcf.part_cfg.enable_rect_partitions && (blk_params.width > blk_params.min_partition_size_1d); part_search_state->do_square_split = blk_params.bsize_at_least_8x8 && (blk_params.width > blk_params.min_partition_size_1d); part_search_state->partition_none_allowed = av1_blk_has_rows_and_cols(&blk_params) && (blk_params.width >= blk_params.min_partition_size_1d); part_search_state->partition_rect_allowed[HORZ] = blk_params.has_cols && is_rect_part_allowed && get_plane_block_size( get_partition_subsize(blk_params.bsize, PARTITION_HORZ), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; part_search_state->partition_rect_allowed[VERT] = blk_params.has_rows && is_rect_part_allowed && get_plane_block_size( get_partition_subsize(blk_params.bsize, PARTITION_VERT), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; part_search_state->terminate_partition_search = 0; } // Rectangular partitions evaluation at sub-block level. static void rd_pick_rect_partition(AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x, PICK_MODE_CONTEXT *cur_partition_ctx, PartitionSearchState *part_search_state, RD_STATS *best_rdc, const int idx, int mi_row, int mi_col, BLOCK_SIZE bsize, PARTITION_TYPE partition_type) { // Obtain the remainder from the best rd cost // for further processing of partition. RD_STATS best_remain_rdcost; av1_rd_stats_subtraction(x->rdmult, best_rdc, &part_search_state->sum_rdc, &best_remain_rdcost); // Obtain the best mode for the partition sub-block. pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &part_search_state->this_rdc, partition_type, bsize, cur_partition_ctx, best_remain_rdcost); av1_rd_cost_update(x->rdmult, &part_search_state->this_rdc); // Update the partition rd cost with the current sub-block rd. if (part_search_state->this_rdc.rate == INT_MAX) { part_search_state->sum_rdc.rdcost = INT64_MAX; } else { part_search_state->sum_rdc.rate += part_search_state->this_rdc.rate; part_search_state->sum_rdc.dist += part_search_state->this_rdc.dist; av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); } const RECT_PART_TYPE rect_part = partition_type == PARTITION_HORZ ? HORZ : VERT; part_search_state->rect_part_rd[rect_part][idx] = part_search_state->this_rdc.rdcost; } typedef int (*active_edge_info)(const AV1_COMP *cpi, int mi_col, int mi_step); // Checks if HORZ / VERT partition search is allowed. static AOM_INLINE int is_rect_part_allowed( const AV1_COMP *cpi, const PartitionSearchState *part_search_state, const active_edge_info *active_edge, RECT_PART_TYPE rect_part, const int mi_pos) { const PartitionBlkParams *blk_params = &part_search_state->part_blk_params; const int is_part_allowed = (!part_search_state->terminate_partition_search && part_search_state->partition_rect_allowed[rect_part] && !part_search_state->prune_rect_part[rect_part] && (part_search_state->do_rectangular_split || active_edge[rect_part](cpi, mi_pos, blk_params->mi_step))); return is_part_allowed; } static void rectangular_partition_search( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PartitionSearchState *part_search_state, RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info, const RECT_PART_TYPE start_type, const RECT_PART_TYPE end_type) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; RD_STATS *sum_rdc = &part_search_state->sum_rdc; const int rect_partition_type[NUM_RECT_PARTS] = { PARTITION_HORZ, PARTITION_VERT }; // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][0]: mi_row postion of // HORZ and VERT partition types. // mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][1]: mi_col postion of // HORZ and VERT partition types. const int mi_pos_rect[NUM_RECT_PARTS][SUB_PARTITIONS_RECT][2] = { { { blk_params.mi_row, blk_params.mi_col }, { blk_params.mi_row_edge, blk_params.mi_col } }, { { blk_params.mi_row, blk_params.mi_col }, { blk_params.mi_row, blk_params.mi_col_edge } } }; // Initialize active edge_type function pointer // for HOZR and VERT partition types. active_edge_info active_edge_type[NUM_RECT_PARTS] = { av1_active_h_edge, av1_active_v_edge }; // Indicates edge blocks for HORZ and VERT partition types. const int is_not_edge_block[NUM_RECT_PARTS] = { blk_params.has_rows, blk_params.has_cols }; // Initialize pc tree context for HORZ and VERT partition types. PICK_MODE_CONTEXT **cur_ctx[NUM_RECT_PARTS][SUB_PARTITIONS_RECT] = { { &pc_tree->horizontal[0], &pc_tree->horizontal[1] }, { &pc_tree->vertical[0], &pc_tree->vertical[1] } }; // Loop over rectangular partition types. for (RECT_PART_TYPE i = start_type; i <= end_type; i++) { assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, !part_search_state->partition_rect_allowed[i])); // Check if the HORZ / VERT partition search is to be performed. if (!is_rect_part_allowed(cpi, part_search_state, active_edge_type, i, mi_pos_rect[i][0][i])) continue; // Sub-partition idx. int sub_part_idx = 0; PARTITION_TYPE partition_type = rect_partition_type[i]; blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type); assert(blk_params.subsize <= BLOCK_LARGEST); av1_init_rd_stats(sum_rdc); for (int j = 0; j < SUB_PARTITIONS_RECT; j++) { if (cur_ctx[i][j][0] == NULL) { cur_ctx[i][j][0] = av1_alloc_pmc(cpi, blk_params.subsize, &td->shared_coeff_buf); if (!cur_ctx[i][j][0]) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } } sum_rdc->rate = part_search_state->partition_cost[partition_type]; sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, 0); #if CONFIG_COLLECT_PARTITION_STATS PartitionTimingStats *part_timing_stats = &part_search_state->part_timing_stats; if (best_rdc->rdcost - sum_rdc->rdcost >= 0) { start_partition_block_timer(part_timing_stats, partition_type); } #endif // First sub-partition evaluation in HORZ / VERT partition type. rd_pick_rect_partition( cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, best_rdc, 0, mi_pos_rect[i][sub_part_idx][0], mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); // Start of second sub-partition evaluation. // Evaluate second sub-partition if the first sub-partition cost // is less than the best cost and if it is not an edge block. if (sum_rdc->rdcost < best_rdc->rdcost && is_not_edge_block[i]) { const MB_MODE_INFO *const mbmi = &cur_ctx[i][sub_part_idx][0]->mic; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; // Neither palette mode nor cfl predicted. if (pmi->palette_size[PLANE_TYPE_Y] == 0 && pmi->palette_size[PLANE_TYPE_UV] == 0) { if (mbmi->uv_mode != UV_CFL_PRED) part_search_state->is_rect_ctx_is_ready[i] = 1; } av1_update_state(cpi, td, cur_ctx[i][sub_part_idx][0], blk_params.mi_row, blk_params.mi_col, blk_params.subsize, DRY_RUN_NORMAL); encode_superblock(cpi, tile_data, td, tp, DRY_RUN_NORMAL, blk_params.subsize, NULL); // Second sub-partition evaluation in HORZ / VERT partition type. sub_part_idx = 1; rd_pick_rect_partition( cpi, tile_data, x, cur_ctx[i][sub_part_idx][0], part_search_state, best_rdc, 1, mi_pos_rect[i][sub_part_idx][0], mi_pos_rect[i][sub_part_idx][1], blk_params.subsize, partition_type); } // Update HORZ / VERT best partition. if (sum_rdc->rdcost < best_rdc->rdcost) { sum_rdc->rdcost = RDCOST(x->rdmult, sum_rdc->rate, sum_rdc->dist); if (sum_rdc->rdcost < best_rdc->rdcost) { *best_rdc = *sum_rdc; part_search_state->found_best_partition = true; pc_tree->partitioning = partition_type; } } else { // Update HORZ / VERT win flag. if (rect_part_win_info != NULL) rect_part_win_info->rect_part_win[i] = false; } #if CONFIG_COLLECT_PARTITION_STATS if (part_timing_stats->timer_is_on) { end_partition_block_timer(part_timing_stats, partition_type, sum_rdc->rdcost); } #endif av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, blk_params.bsize, av1_num_planes(cm)); } } // AB partition type evaluation. static void rd_pick_ab_part( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PC_TREE *pc_tree, PICK_MODE_CONTEXT *dst_ctxs[SUB_PARTITIONS_AB], PartitionSearchState *part_search_state, RD_STATS *best_rdc, const BLOCK_SIZE ab_subsize[SUB_PARTITIONS_AB], const int ab_mi_pos[SUB_PARTITIONS_AB][2], const PARTITION_TYPE part_type, const MB_MODE_INFO **mode_cache) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; const int mi_row = blk_params.mi_row; const int mi_col = blk_params.mi_col; const BLOCK_SIZE bsize = blk_params.bsize; int64_t this_rdcost = 0; #if CONFIG_COLLECT_PARTITION_STATS PartitionTimingStats *part_timing_stats = &part_search_state->part_timing_stats; { RD_STATS tmp_sum_rdc; av1_init_rd_stats(&tmp_sum_rdc); tmp_sum_rdc.rate = part_search_state->partition_cost[part_type]; tmp_sum_rdc.rdcost = RDCOST(x->rdmult, tmp_sum_rdc.rate, 0); if (best_rdc->rdcost - tmp_sum_rdc.rdcost >= 0) { start_partition_block_timer(part_timing_stats, part_type); } } #endif // Test this partition and update the best partition. const bool find_best_ab_part = rd_test_partition3( cpi, td, tile_data, tp, pc_tree, best_rdc, &this_rdcost, dst_ctxs, mi_row, mi_col, bsize, part_type, ab_subsize, ab_mi_pos, mode_cache); part_search_state->found_best_partition |= find_best_ab_part; #if CONFIG_COLLECT_PARTITION_STATS if (part_timing_stats->timer_is_on) { if (!find_best_ab_part) this_rdcost = INT64_MAX; end_partition_block_timer(part_timing_stats, part_type, this_rdcost); } #endif av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); } // Set mode search context. static AOM_INLINE void set_mode_search_ctx( PC_TREE *pc_tree, const int is_ctx_ready[NUM_AB_PARTS][2], PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]) { mode_srch_ctx[HORZ_B][0] = &pc_tree->horizontal[0]; mode_srch_ctx[VERT_B][0] = &pc_tree->vertical[0]; if (is_ctx_ready[HORZ_A][0]) mode_srch_ctx[HORZ_A][0] = &pc_tree->split[0]->none; if (is_ctx_ready[VERT_A][0]) mode_srch_ctx[VERT_A][0] = &pc_tree->split[0]->none; if (is_ctx_ready[HORZ_A][1]) mode_srch_ctx[HORZ_A][1] = &pc_tree->split[1]->none; } static AOM_INLINE void copy_partition_mode_from_mode_context( const MB_MODE_INFO **dst_mode, const PICK_MODE_CONTEXT *ctx) { if (ctx && ctx->rd_stats.rate < INT_MAX) { *dst_mode = &ctx->mic; } else { *dst_mode = NULL; } } static AOM_INLINE void copy_partition_mode_from_pc_tree( const MB_MODE_INFO **dst_mode, const PC_TREE *pc_tree) { if (pc_tree) { copy_partition_mode_from_mode_context(dst_mode, pc_tree->none); } else { *dst_mode = NULL; } } static AOM_INLINE void set_mode_cache_for_partition_ab( const MB_MODE_INFO **mode_cache, const PC_TREE *pc_tree, AB_PART_TYPE ab_part_type) { switch (ab_part_type) { case HORZ_A: copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); copy_partition_mode_from_mode_context(&mode_cache[2], pc_tree->horizontal[1]); break; case HORZ_B: copy_partition_mode_from_mode_context(&mode_cache[0], pc_tree->horizontal[0]); copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); break; case VERT_A: copy_partition_mode_from_pc_tree(&mode_cache[0], pc_tree->split[0]); copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[2]); copy_partition_mode_from_mode_context(&mode_cache[2], pc_tree->vertical[1]); break; case VERT_B: copy_partition_mode_from_mode_context(&mode_cache[0], pc_tree->vertical[0]); copy_partition_mode_from_pc_tree(&mode_cache[1], pc_tree->split[1]); copy_partition_mode_from_pc_tree(&mode_cache[2], pc_tree->split[3]); break; default: assert(0 && "Invalid ab partition type!\n"); } } // AB Partitions type search. static void ab_partitions_search( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PC_TREE *pc_tree, PartitionSearchState *part_search_state, RD_STATS *best_rdc, RD_RECT_PART_WIN_INFO *rect_part_win_info, int pb_source_variance, int ext_partition_allowed, const AB_PART_TYPE start_type, const AB_PART_TYPE end_type) { PartitionBlkParams blk_params = part_search_state->part_blk_params; const int mi_row = blk_params.mi_row; const int mi_col = blk_params.mi_col; const BLOCK_SIZE bsize = blk_params.bsize; if (part_search_state->terminate_partition_search) { return; } int ab_partitions_allowed[NUM_AB_PARTS]; // Prune AB partitions av1_prune_ab_partitions(cpi, x, pc_tree, pb_source_variance, best_rdc->rdcost, rect_part_win_info, ext_partition_allowed, part_search_state, ab_partitions_allowed); // Flags to indicate whether the mode search is done. const int is_ctx_ready[NUM_AB_PARTS][2] = { { part_search_state->is_split_ctx_is_ready[0], part_search_state->is_split_ctx_is_ready[1] }, { part_search_state->is_rect_ctx_is_ready[HORZ], 0 }, { part_search_state->is_split_ctx_is_ready[0], 0 }, { part_search_state->is_rect_ctx_is_ready[VERT], 0 } }; // Current partition context. PICK_MODE_CONTEXT **cur_part_ctxs[NUM_AB_PARTS] = { pc_tree->horizontala, pc_tree->horizontalb, pc_tree->verticala, pc_tree->verticalb }; // Context of already evaluted partition types. PICK_MODE_CONTEXT **mode_srch_ctx[NUM_AB_PARTS][2]; // Set context of already evaluted partition types. set_mode_search_ctx(pc_tree, is_ctx_ready, mode_srch_ctx); // Array of sub-partition size of AB partition types. const BLOCK_SIZE ab_subsize[NUM_AB_PARTS][SUB_PARTITIONS_AB] = { { blk_params.split_bsize2, blk_params.split_bsize2, get_partition_subsize(bsize, PARTITION_HORZ_A) }, { get_partition_subsize(bsize, PARTITION_HORZ_B), blk_params.split_bsize2, blk_params.split_bsize2 }, { blk_params.split_bsize2, blk_params.split_bsize2, get_partition_subsize(bsize, PARTITION_VERT_A) }, { get_partition_subsize(bsize, PARTITION_VERT_B), blk_params.split_bsize2, blk_params.split_bsize2 } }; // Array of mi_row, mi_col positions corresponds to each sub-partition in AB // partition types. const int ab_mi_pos[NUM_AB_PARTS][SUB_PARTITIONS_AB][2] = { { { mi_row, mi_col }, { mi_row, blk_params.mi_col_edge }, { blk_params.mi_row_edge, mi_col } }, { { mi_row, mi_col }, { blk_params.mi_row_edge, mi_col }, { blk_params.mi_row_edge, blk_params.mi_col_edge } }, { { mi_row, mi_col }, { blk_params.mi_row_edge, mi_col }, { mi_row, blk_params.mi_col_edge } }, { { mi_row, mi_col }, { mi_row, blk_params.mi_col_edge }, { blk_params.mi_row_edge, blk_params.mi_col_edge } } }; // Loop over AB partition types. for (AB_PART_TYPE ab_part_type = start_type; ab_part_type <= end_type; ab_part_type++) { const PARTITION_TYPE part_type = ab_part_type + PARTITION_HORZ_A; // Check if the AB partition search is to be performed. if (!ab_partitions_allowed[ab_part_type]) { continue; } blk_params.subsize = get_partition_subsize(bsize, part_type); for (int i = 0; i < SUB_PARTITIONS_AB; i++) { // Set AB partition context. cur_part_ctxs[ab_part_type][i] = av1_alloc_pmc( cpi, ab_subsize[ab_part_type][i], &td->shared_coeff_buf); if (!cur_part_ctxs[ab_part_type][i]) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); // Set mode as not ready. cur_part_ctxs[ab_part_type][i]->rd_mode_is_ready = 0; } if (cpi->sf.part_sf.reuse_prev_rd_results_for_part_ab) { // We can copy directly the mode search results if we have already // searched the current block and the contexts match. if (is_ctx_ready[ab_part_type][0]) { av1_copy_tree_context(cur_part_ctxs[ab_part_type][0], mode_srch_ctx[ab_part_type][0][0]); cur_part_ctxs[ab_part_type][0]->mic.partition = part_type; cur_part_ctxs[ab_part_type][0]->rd_mode_is_ready = 1; if (is_ctx_ready[ab_part_type][1]) { av1_copy_tree_context(cur_part_ctxs[ab_part_type][1], mode_srch_ctx[ab_part_type][1][0]); cur_part_ctxs[ab_part_type][1]->mic.partition = part_type; cur_part_ctxs[ab_part_type][1]->rd_mode_is_ready = 1; } } } // Even if the contexts don't match, we can still speed up by reusing the // previous prediction mode. const MB_MODE_INFO *mode_cache[3] = { NULL, NULL, NULL }; if (cpi->sf.part_sf.reuse_best_prediction_for_part_ab) { set_mode_cache_for_partition_ab(mode_cache, pc_tree, ab_part_type); } // Evaluation of AB partition type. rd_pick_ab_part(cpi, td, tile_data, tp, x, x_ctx, pc_tree, cur_part_ctxs[ab_part_type], part_search_state, best_rdc, ab_subsize[ab_part_type], ab_mi_pos[ab_part_type], part_type, mode_cache); } } // Set mi positions for HORZ4 / VERT4 sub-block partitions. static void set_mi_pos_partition4(const int inc_step[NUM_PART4_TYPES], int mi_pos[SUB_PARTITIONS_PART4][2], const int mi_row, const int mi_col) { for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; i++) { mi_pos[i][0] = mi_row + i * inc_step[HORZ4]; mi_pos[i][1] = mi_col + i * inc_step[VERT4]; } } // Set context and RD cost for HORZ4 / VERT4 partition types. static void set_4_part_ctx_and_rdcost( MACROBLOCK *x, const AV1_COMP *const cpi, ThreadData *td, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], PartitionSearchState *part_search_state, PARTITION_TYPE partition_type, BLOCK_SIZE bsize) { // Initialize sum_rdc RD cost structure. av1_init_rd_stats(&part_search_state->sum_rdc); const int subsize = get_partition_subsize(bsize, partition_type); part_search_state->sum_rdc.rate = part_search_state->partition_cost[partition_type]; part_search_state->sum_rdc.rdcost = RDCOST(x->rdmult, part_search_state->sum_rdc.rate, 0); for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { cur_part_ctx[i] = av1_alloc_pmc(cpi, subsize, &td->shared_coeff_buf); if (!cur_part_ctx[i]) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); } } // Partition search of HORZ4 / VERT4 partition types. static void rd_pick_4partition( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, MACROBLOCK *x, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PC_TREE *pc_tree, PICK_MODE_CONTEXT *cur_part_ctx[SUB_PARTITIONS_PART4], PartitionSearchState *part_search_state, RD_STATS *best_rdc, const int inc_step[NUM_PART4_TYPES], PARTITION_TYPE partition_type) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; // mi positions needed for HORZ4 and VERT4 partition types. int mi_pos_check[NUM_PART4_TYPES] = { cm->mi_params.mi_rows, cm->mi_params.mi_cols }; const PART4_TYPES part4_idx = (partition_type != PARTITION_HORZ_4); int mi_pos[SUB_PARTITIONS_PART4][2]; blk_params.subsize = get_partition_subsize(blk_params.bsize, partition_type); // Set partition context and RD cost. set_4_part_ctx_and_rdcost(x, cpi, td, cur_part_ctx, part_search_state, partition_type, blk_params.bsize); // Set mi positions for sub-block sizes. set_mi_pos_partition4(inc_step, mi_pos, blk_params.mi_row, blk_params.mi_col); #if CONFIG_COLLECT_PARTITION_STATS PartitionTimingStats *part_timing_stats = &part_search_state->part_timing_stats; if (best_rdc->rdcost - part_search_state->sum_rdc.rdcost >= 0) { start_partition_block_timer(part_timing_stats, partition_type); } #endif // Loop over sub-block partitions. for (PART4_TYPES i = 0; i < SUB_PARTITIONS_PART4; ++i) { if (i > 0 && mi_pos[i][part4_idx] >= mi_pos_check[part4_idx]) break; // Sub-block evaluation of Horz4 / Vert4 partition type. cur_part_ctx[i]->rd_mode_is_ready = 0; if (!rd_try_subblock( cpi, td, tile_data, tp, (i == SUB_PARTITIONS_PART4 - 1), mi_pos[i][0], mi_pos[i][1], blk_params.subsize, *best_rdc, &part_search_state->sum_rdc, partition_type, cur_part_ctx[i])) { av1_invalid_rd_stats(&part_search_state->sum_rdc); break; } } // Calculate the total cost and update the best partition. av1_rd_cost_update(x->rdmult, &part_search_state->sum_rdc); if (part_search_state->sum_rdc.rdcost < best_rdc->rdcost) { *best_rdc = part_search_state->sum_rdc; part_search_state->found_best_partition = true; pc_tree->partitioning = partition_type; } #if CONFIG_COLLECT_PARTITION_STATS if (part_timing_stats->timer_is_on) { end_partition_block_timer(part_timing_stats, partition_type, part_search_state->sum_rdc.rdcost); } #endif av1_restore_context(x, x_ctx, blk_params.mi_row, blk_params.mi_col, blk_params.bsize, av1_num_planes(cm)); } // Do not evaluate extended partitions if NONE partition is skippable. static INLINE int prune_ext_part_none_skippable( PICK_MODE_CONTEXT *part_none, int must_find_valid_partition, int skip_non_sq_part_based_on_none, BLOCK_SIZE bsize) { if ((skip_non_sq_part_based_on_none >= 1) && (part_none != NULL)) { if (part_none->skippable && !must_find_valid_partition && bsize >= BLOCK_16X16) { return 1; } } return 0; } // Allow ab partition search static int allow_ab_partition_search(PartitionSearchState *part_search_state, PARTITION_SPEED_FEATURES *part_sf, PARTITION_TYPE curr_best_part, int must_find_valid_partition, int prune_ext_part_state, int64_t best_rdcost) { const PartitionBlkParams blk_params = part_search_state->part_blk_params; const BLOCK_SIZE bsize = blk_params.bsize; // Do not prune if there is no valid partition if (best_rdcost == INT64_MAX) return 1; // Determine bsize threshold to evaluate ab partitions BLOCK_SIZE ab_bsize_thresh = part_sf->ext_partition_eval_thresh; if (part_sf->ext_part_eval_based_on_cur_best && !must_find_valid_partition && !(curr_best_part == PARTITION_HORZ || curr_best_part == PARTITION_VERT)) ab_bsize_thresh = BLOCK_128X128; // ab partitions are only allowed for square block sizes BLOCK_16X16 or // higher, so ab_bsize_thresh must be large enough to exclude BLOCK_4X4 and // BLOCK_8X8. assert(ab_bsize_thresh >= BLOCK_8X8); int ab_partition_allowed = part_search_state->do_rectangular_split && bsize > ab_bsize_thresh && av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; return ab_partition_allowed; } // Prune 4-way partitions based on the number of horz/vert wins // in the current block and sub-blocks in PARTITION_SPLIT. static void prune_4_partition_using_split_info( AV1_COMP *const cpi, MACROBLOCK *x, PartitionSearchState *part_search_state, int part4_search_allowed[NUM_PART4_TYPES]) { PART4_TYPES cur_part[NUM_PART4_TYPES] = { HORZ4, VERT4 }; // Count of child blocks in which HORZ or VERT partition has won int num_child_rect_win[NUM_RECT_PARTS] = { 0, 0 }; // Prune HORZ4/VERT4 partitions based on number of HORZ/VERT winners of // split partiitons. // Conservative pruning for high quantizers. const int num_win_thresh = AOMMIN(3 * (MAXQ - x->qindex) / MAXQ + 1, 3); for (RECT_PART_TYPE i = HORZ; i < NUM_RECT_PARTS; i++) { if (!(cpi->sf.part_sf.prune_ext_part_using_split_info && part4_search_allowed[cur_part[i]])) continue; // Loop over split partitions. // Get rectangular partitions winner info of split partitions. for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; idx++) num_child_rect_win[i] += (part_search_state->split_part_rect_win[idx].rect_part_win[i]) ? 1 : 0; if (num_child_rect_win[i] < num_win_thresh) { part4_search_allowed[cur_part[i]] = 0; } } } // Prune 4-way partition search. static void prune_4_way_partition_search( AV1_COMP *const cpi, MACROBLOCK *x, PC_TREE *pc_tree, PartitionSearchState *part_search_state, RD_STATS *best_rdc, int pb_source_variance, int prune_ext_part_state, int part4_search_allowed[NUM_PART4_TYPES]) { const PartitionBlkParams blk_params = part_search_state->part_blk_params; const BLOCK_SIZE bsize = blk_params.bsize; // Do not prune if there is no valid partition if (best_rdc->rdcost == INT64_MAX) return; // Determine bsize threshold to evaluate 4-way partitions BLOCK_SIZE part4_bsize_thresh = cpi->sf.part_sf.ext_partition_eval_thresh; if (cpi->sf.part_sf.ext_part_eval_based_on_cur_best && !x->must_find_valid_partition && pc_tree->partitioning == PARTITION_NONE) part4_bsize_thresh = BLOCK_128X128; // 4-way partitions are only allowed for BLOCK_16X16, BLOCK_32X32, and // BLOCK_64X64, so part4_bsize_thresh must be large enough to exclude // BLOCK_4X4 and BLOCK_8X8. assert(part4_bsize_thresh >= BLOCK_8X8); bool partition4_allowed = part_search_state->do_rectangular_split && bsize > part4_bsize_thresh && av1_blk_has_rows_and_cols(&blk_params) && !prune_ext_part_state; // Disable 4-way partition search flags for width less than a multiple of the // minimum partition width. if (blk_params.width < (blk_params.min_partition_size_1d << cpi->sf.part_sf.prune_part4_search)) { part4_search_allowed[HORZ4] = 0; part4_search_allowed[VERT4] = 0; return; } PARTITION_TYPE cur_part[NUM_PART4_TYPES] = { PARTITION_HORZ_4, PARTITION_VERT_4 }; const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; // partition4_allowed is 1 if we can use a PARTITION_HORZ_4 or // PARTITION_VERT_4 for this block. This is almost the same as // partition4_allowed, except that we don't allow 128x32 or 32x128 // blocks, so we require that bsize is not BLOCK_128X128. partition4_allowed &= part_cfg->enable_1to4_partitions && bsize != BLOCK_128X128; for (PART4_TYPES i = HORZ4; i < NUM_PART4_TYPES; i++) { part4_search_allowed[i] = partition4_allowed && part_search_state->partition_rect_allowed[i] && get_plane_block_size(get_partition_subsize(bsize, cur_part[i]), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; } // Pruning: pruning out 4-way partitions based on the current best partition. if (cpi->sf.part_sf.prune_ext_partition_types_search_level == 2) { part4_search_allowed[HORZ4] &= (pc_tree->partitioning == PARTITION_HORZ || pc_tree->partitioning == PARTITION_HORZ_A || pc_tree->partitioning == PARTITION_HORZ_B || pc_tree->partitioning == PARTITION_SPLIT || pc_tree->partitioning == PARTITION_NONE); part4_search_allowed[VERT4] &= (pc_tree->partitioning == PARTITION_VERT || pc_tree->partitioning == PARTITION_VERT_A || pc_tree->partitioning == PARTITION_VERT_B || pc_tree->partitioning == PARTITION_SPLIT || pc_tree->partitioning == PARTITION_NONE); } // Pruning: pruning out some 4-way partitions using a DNN taking rd costs of // sub-blocks from basic partition types. if (cpi->sf.part_sf.ml_prune_partition && partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && part_search_state->partition_rect_allowed[VERT]) { av1_ml_prune_4_partition(cpi, x, pc_tree->partitioning, best_rdc->rdcost, part_search_state, part4_search_allowed, pb_source_variance); } // Pruning: pruning out 4-way partitions based on the number of horz/vert wins // in the current block and sub-blocks in PARTITION_SPLIT. prune_4_partition_using_split_info(cpi, x, part_search_state, part4_search_allowed); } // Set params needed for PARTITION_NONE search. static void set_none_partition_params(const AV1_COMP *const cpi, ThreadData *td, MACROBLOCK *x, PC_TREE *pc_tree, PartitionSearchState *part_search_state, RD_STATS *best_remain_rdcost, RD_STATS *best_rdc, int *pt_cost) { PartitionBlkParams blk_params = part_search_state->part_blk_params; RD_STATS partition_rdcost; // Set PARTITION_NONE context. if (pc_tree->none == NULL) pc_tree->none = av1_alloc_pmc(cpi, blk_params.bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); // Set PARTITION_NONE type cost. if (part_search_state->partition_none_allowed) { if (blk_params.bsize_at_least_8x8) { *pt_cost = part_search_state->partition_cost[PARTITION_NONE] < INT_MAX ? part_search_state->partition_cost[PARTITION_NONE] : 0; } // Initialize the RD stats structure. av1_init_rd_stats(&partition_rdcost); partition_rdcost.rate = *pt_cost; av1_rd_cost_update(x->rdmult, &partition_rdcost); av1_rd_stats_subtraction(x->rdmult, best_rdc, &partition_rdcost, best_remain_rdcost); } } // Skip other partitions based on PARTITION_NONE rd cost. static void prune_partitions_after_none(AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, PICK_MODE_CONTEXT *ctx_none, PartitionSearchState *part_search_state, RD_STATS *best_rdc, unsigned int *pb_source_variance) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; const PartitionBlkParams blk_params = part_search_state->part_blk_params; RD_STATS *this_rdc = &part_search_state->this_rdc; const BLOCK_SIZE bsize = blk_params.bsize; assert(bsize < BLOCK_SIZES_ALL); if (!frame_is_intra_only(cm) && (part_search_state->do_square_split || part_search_state->do_rectangular_split) && !x->e_mbd.lossless[xd->mi[0]->segment_id] && ctx_none->skippable) { const int use_ml_based_breakout = bsize <= cpi->sf.part_sf.use_square_partition_only_threshold && bsize > BLOCK_4X4 && cpi->sf.part_sf.ml_predict_breakout_level >= 1; if (use_ml_based_breakout) { av1_ml_predict_breakout(cpi, x, this_rdc, *pb_source_variance, xd->bd, part_search_state); } // Adjust dist breakout threshold according to the partition size. const int64_t dist_breakout_thr = cpi->sf.part_sf.partition_search_breakout_dist_thr >> ((2 * (MAX_SB_SIZE_LOG2 - 2)) - (mi_size_wide_log2[bsize] + mi_size_high_log2[bsize])); const int rate_breakout_thr = cpi->sf.part_sf.partition_search_breakout_rate_thr * num_pels_log2_lookup[bsize]; // If all y, u, v transform blocks in this partition are skippable, // and the dist & rate are within the thresholds, the partition // search is terminated for current branch of the partition search // tree. The dist & rate thresholds are set to 0 at speed 0 to // disable the early termination at that speed. if (best_rdc->dist < dist_breakout_thr && best_rdc->rate < rate_breakout_thr) { part_search_state->do_square_split = 0; part_search_state->do_rectangular_split = 0; } } // Early termination: using simple_motion_search features and the // rate, distortion, and rdcost of PARTITION_NONE, a DNN will make a // decision on early terminating at PARTITION_NONE. if (cpi->sf.part_sf.simple_motion_search_early_term_none && cm->show_frame && !frame_is_intra_only(cm) && bsize >= BLOCK_16X16 && av1_blk_has_rows_and_cols(&blk_params) && this_rdc->rdcost < INT64_MAX && this_rdc->rdcost >= 0 && this_rdc->rate < INT_MAX && this_rdc->rate >= 0 && (part_search_state->do_square_split || part_search_state->do_rectangular_split)) { av1_simple_motion_search_early_term_none(cpi, x, sms_tree, this_rdc, part_search_state); } } // Decide early termination and rectangular partition pruning // based on PARTITION_NONE and PARTITION_SPLIT costs. static void prune_partitions_after_split( AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, PartitionSearchState *part_search_state, RD_STATS *best_rdc, int64_t part_none_rd, int64_t part_split_rd) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; const int mi_row = blk_params.mi_row; const int mi_col = blk_params.mi_col; const BLOCK_SIZE bsize = blk_params.bsize; assert(bsize < BLOCK_SIZES_ALL); // Early termination: using the rd costs of PARTITION_NONE and subblocks // from PARTITION_SPLIT to determine an early breakout. if (cpi->sf.part_sf.ml_early_term_after_part_split_level && !frame_is_intra_only(cm) && !part_search_state->terminate_partition_search && part_search_state->do_rectangular_split && (part_search_state->partition_rect_allowed[HORZ] || part_search_state->partition_rect_allowed[VERT])) { av1_ml_early_term_after_split( cpi, x, sms_tree, best_rdc->rdcost, part_none_rd, part_split_rd, part_search_state->split_rd, part_search_state); } // Use the rd costs of PARTITION_NONE and subblocks from PARTITION_SPLIT // to prune out rectangular partitions in some directions. if (!cpi->sf.part_sf.ml_early_term_after_part_split_level && cpi->sf.part_sf.ml_prune_partition && !frame_is_intra_only(cm) && (part_search_state->partition_rect_allowed[HORZ] || part_search_state->partition_rect_allowed[VERT]) && !(part_search_state->prune_rect_part[HORZ] || part_search_state->prune_rect_part[VERT]) && !part_search_state->terminate_partition_search) { av1_setup_src_planes(x, cpi->source, mi_row, mi_col, av1_num_planes(cm), bsize); av1_ml_prune_rect_partition(cpi, x, best_rdc->rdcost, part_search_state->none_rd, part_search_state->split_rd, part_search_state); } } // Returns true if either of the left and top neighbor blocks is larger than // the current block; false otherwise. static AOM_INLINE bool is_neighbor_blk_larger_than_cur_blk( const MACROBLOCKD *xd, BLOCK_SIZE bsize) { const int cur_blk_area = (block_size_high[bsize] * block_size_wide[bsize]); if (xd->left_available) { const BLOCK_SIZE left_bsize = xd->left_mbmi->bsize; if (block_size_high[left_bsize] * block_size_wide[left_bsize] > cur_blk_area) return true; } if (xd->up_available) { const BLOCK_SIZE above_bsize = xd->above_mbmi->bsize; if (block_size_high[above_bsize] * block_size_wide[above_bsize] > cur_blk_area) return true; } return false; } static AOM_INLINE void prune_rect_part_using_none_pred_mode( const MACROBLOCKD *xd, PartitionSearchState *part_state, PREDICTION_MODE mode, BLOCK_SIZE bsize) { if (mode == DC_PRED || mode == SMOOTH_PRED) { // If the prediction mode of NONE partition is either DC_PRED or // SMOOTH_PRED, it indicates that the current block has less variation. In // this case, HORZ and VERT partitions are pruned if at least one of left // and top neighbor blocks is larger than the current block. if (is_neighbor_blk_larger_than_cur_blk(xd, bsize)) { part_state->prune_rect_part[HORZ] = 1; part_state->prune_rect_part[VERT] = 1; } } else if (mode == D67_PRED || mode == V_PRED || mode == D113_PRED) { // If the prediction mode chosen by NONE partition is close to 90 degrees, // it implies a dominant vertical pattern, and the chance of choosing a // vertical rectangular partition is high. Hence, horizontal partition is // pruned in these cases. part_state->prune_rect_part[HORZ] = 1; } else if (mode == D157_PRED || mode == H_PRED || mode == D203_PRED) { // If the prediction mode chosen by NONE partition is close to 180 degrees, // it implies a dominant horizontal pattern, and the chance of choosing a // horizontal rectangular partition is high. Hence, vertical partition is // pruned in these cases. part_state->prune_rect_part[VERT] = 1; } } // PARTITION_NONE search. static void none_partition_search( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, MACROBLOCK *x, PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PartitionSearchState *part_search_state, RD_STATS *best_rdc, unsigned int *pb_source_variance, int64_t *none_rd, int64_t *part_none_rd) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; RD_STATS *this_rdc = &part_search_state->this_rdc; const int mi_row = blk_params.mi_row; const int mi_col = blk_params.mi_col; const BLOCK_SIZE bsize = blk_params.bsize; assert(bsize < BLOCK_SIZES_ALL); if (part_search_state->terminate_partition_search || !part_search_state->partition_none_allowed) return; int pt_cost = 0; RD_STATS best_remain_rdcost; av1_invalid_rd_stats(&best_remain_rdcost); // Set PARTITION_NONE context and cost. set_none_partition_params(cpi, td, x, pc_tree, part_search_state, &best_remain_rdcost, best_rdc, &pt_cost); #if CONFIG_COLLECT_PARTITION_STATS // Timer start for partition None. PartitionTimingStats *part_timing_stats = &part_search_state->part_timing_stats; if (best_remain_rdcost.rdcost >= 0) { start_partition_block_timer(part_timing_stats, PARTITION_NONE); } #endif // PARTITION_NONE evaluation and cost update. pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, this_rdc, PARTITION_NONE, bsize, pc_tree->none, best_remain_rdcost); av1_rd_cost_update(x->rdmult, this_rdc); #if CONFIG_COLLECT_PARTITION_STATS // Timer end for partition None. if (part_timing_stats->timer_is_on) { RD_STATS tmp_rdc; av1_init_rd_stats(&tmp_rdc); if (this_rdc->rate != INT_MAX) { tmp_rdc.rate = this_rdc->rate; tmp_rdc.dist = this_rdc->dist; tmp_rdc.rdcost = this_rdc->rdcost; if (blk_params.bsize_at_least_8x8) { tmp_rdc.rate += pt_cost; tmp_rdc.rdcost = RDCOST(x->rdmult, tmp_rdc.rate, tmp_rdc.dist); } } end_partition_block_timer(part_timing_stats, PARTITION_NONE, tmp_rdc.rdcost); } #endif *pb_source_variance = x->source_variance; if (none_rd) *none_rd = this_rdc->rdcost; part_search_state->none_rd = this_rdc->rdcost; if (this_rdc->rate != INT_MAX) { // Record picked ref frame to prune ref frames for other partition types. if (cpi->sf.inter_sf.prune_ref_frame_for_rect_partitions) { const int ref_type = av1_ref_frame_type(pc_tree->none->mic.ref_frame); av1_update_picked_ref_frames_mask( x, ref_type, bsize, cm->seq_params->mib_size, mi_row, mi_col); } // Calculate the total cost and update the best partition. if (blk_params.bsize_at_least_8x8) { this_rdc->rate += pt_cost; this_rdc->rdcost = RDCOST(x->rdmult, this_rdc->rate, this_rdc->dist); } *part_none_rd = this_rdc->rdcost; if (this_rdc->rdcost < best_rdc->rdcost) { *best_rdc = *this_rdc; part_search_state->found_best_partition = true; if (blk_params.bsize_at_least_8x8) { pc_tree->partitioning = PARTITION_NONE; } // Disable split and rectangular partition search // based on PARTITION_NONE cost. prune_partitions_after_none(cpi, x, sms_tree, pc_tree->none, part_search_state, best_rdc, pb_source_variance); } if (cpi->sf.part_sf.prune_rect_part_using_none_pred_mode) prune_rect_part_using_none_pred_mode(&x->e_mbd, part_search_state, pc_tree->none->mic.mode, bsize); } av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); } // PARTITION_SPLIT search. static void split_partition_search( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, MACROBLOCK *x, PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, RD_SEARCH_MACROBLOCK_CONTEXT *x_ctx, PartitionSearchState *part_search_state, RD_STATS *best_rdc, SB_MULTI_PASS_MODE multi_pass_mode, int64_t *part_split_rd) { const AV1_COMMON *const cm = &cpi->common; PartitionBlkParams blk_params = part_search_state->part_blk_params; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int mi_row = blk_params.mi_row; const int mi_col = blk_params.mi_col; const BLOCK_SIZE bsize = blk_params.bsize; assert(bsize < BLOCK_SIZES_ALL); RD_STATS sum_rdc = part_search_state->sum_rdc; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); // Check if partition split is allowed. if (part_search_state->terminate_partition_search || !part_search_state->do_square_split) return; for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { if (pc_tree->split[i] == NULL) pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); pc_tree->split[i]->index = i; } // Initialization of this partition RD stats. av1_init_rd_stats(&sum_rdc); sum_rdc.rate = part_search_state->partition_cost[PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, 0); int idx; #if CONFIG_COLLECT_PARTITION_STATS PartitionTimingStats *part_timing_stats = &part_search_state->part_timing_stats; if (best_rdc->rdcost - sum_rdc.rdcost >= 0) { start_partition_block_timer(part_timing_stats, PARTITION_SPLIT); } #endif // Recursive partition search on 4 sub-blocks. for (idx = 0; idx < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc->rdcost; ++idx) { const int x_idx = (idx & 1) * blk_params.mi_step; const int y_idx = (idx >> 1) * blk_params.mi_step; if (mi_row + y_idx >= mi_params->mi_rows || mi_col + x_idx >= mi_params->mi_cols) continue; pc_tree->split[idx]->index = idx; int64_t *p_split_rd = &part_search_state->split_rd[idx]; RD_STATS best_remain_rdcost; av1_rd_stats_subtraction(x->rdmult, best_rdc, &sum_rdc, &best_remain_rdcost); int curr_quad_tree_idx = 0; if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { curr_quad_tree_idx = part_search_state->intra_part_info->quad_tree_idx; part_search_state->intra_part_info->quad_tree_idx = 4 * curr_quad_tree_idx + idx + 1; } // Split partition evaluation of corresponding idx. // If the RD cost exceeds the best cost then do not // evaluate other split sub-partitions. SIMPLE_MOTION_DATA_TREE *const sms_tree_split = (sms_tree == NULL) ? NULL : sms_tree->split[idx]; if (!av1_rd_pick_partition( cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &part_search_state->this_rdc, best_remain_rdcost, pc_tree->split[idx], sms_tree_split, p_split_rd, multi_pass_mode, &part_search_state->split_part_rect_win[idx])) { av1_invalid_rd_stats(&sum_rdc); break; } if (frame_is_intra_only(cm) && bsize <= BLOCK_64X64) { part_search_state->intra_part_info->quad_tree_idx = curr_quad_tree_idx; } sum_rdc.rate += part_search_state->this_rdc.rate; sum_rdc.dist += part_search_state->this_rdc.dist; av1_rd_cost_update(x->rdmult, &sum_rdc); // Set split ctx as ready for use. if (idx <= 1 && (bsize <= BLOCK_8X8 || pc_tree->split[idx]->partitioning == PARTITION_NONE)) { const MB_MODE_INFO *const mbmi = &pc_tree->split[idx]->none->mic; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; // Neither palette mode nor cfl predicted. if (pmi->palette_size[0] == 0 && pmi->palette_size[1] == 0) { if (mbmi->uv_mode != UV_CFL_PRED) part_search_state->is_split_ctx_is_ready[idx] = 1; } } } #if CONFIG_COLLECT_PARTITION_STATS if (part_timing_stats->timer_is_on) { end_partition_block_timer(part_timing_stats, PARTITION_SPLIT, sum_rdc.rdcost); } #endif const int reached_last_index = (idx == SUB_PARTITIONS_SPLIT); // Calculate the total cost and update the best partition. *part_split_rd = sum_rdc.rdcost; if (reached_last_index && sum_rdc.rdcost < best_rdc->rdcost) { sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); if (sum_rdc.rdcost < best_rdc->rdcost) { *best_rdc = sum_rdc; part_search_state->found_best_partition = true; pc_tree->partitioning = PARTITION_SPLIT; } } else if (cpi->sf.part_sf.less_rectangular_check_level > 0) { // Skip rectangular partition test when partition type none gives better // rd than partition type split. if (cpi->sf.part_sf.less_rectangular_check_level == 2 || idx <= 2) { const int partition_none_valid = part_search_state->none_rd > 0; const int partition_none_better = part_search_state->none_rd < sum_rdc.rdcost; part_search_state->do_rectangular_split &= !(partition_none_valid && partition_none_better); } } // Restore the context for the following cases: // 1) Current block size not more than maximum partition size as dry run // encode happens for these cases // 2) Current block size same as superblock size as the final encode // happens for this case if (bsize <= x->sb_enc.max_partition_size || bsize == cm->seq_params->sb_size) av1_restore_context(x, x_ctx, mi_row, mi_col, bsize, av1_num_planes(cm)); } // The max number of nodes in the partition tree. // The number of leaf nodes is (128x128) / (4x4) = 1024. // The number of All possible parent nodes is 1 + 2 + ... + 512 = 1023. #define NUM_NODES 2048 static void write_partition_tree(AV1_COMP *const cpi, const PC_TREE *const pc_tree, const BLOCK_SIZE bsize, const int mi_row, const int mi_col) { (void)mi_row; (void)mi_col; const char *path = cpi->oxcf.partition_info_path; char filename[256]; snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, cpi->sb_counter, 0); FILE *pfile = fopen(filename, "w"); fprintf(pfile, "%d", bsize); // Write partition type with BFS order. const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; int q_idx = 0; int last_idx = 1; int num_nodes = 1; // First traversal to get number of leaf nodes. tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { const PC_TREE *node = tree_node_queue[q_idx]; if (node->partitioning == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { tree_node_queue[last_idx] = node->split[i]; ++last_idx; } num_nodes += 4; } --num_nodes; ++q_idx; } const int num_leafs = last_idx; fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); // Write partitions for each node. q_idx = 0; last_idx = 1; num_nodes = 1; tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { const PC_TREE *node = tree_node_queue[q_idx]; fprintf(pfile, ",%d", node->partitioning); if (node->partitioning == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { tree_node_queue[last_idx] = node->split[i]; ++last_idx; } num_nodes += 4; } --num_nodes; ++q_idx; } fprintf(pfile, "\n"); fclose(pfile); } #if CONFIG_PARTITION_SEARCH_ORDER static void verify_write_partition_tree(const AV1_COMP *const cpi, const PC_TREE *const pc_tree, const BLOCK_SIZE bsize, const int config_id, const int mi_row, const int mi_col) { (void)mi_row; (void)mi_col; const char *path = cpi->oxcf.partition_info_path; char filename[256]; snprintf(filename, sizeof(filename), "%s/verify_partition_tree_sb%d_c%d", path, cpi->sb_counter, config_id); FILE *pfile = fopen(filename, "w"); fprintf(pfile, "%d", bsize); // Write partition type with BFS order. const PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; int q_idx = 0; int last_idx = 1; int num_nodes = 1; // First traversal to get number of leaf nodes. tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { const PC_TREE *node = tree_node_queue[q_idx]; if (node != NULL && node->partitioning == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { tree_node_queue[last_idx] = node->split[i]; ++last_idx; } num_nodes += 4; } --num_nodes; ++q_idx; } const int num_leafs = last_idx; fprintf(pfile, ",%d,%d", num_leafs, /*num_configs=*/1); // Write partitions for each node. q_idx = 0; last_idx = 1; num_nodes = 1; tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { const PC_TREE *node = tree_node_queue[q_idx]; if (node != NULL) { // suppress warning fprintf(pfile, ",%d", node->partitioning); if (node->partitioning == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { tree_node_queue[last_idx] = node->split[i]; ++last_idx; } num_nodes += 4; } } --num_nodes; ++q_idx; } fprintf(pfile, "\n"); fclose(pfile); } static int read_partition_tree(AV1_COMP *const cpi, PC_TREE *const pc_tree, struct aom_internal_error_info *error_info, const int config_id) { const AV1_COMMON *const cm = &cpi->common; const char *path = cpi->oxcf.partition_info_path; char filename[256]; snprintf(filename, sizeof(filename), "%s/partition_tree_sb%d_c%d", path, cpi->sb_counter, config_id); FILE *pfile = fopen(filename, "r"); if (pfile == NULL) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Can't find input file: %s.", filename); } int read_bsize; int num_nodes; int num_configs; fscanf(pfile, "%d,%d,%d", &read_bsize, &num_nodes, &num_configs); assert(read_bsize == cpi->common.seq_params->sb_size); BLOCK_SIZE bsize = (BLOCK_SIZE)read_bsize; assert(bsize == pc_tree->block_size); PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; int last_idx = 1; int q_idx = 0; tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { int partitioning; fscanf(pfile, ",%d", &partitioning); assert(partitioning >= PARTITION_NONE && partitioning < EXT_PARTITION_TYPES); PC_TREE *node = tree_node_queue[q_idx]; if (node != NULL) { node->partitioning = partitioning; bsize = node->block_size; } if (partitioning == PARTITION_SPLIT) { const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int i = 0; i < 4; ++i) { if (node != NULL) { // Suppress warning node->split[i] = av1_alloc_pc_tree_node(subsize); if (!node->split[i]) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); node->split[i]->index = i; tree_node_queue[last_idx] = node->split[i]; ++last_idx; } } } --num_nodes; ++q_idx; } fclose(pfile); return num_configs; } static RD_STATS rd_search_for_fixed_partition( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_tree, int mi_row, int mi_col, const BLOCK_SIZE bsize, PC_TREE *pc_tree) { const PARTITION_TYPE partition = pc_tree->partitioning; const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; TileInfo *const tile_info = &tile_data->tile_info; RD_STATS best_rdc; av1_invalid_rd_stats(&best_rdc); int sum_subblock_rate = 0; int64_t sum_subblock_dist = 0; PartitionSearchState part_search_state; init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, bsize); // Override partition costs at the edges of the frame in the same // way as in read_partition (see decodeframe.c). PartitionBlkParams blk_params = part_search_state.part_blk_params; if (!av1_blk_has_rows_and_cols(&blk_params)) set_partition_cost_for_edge_blk(cm, &part_search_state); av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); // Save rdmult before it might be changed, so it can be restored later. const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); (void)orig_rdmult; // Set the context. RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); assert(bsize < BLOCK_SIZES_ALL); unsigned int pb_source_variance = UINT_MAX; int64_t part_none_rd = INT64_MAX; int64_t none_rd = INT64_MAX; int inc_step[NUM_PART4_TYPES] = { 0 }; if (partition == PARTITION_HORZ_4) inc_step[HORZ4] = mi_size_high[bsize] / 4; if (partition == PARTITION_VERT_4) inc_step[VERT4] = mi_size_wide[bsize] / 4; switch (partition) { case PARTITION_NONE: none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, &part_search_state, &best_rdc, &pb_source_variance, &none_rd, &part_none_rd); break; case PARTITION_HORZ: rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, &part_search_state, &best_rdc, NULL, HORZ, HORZ); break; case PARTITION_VERT: rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, &part_search_state, &best_rdc, NULL, VERT, VERT); break; case PARTITION_HORZ_A: ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, &part_search_state, &best_rdc, NULL, pb_source_variance, 1, HORZ_A, HORZ_A); break; case PARTITION_HORZ_B: ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, &part_search_state, &best_rdc, NULL, pb_source_variance, 1, HORZ_B, HORZ_B); break; case PARTITION_VERT_A: ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, &part_search_state, &best_rdc, NULL, pb_source_variance, 1, VERT_A, VERT_A); break; case PARTITION_VERT_B: ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, &part_search_state, &best_rdc, NULL, pb_source_variance, 1, VERT_B, VERT_B); break; case PARTITION_HORZ_4: rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, pc_tree->horizontal4, &part_search_state, &best_rdc, inc_step, PARTITION_HORZ_4); break; case PARTITION_VERT_4: rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, pc_tree->vertical4, &part_search_state, &best_rdc, inc_step, PARTITION_VERT_4); break; case PARTITION_SPLIT: for (int idx = 0; idx < SUB_PARTITIONS_SPLIT; ++idx) { const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); assert(subsize < BLOCK_SIZES_ALL); const int next_mi_row = idx < 2 ? mi_row : mi_row + mi_size_high[subsize]; const int next_mi_col = idx % 2 == 0 ? mi_col : mi_col + mi_size_wide[subsize]; if (next_mi_row >= cm->mi_params.mi_rows || next_mi_col >= cm->mi_params.mi_cols) { continue; } const RD_STATS subblock_rdc = rd_search_for_fixed_partition( cpi, td, tile_data, tp, sms_tree->split[idx], next_mi_row, next_mi_col, subsize, pc_tree->split[idx]); sum_subblock_rate += subblock_rdc.rate; sum_subblock_dist += subblock_rdc.dist; } best_rdc.rate = sum_subblock_rate; best_rdc.rate += part_search_state.partition_cost[PARTITION_SPLIT]; best_rdc.dist = sum_subblock_dist; best_rdc.rdcost = RDCOST(x->rdmult, best_rdc.rate, best_rdc.dist); break; default: assert(0 && "invalid partition type."); aom_internal_error(cm->error, AOM_CODEC_ERROR, "Invalid partition type."); } // Note: it is necessary to restore context information. av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); if (bsize != cm->seq_params->sb_size) { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } x->rdmult = orig_rdmult; return best_rdc; } static void prepare_sb_features_before_search( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, int mi_row, int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features) { av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, bsize, features); collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, features); } static void update_partition_stats(const RD_STATS *const this_rdcost, aom_partition_stats_t *stats) { stats->rate = this_rdcost->rate; stats->dist = this_rdcost->dist; stats->rdcost = this_rdcost->rdcost; } static void build_pc_tree_from_part_decision( const aom_partition_decision_t *partition_decision, const BLOCK_SIZE this_bsize, PC_TREE *pc_tree, struct aom_internal_error_info *error_info) { BLOCK_SIZE bsize = this_bsize; int num_nodes = partition_decision->num_nodes; PC_TREE *tree_node_queue[NUM_NODES] = { NULL }; int last_idx = 1; int q_idx = 0; tree_node_queue[q_idx] = pc_tree; while (num_nodes > 0) { const int partitioning = partition_decision->partition_decision[q_idx]; assert(partitioning >= PARTITION_NONE && partitioning < EXT_PARTITION_TYPES); PC_TREE *node = tree_node_queue[q_idx]; if (node != NULL) { node->partitioning = partitioning; bsize = node->block_size; } if (partitioning == PARTITION_SPLIT) { const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); for (int i = 0; i < 4; ++i) { if (node != NULL) { // Suppress warning node->split[i] = av1_alloc_pc_tree_node(subsize); if (!node->split[i]) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); node->split[i]->index = i; tree_node_queue[last_idx] = node->split[i]; ++last_idx; } } } --num_nodes; ++q_idx; } } // The ML model needs to provide the whole decision tree for the superblock. static bool ml_partition_search_whole_tree(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, int mi_col, const BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; ExtPartController *const ext_part_controller = &cpi->ext_part_controller; struct aom_internal_error_info *error_info = x->e_mbd.error_info; aom_partition_features_t features; prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, &features); features.mi_row = mi_row; features.mi_col = mi_col; features.frame_width = cpi->frame_info.frame_width; features.frame_height = cpi->frame_info.frame_height; features.block_size = bsize; av1_ext_part_send_features(ext_part_controller, &features); // rd mode search (dry run) for a valid partition decision from the ml model. aom_partition_decision_t partition_decision; do { const bool valid_decision = av1_ext_part_get_partition_decision( ext_part_controller, &partition_decision); if (!valid_decision) return false; // First, let's take the easy approach. // We require that the ml model has to provide partition decisions for the // whole superblock. td->pc_root = av1_alloc_pc_tree_node(bsize); if (!td->pc_root) aom_internal_error(error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); build_pc_tree_from_part_decision(&partition_decision, bsize, td->pc_root, error_info); const RD_STATS this_rdcost = rd_search_for_fixed_partition( cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); aom_partition_stats_t stats; update_partition_stats(&this_rdcost, &stats); av1_ext_part_send_partition_stats(ext_part_controller, &stats); if (!partition_decision.is_final_decision) { av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; } } while (!partition_decision.is_final_decision); // Encode with the selected mode and partition. set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, td->pc_root, NULL); av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; return true; } // Use a bitmask to represent the valid partition types for the current // block. "1" represents the corresponding partition type is vaild. // The least significant bit represents "PARTITION_NONE", the // largest significant bit represents "PARTITION_VERT_4", follow // the enum order for PARTITION_TYPE in "enums.h" static int get_valid_partition_types( const AV1_COMP *const cpi, const PartitionSearchState *const part_search_state, const BLOCK_SIZE bsize) { const PartitionCfg *const part_cfg = &cpi->oxcf.part_cfg; const PartitionBlkParams blk_params = part_search_state->part_blk_params; int valid_types = 0; // PARTITION_NONE valid_types |= (part_search_state->partition_none_allowed << 0); // PARTITION_HORZ valid_types |= (part_search_state->partition_rect_allowed[HORZ] << 1); // PARTITION_VERT valid_types |= (part_search_state->partition_rect_allowed[VERT] << 2); // PARTITION_SPLIT valid_types |= (part_search_state->do_square_split << 3); // PARTITION_HORZ_A const int ext_partition_allowed = part_search_state->do_rectangular_split && av1_blk_has_rows_and_cols(&blk_params); const int horzab_partition_allowed = ext_partition_allowed && part_cfg->enable_ab_partitions && part_search_state->partition_rect_allowed[HORZ]; valid_types |= (horzab_partition_allowed << 4); // PARTITION_HORZ_B valid_types |= (horzab_partition_allowed << 5); // PARTITION_VERT_A const int vertab_partition_allowed = ext_partition_allowed && part_cfg->enable_ab_partitions && part_search_state->partition_rect_allowed[VERT]; valid_types |= (vertab_partition_allowed << 6); // PARTITION_VERT_B valid_types |= (vertab_partition_allowed << 7); // PARTITION_HORZ_4 const int partition4_allowed = part_cfg->enable_1to4_partitions && ext_partition_allowed && bsize != BLOCK_128X128; const int horz4_allowed = partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && get_plane_block_size(get_partition_subsize(bsize, PARTITION_HORZ_4), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; valid_types |= (horz4_allowed << 8); // PARTITION_VERT_4 const int vert4_allowed = partition4_allowed && part_search_state->partition_rect_allowed[HORZ] && get_plane_block_size(get_partition_subsize(bsize, PARTITION_VERT_4), part_search_state->ss_x, part_search_state->ss_y) != BLOCK_INVALID; valid_types |= (vert4_allowed << 9); return valid_types; } static void prepare_tpl_stats_block(const AV1_COMP *const cpi, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int64_t *intra_cost, int64_t *inter_cost, int64_t *mc_dep_cost) { const AV1_COMMON *const cm = &cpi->common; GF_GROUP *gf_group = &cpi->ppi->gf_group; if (gf_group->update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE || gf_group->update_type[cpi->gf_frame_index] == OVERLAY_UPDATE) { return; } TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[cpi->gf_frame_index]; TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; // If tpl stats is not established, early return if (!tpl_data->ready || gf_group->max_layer_depth_allowed == 0) { return; } const int tpl_stride = tpl_frame->stride; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; const int mi_width = AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); const int mi_height = AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); int64_t sum_intra_cost = 0; int64_t sum_inter_cost = 0; int64_t sum_mc_dep_cost = 0; for (int row = 0; row < mi_height; row += step) { for (int col = 0; col < mi_width; col += step) { TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos(mi_row + row, mi_col + col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; sum_intra_cost += this_stats->intra_cost; sum_inter_cost += this_stats->inter_cost; const int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); sum_mc_dep_cost += mc_dep_delta; } } *intra_cost = sum_intra_cost; *inter_cost = sum_inter_cost; *mc_dep_cost = sum_mc_dep_cost; } static bool recursive_partition(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_root, PC_TREE *pc_tree, int mi_row, int mi_col, const BLOCK_SIZE bsize, RD_STATS *this_rdcost) { const AV1_COMMON *const cm = &cpi->common; ExtPartController *const ext_part_controller = &cpi->ext_part_controller; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) { return false; } aom_partition_decision_t partition_decision; do { PartitionSearchState part_search_state; // Initialization of state variables used in partition search. // TODO(chengchen): check if there is hidden conditions that don't allow // all possible partition types. init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, bsize); // Override partition costs at the edges of the frame in the same // way as in read_partition (see decodeframe.c). PartitionBlkParams blk_params = part_search_state.part_blk_params; if (!av1_blk_has_rows_and_cols(&blk_params)) set_partition_cost_for_edge_blk(cm, &part_search_state); const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); const int valid_partition_types = get_valid_partition_types(cpi, &part_search_state, bsize); const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); const int qindex = av1_get_qindex(&cm->seg, xd->mi[0]->segment_id, cm->quant_params.base_qindex); // RD multiplier const int rdmult = x->rdmult; // pyramid level const int pyramid_level = cpi->ppi->gf_group.layer_depth[cpi->gf_frame_index]; x->rdmult = orig_rdmult; // Neighbor information const int has_above = !!xd->above_mbmi; const int has_left = !!xd->left_mbmi; const BLOCK_SIZE above_bsize = has_above ? xd->above_mbmi->bsize : BLOCK_INVALID; const BLOCK_SIZE left_bsize = has_left ? xd->left_mbmi->bsize : BLOCK_INVALID; const int above_block_width = above_bsize == BLOCK_INVALID ? -1 : block_size_wide[above_bsize]; const int above_block_height = above_bsize == BLOCK_INVALID ? -1 : block_size_high[above_bsize]; const int left_block_width = left_bsize == BLOCK_INVALID ? -1 : block_size_wide[left_bsize]; const int left_block_height = left_bsize == BLOCK_INVALID ? -1 : block_size_high[left_bsize]; // Prepare simple motion search stats as features unsigned int block_sse = -1; unsigned int block_var = -1; unsigned int sub_block_sse[4] = { -1, -1, -1, -1 }; unsigned int sub_block_var[4] = { -1, -1, -1, -1 }; unsigned int horz_block_sse[2] = { -1, -1 }; unsigned int horz_block_var[2] = { -1, -1 }; unsigned int vert_block_sse[2] = { -1, -1 }; unsigned int vert_block_var[2] = { -1, -1 }; av1_prepare_motion_search_features_block( cpi, td, tile_data, mi_row, mi_col, bsize, valid_partition_types, &block_sse, &block_var, sub_block_sse, sub_block_var, horz_block_sse, horz_block_var, vert_block_sse, vert_block_var); // Prepare tpl stats for the current block as features int64_t tpl_intra_cost = -1; int64_t tpl_inter_cost = -1; int64_t tpl_mc_dep_cost = -1; prepare_tpl_stats_block(cpi, bsize, mi_row, mi_col, &tpl_intra_cost, &tpl_inter_cost, &tpl_mc_dep_cost); aom_partition_features_t features; features.mi_row = mi_row; features.mi_col = mi_col; features.frame_width = cpi->frame_info.frame_width; features.frame_height = cpi->frame_info.frame_height; features.block_size = bsize; features.valid_partition_types = valid_partition_types; features.update_type = update_type; features.qindex = qindex; features.rdmult = rdmult; features.pyramid_level = pyramid_level; features.has_above_block = has_above; features.above_block_width = above_block_width; features.above_block_height = above_block_height; features.has_left_block = has_left; features.left_block_width = left_block_width; features.left_block_height = left_block_height; features.block_sse = block_sse; features.block_var = block_var; for (int i = 0; i < 4; ++i) { features.sub_block_sse[i] = sub_block_sse[i]; features.sub_block_var[i] = sub_block_var[i]; } for (int i = 0; i < 2; ++i) { features.horz_block_sse[i] = horz_block_sse[i]; features.horz_block_var[i] = horz_block_var[i]; features.vert_block_sse[i] = vert_block_sse[i]; features.vert_block_var[i] = vert_block_var[i]; } features.tpl_intra_cost = tpl_intra_cost; features.tpl_inter_cost = tpl_inter_cost; features.tpl_mc_dep_cost = tpl_mc_dep_cost; av1_ext_part_send_features(ext_part_controller, &features); const bool valid_decision = av1_ext_part_get_partition_decision( ext_part_controller, &partition_decision); if (!valid_decision) return false; pc_tree->partitioning = partition_decision.current_decision; av1_init_rd_stats(this_rdcost); if (partition_decision.current_decision == PARTITION_SPLIT) { assert(block_size_wide[bsize] >= 8 && block_size_high[bsize] >= 8); const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); RD_STATS split_rdc[SUB_PARTITIONS_SPLIT]; for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { av1_init_rd_stats(&split_rdc[i]); if (pc_tree->split[i] == NULL) pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); pc_tree->split[i]->index = i; } const int orig_rdmult_tmp = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); // TODO(chengchen): check boundary conditions // top-left recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[0], mi_row, mi_col, subsize, &split_rdc[0]); // top-right recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[1], mi_row, mi_col + mi_size_wide[subsize], subsize, &split_rdc[1]); // bottom-left recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[2], mi_row + mi_size_high[subsize], mi_col, subsize, &split_rdc[2]); // bottom_right recursive_partition(cpi, td, tile_data, tp, sms_root, pc_tree->split[3], mi_row + mi_size_high[subsize], mi_col + mi_size_wide[subsize], subsize, &split_rdc[3]); this_rdcost->rate += part_search_state.partition_cost[PARTITION_SPLIT]; // problem is here, the rdmult is different from the rdmult in sub block. for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { this_rdcost->rate += split_rdc[i].rate; this_rdcost->dist += split_rdc[i].dist; av1_rd_cost_update(x->rdmult, this_rdcost); } x->rdmult = orig_rdmult_tmp; } else { *this_rdcost = rd_search_for_fixed_partition( cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, pc_tree); } aom_partition_stats_t stats; update_partition_stats(this_rdcost, &stats); av1_ext_part_send_partition_stats(ext_part_controller, &stats); if (!partition_decision.is_final_decision) { if (partition_decision.current_decision == PARTITION_SPLIT) { for (int i = 0; i < 4; ++i) { if (pc_tree->split[i] != NULL) { av1_free_pc_tree_recursive(pc_tree->split[i], av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); pc_tree->split[i] = NULL; } } } } } while (!partition_decision.is_final_decision); return true; } // The ML model only needs to make decisions for the current block each time. static bool ml_partition_search_partial(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, int mi_col, const BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; ExtPartController *const ext_part_controller = &cpi->ext_part_controller; aom_partition_features_t features; prepare_sb_features_before_search(cpi, td, tile_data, mi_row, mi_col, bsize, &features); features.mi_row = mi_row; features.mi_col = mi_col; features.frame_width = cpi->frame_info.frame_width; features.frame_height = cpi->frame_info.frame_height; features.block_size = bsize; av1_ext_part_send_features(ext_part_controller, &features); td->pc_root = av1_alloc_pc_tree_node(bsize); if (!td->pc_root) aom_internal_error(x->e_mbd.error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); RD_STATS rdcost; const bool valid_partition = recursive_partition(cpi, td, tile_data, tp, sms_root, td->pc_root, mi_row, mi_col, bsize, &rdcost); if (!valid_partition) { return false; } // Encode with the selected mode and partition. set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, td->pc_root, NULL); av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; return true; } bool av1_rd_partition_search(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, int mi_col, const BLOCK_SIZE bsize, RD_STATS *best_rd_cost) { AV1_COMMON *const cm = &cpi->common; if (cpi->ext_part_controller.ready) { bool valid_search = true; const aom_ext_part_decision_mode_t decision_mode = av1_get_ext_part_decision_mode(&cpi->ext_part_controller); if (decision_mode == AOM_EXT_PART_WHOLE_TREE) { valid_search = ml_partition_search_whole_tree( cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); } else if (decision_mode == AOM_EXT_PART_RECURSIVE) { valid_search = ml_partition_search_partial( cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize); } else { assert(0 && "Unknown decision mode."); return false; } if (!valid_search) { aom_internal_error( cm->error, AOM_CODEC_ERROR, "Invalid search from ML model, partition search failed"); } return true; } MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; int best_idx = 0; int64_t min_rdcost = INT64_MAX; int num_configs; int i = 0; do { td->pc_root = av1_alloc_pc_tree_node(bsize); if (!td->pc_root) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); num_configs = read_partition_tree(cpi, td->pc_root, xd->error_info, i); if (num_configs <= 0) { av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; aom_internal_error(xd->error_info, AOM_CODEC_ERROR, "Invalid configs."); } verify_write_partition_tree(cpi, td->pc_root, bsize, i, mi_row, mi_col); if (i == 0) { AOM_CHECK_MEM_ERROR(xd->error_info, x->rdcost, aom_calloc(num_configs, sizeof(*x->rdcost))); } // Encode the block with the given partition tree. Get rdcost and encoding // time. x->rdcost[i] = rd_search_for_fixed_partition( cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); if (x->rdcost[i].rdcost < min_rdcost) { min_rdcost = x->rdcost[i].rdcost; best_idx = i; *best_rd_cost = x->rdcost[i]; } av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; ++i; } while (i < num_configs); aom_free(x->rdcost); x->rdcost = NULL; // Encode with the partition configuration with the smallest rdcost. td->pc_root = av1_alloc_pc_tree_node(bsize); if (!td->pc_root) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); read_partition_tree(cpi, td->pc_root, xd->error_info, best_idx); rd_search_for_fixed_partition(cpi, td, tile_data, tp, sms_root, mi_row, mi_col, bsize, td->pc_root); set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, td->pc_root, NULL); av1_free_pc_tree_recursive(td->pc_root, av1_num_planes(cm), 0, 0, cpi->sf.part_sf.partition_search_type); td->pc_root = NULL; ++cpi->sb_counter; return true; } #endif // CONFIG_PARTITION_SEARCH_ORDER static AOM_INLINE bool should_do_dry_run_encode_for_current_block( BLOCK_SIZE sb_size, BLOCK_SIZE max_partition_size, int curr_block_index, BLOCK_SIZE bsize) { if (bsize > max_partition_size) return false; // Enable the reconstruction with dry-run for the 4th sub-block only if its // parent block's reconstruction with dry-run is skipped. If // max_partition_size is the same as immediate split of superblock, then avoid // reconstruction of the 4th sub-block, as this data is not consumed. if (curr_block_index != 3) return true; const BLOCK_SIZE sub_sb_size = get_partition_subsize(sb_size, PARTITION_SPLIT); return bsize == max_partition_size && sub_sb_size != max_partition_size; } static void log_sub_block_var(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bs, double *var_min, double *var_max) { // This functions returns a the minimum and maximum log variances for 4x4 // sub blocks in the current block. const MACROBLOCKD *const xd = &x->e_mbd; const int is_hbd = is_cur_buf_hbd(xd); const int right_overflow = (xd->mb_to_right_edge < 0) ? ((-xd->mb_to_right_edge) >> 3) : 0; const int bottom_overflow = (xd->mb_to_bottom_edge < 0) ? ((-xd->mb_to_bottom_edge) >> 3) : 0; const int bw = MI_SIZE * mi_size_wide[bs] - right_overflow; const int bh = MI_SIZE * mi_size_high[bs] - bottom_overflow; // Initialize minimum variance to a large value and maximum variance to 0. double min_var_4x4 = (double)INT_MAX; double max_var_4x4 = 0.0; for (int i = 0; i < bh; i += MI_SIZE) { for (int j = 0; j < bw; j += MI_SIZE) { int var; // Calculate the 4x4 sub-block variance. var = av1_calc_normalized_variance( cpi->ppi->fn_ptr[BLOCK_4X4].vf, x->plane[0].src.buf + (i * x->plane[0].src.stride) + j, x->plane[0].src.stride, is_hbd); // Record min and max for over-arching block min_var_4x4 = AOMMIN(min_var_4x4, var); max_var_4x4 = AOMMAX(max_var_4x4, var); } } *var_min = log1p(min_var_4x4 / 16.0); *var_max = log1p(max_var_4x4 / 16.0); } static AOM_INLINE void set_sms_tree_partitioning( SIMPLE_MOTION_DATA_TREE *sms_tree, PARTITION_TYPE partition) { if (sms_tree == NULL) return; sms_tree->partitioning = partition; } /*!\brief AV1 block partition search (full search). * * \ingroup partition_search * \callgraph * Searches for the best partition pattern for a block based on the * rate-distortion cost, and returns a bool value to indicate whether a valid * partition pattern is found. The partition can recursively go down to the * smallest block size. * * \param[in] cpi Top-level encoder structure * \param[in] td Pointer to thread data * \param[in] tile_data Pointer to struct holding adaptive data/contexts/models for the tile during encoding * \param[in] tp Pointer to the starting token * \param[in] mi_row Row coordinate of the block in a step size of MI_SIZE * \param[in] mi_col Column coordinate of the block in a step size of MI_SIZE * \param[in] bsize Current block size * \param[in] rd_cost Pointer to the final rd cost of the block * \param[in] best_rdc Upper bound of rd cost of a valid partition * \param[in] pc_tree Pointer to the PC_TREE node storing the picked partitions and mode info for the current block * \param[in] sms_tree Pointer to struct holding simple motion search data for the current block * \param[in] none_rd Pointer to the rd cost in the case of not splitting the current block * \param[in] multi_pass_mode SB_SINGLE_PASS/SB_DRY_PASS/SB_WET_PASS * \param[in] rect_part_win_info Pointer to struct storing whether horz/vert partition outperforms previously tested partitions * * \return A bool value is returned indicating if a valid partition is found. * The pc_tree struct is modified to store the picked partition and modes. * The rd_cost struct is also updated with the RD stats corresponding to the * best partition found. */ bool av1_rd_pick_partition(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, RD_STATS best_rdc, PC_TREE *pc_tree, SIMPLE_MOTION_DATA_TREE *sms_tree, int64_t *none_rd, SB_MULTI_PASS_MODE multi_pass_mode, RD_RECT_PART_WIN_INFO *rect_part_win_info) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; const TokenExtra *const tp_orig = *tp; PartitionSearchState part_search_state; // Initialization of state variables used in partition search. init_partition_search_state_params(x, cpi, &part_search_state, mi_row, mi_col, bsize); PartitionBlkParams blk_params = part_search_state.part_blk_params; set_sms_tree_partitioning(sms_tree, PARTITION_NONE); if (best_rdc.rdcost < 0) { av1_invalid_rd_stats(rd_cost); return part_search_state.found_best_partition; } if (bsize == cm->seq_params->sb_size) x->must_find_valid_partition = 0; // Override skipping rectangular partition operations for edge blocks. if (none_rd) *none_rd = 0; (void)*tp_orig; #if CONFIG_COLLECT_PARTITION_STATS // Stats at the current quad tree PartitionTimingStats *part_timing_stats = &part_search_state.part_timing_stats; // Stats aggregated at frame level FramePartitionTimingStats *fr_part_timing_stats = &cpi->partition_stats; #endif // CONFIG_COLLECT_PARTITION_STATS // Override partition costs at the edges of the frame in the same // way as in read_partition (see decodeframe.c). if (!av1_blk_has_rows_and_cols(&blk_params)) set_partition_cost_for_edge_blk(cm, &part_search_state); // Disable rectangular partitions for inner blocks when the current block is // forced to only use square partitions. if (bsize > cpi->sf.part_sf.use_square_partition_only_threshold) { part_search_state.partition_rect_allowed[HORZ] &= !blk_params.has_rows; part_search_state.partition_rect_allowed[VERT] &= !blk_params.has_cols; } #ifndef NDEBUG // Nothing should rely on the default value of this array (which is just // leftover from encoding the previous block. Setting it to fixed pattern // when debugging. // bit 0, 1, 2 are blk_skip of each plane // bit 4, 5, 6 are initialization checking of each plane memset(x->txfm_search_info.blk_skip, 0x77, sizeof(x->txfm_search_info.blk_skip)); #endif // NDEBUG assert(mi_size_wide[bsize] == mi_size_high[bsize]); // Set buffers and offsets. av1_set_offsets(cpi, tile_info, x, mi_row, mi_col, bsize); if (cpi->oxcf.mode == ALLINTRA) { if (bsize == cm->seq_params->sb_size) { double var_min, var_max; log_sub_block_var(cpi, x, bsize, &var_min, &var_max); x->intra_sb_rdmult_modifier = 128; if ((var_min < 2.0) && (var_max > 4.0)) { if ((var_max - var_min) > 8.0) { x->intra_sb_rdmult_modifier -= 48; } else { x->intra_sb_rdmult_modifier -= (int)((var_max - var_min) * 6); } } } } // Save rdmult before it might be changed, so it can be restored later. const int orig_rdmult = x->rdmult; setup_block_rdmult(cpi, x, mi_row, mi_col, bsize, NO_AQ, NULL); // Apply simple motion search for the entire super block with fixed block // size, e.g., 16x16, to collect features and write to files for the // external ML model. // TODO(chengchen): reduce motion search. This function is similar to // av1_get_max_min_partition_features(). if (COLLECT_MOTION_SEARCH_FEATURE_SB && !frame_is_intra_only(cm) && bsize == cm->seq_params->sb_size) { av1_collect_motion_search_features_sb(cpi, td, tile_data, mi_row, mi_col, bsize, /*features=*/NULL); collect_tpl_stats_sb(cpi, bsize, mi_row, mi_col, /*features=*/NULL); } // Update rd cost of the bound using the current multiplier. av1_rd_cost_update(x->rdmult, &best_rdc); if (bsize == BLOCK_16X16 && cpi->vaq_refresh) x->mb_energy = av1_log_block_var(cpi, x, bsize); // Set the context. xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, num_planes); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_prune_partitions_time); #endif // Pruning: before searching any partition type, using source and simple // motion search results to prune out unlikely partitions. av1_prune_partitions_before_search(cpi, x, sms_tree, &part_search_state); // Pruning: eliminating partition types leading to coding block sizes outside // the min and max bsize limitations set from the encoder. av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_prune_partitions_time); #endif // Partition search BEGIN_PARTITION_SEARCH: // If a valid partition is required, usually when the first round cannot find // a valid one under the cost limit after pruning, reset the limitations on // partition types and intra cnn output. if (x->must_find_valid_partition) { reset_part_limitations(cpi, &part_search_state); av1_prune_partitions_by_max_min_bsize(&x->sb_enc, &part_search_state); // Invalidate intra cnn output for key frames. if (frame_is_intra_only(cm) && bsize == BLOCK_64X64) { part_search_state.intra_part_info->quad_tree_idx = 0; part_search_state.intra_part_info->cnn_output_valid = 0; } } // Partition block source pixel variance. unsigned int pb_source_variance = UINT_MAX; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, none_partition_search_time); #endif if (cpi->oxcf.mode == ALLINTRA) { const bool bsize_at_least_16x16 = (bsize >= BLOCK_16X16); const bool prune_rect_part_using_4x4_var_deviation = (cpi->sf.part_sf.prune_rect_part_using_4x4_var_deviation && !x->must_find_valid_partition); if (bsize_at_least_16x16 || prune_rect_part_using_4x4_var_deviation) { double var_min, var_max; log_sub_block_var(cpi, x, bsize, &var_min, &var_max); // Further pruning or in some cases reverse pruning when allintra is set. // This code helps visual and in some cases metrics quality where the // current block comprises at least one very low variance sub-block and at // least one where the variance is much higher. // // The idea is that in such cases there is danger of ringing and other // visual artifacts from a high variance feature such as an edge into a // very low variance region. // // The approach taken is to force break down / split to a smaller block // size to try and separate out the low variance and well predicted blocks // from the more complex ones and to prevent propagation of ringing over a // large region. if (bsize_at_least_16x16 && (var_min < 0.272) && ((var_max - var_min) > 3.0)) { part_search_state.partition_none_allowed = 0; part_search_state.terminate_partition_search = 0; part_search_state.do_square_split = 1; } else if (prune_rect_part_using_4x4_var_deviation && (var_max - var_min < 3.0)) { // Prune rectangular partitions if the variance deviation of 4x4 // sub-blocks within the block is less than a threshold (derived // empirically). part_search_state.do_rectangular_split = 0; } } } // PARTITION_NONE search stage. int64_t part_none_rd = INT64_MAX; none_partition_search(cpi, td, tile_data, x, pc_tree, sms_tree, &x_ctx, &part_search_state, &best_rdc, &pb_source_variance, none_rd, &part_none_rd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, none_partition_search_time); #endif #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, split_partition_search_time); #endif // PARTITION_SPLIT search stage. int64_t part_split_rd = INT64_MAX; split_partition_search(cpi, td, tile_data, tp, x, pc_tree, sms_tree, &x_ctx, &part_search_state, &best_rdc, multi_pass_mode, &part_split_rd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, split_partition_search_time); #endif // Terminate partition search for child partition, // when NONE and SPLIT partition rd_costs are INT64_MAX. if (cpi->sf.part_sf.early_term_after_none_split && part_none_rd == INT64_MAX && part_split_rd == INT64_MAX && !x->must_find_valid_partition && (bsize != cm->seq_params->sb_size)) { part_search_state.terminate_partition_search = 1; } // Do not evaluate non-square partitions if NONE partition did not choose a // newmv mode and is skippable. if ((cpi->sf.part_sf.skip_non_sq_part_based_on_none >= 2) && (pc_tree->none != NULL)) { if (x->qindex <= 200 && is_inter_mode(pc_tree->none->mic.mode) && !have_newmv_in_inter_mode(pc_tree->none->mic.mode) && pc_tree->none->skippable && !x->must_find_valid_partition && bsize >= BLOCK_16X16) part_search_state.do_rectangular_split = 0; } // Prune partitions based on PARTITION_NONE and PARTITION_SPLIT. prune_partitions_after_split(cpi, x, sms_tree, &part_search_state, &best_rdc, part_none_rd, part_split_rd); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, rectangular_partition_search_time); #endif // Rectangular partitions search stage. rectangular_partition_search(cpi, td, tile_data, tp, x, pc_tree, &x_ctx, &part_search_state, &best_rdc, rect_part_win_info, HORZ, VERT); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, rectangular_partition_search_time); #endif if (pb_source_variance == UINT_MAX) { av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); pb_source_variance = av1_get_perpixel_variance_facade( cpi, xd, &x->plane[0].src, bsize, AOM_PLANE_Y); } assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, !part_search_state.do_rectangular_split)); const int prune_ext_part_state = prune_ext_part_none_skippable( pc_tree->none, x->must_find_valid_partition, cpi->sf.part_sf.skip_non_sq_part_based_on_none, bsize); const int ab_partition_allowed = allow_ab_partition_search( &part_search_state, &cpi->sf.part_sf, pc_tree->partitioning, x->must_find_valid_partition, prune_ext_part_state, best_rdc.rdcost); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, ab_partitions_search_time); #endif // AB partitions search stage. ab_partitions_search(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, &part_search_state, &best_rdc, rect_part_win_info, pb_source_variance, ab_partition_allowed, HORZ_A, VERT_B); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, ab_partitions_search_time); #endif // 4-way partitions search stage. int part4_search_allowed[NUM_PART4_TYPES] = { 1, 1 }; // Prune 4-way partition search. prune_4_way_partition_search(cpi, x, pc_tree, &part_search_state, &best_rdc, pb_source_variance, prune_ext_part_state, part4_search_allowed); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, rd_pick_4partition_time); #endif // PARTITION_HORZ_4 assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, !part4_search_allowed[HORZ4])); if (!part_search_state.terminate_partition_search && part4_search_allowed[HORZ4]) { const int inc_step[NUM_PART4_TYPES] = { mi_size_high[blk_params.bsize] / 4, 0 }; // Evaluation of Horz4 partition type. rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, pc_tree->horizontal4, &part_search_state, &best_rdc, inc_step, PARTITION_HORZ_4); } // PARTITION_VERT_4 assert(IMPLIES(!cpi->oxcf.part_cfg.enable_rect_partitions, !part4_search_allowed[VERT4])); if (!part_search_state.terminate_partition_search && part4_search_allowed[VERT4] && blk_params.has_cols) { const int inc_step[NUM_PART4_TYPES] = { 0, mi_size_wide[blk_params.bsize] / 4 }; // Evaluation of Vert4 partition type. rd_pick_4partition(cpi, td, tile_data, tp, x, &x_ctx, pc_tree, pc_tree->vertical4, &part_search_state, &best_rdc, inc_step, PARTITION_VERT_4); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, rd_pick_4partition_time); #endif if (bsize == cm->seq_params->sb_size && !part_search_state.found_best_partition) { // Did not find a valid partition, go back and search again, with less // constraint on which partition types to search. x->must_find_valid_partition = 1; #if CONFIG_COLLECT_PARTITION_STATS fr_part_timing_stats->partition_redo += 1; #endif // CONFIG_COLLECT_PARTITION_STATS goto BEGIN_PARTITION_SEARCH; } // Store the final rd cost *rd_cost = best_rdc; // Also record the best partition in simple motion data tree because it is // necessary for the related speed features. set_sms_tree_partitioning(sms_tree, pc_tree->partitioning); #if CONFIG_COLLECT_PARTITION_STATS if (best_rdc.rate < INT_MAX && best_rdc.dist < INT64_MAX) { part_timing_stats->partition_decisions[pc_tree->partitioning] += 1; } // If CONFIG_COLLECT_PARTITION_STATS is 1, then print out the stats for each // prediction block. print_partition_timing_stats_with_rdcost( part_timing_stats, mi_row, mi_col, bsize, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], cm->current_frame.frame_number, &best_rdc, "part_timing.csv"); const bool print_timing_stats = false; if (print_timing_stats) { print_partition_timing_stats(part_timing_stats, cm->show_frame, frame_is_intra_only(cm), bsize, "part_timing_data.csv"); } // If CONFIG_COLLECTION_PARTITION_STATS is 2, then we print out the stats for // the whole clip. So we need to pass the information upstream to the encoder. accumulate_partition_timing_stats(fr_part_timing_stats, part_timing_stats, bsize); #endif // CONFIG_COLLECT_PARTITION_STATS // Reset the PC_TREE deallocation flag. int pc_tree_dealloc = 0; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, encode_sb_time); #endif if (part_search_state.found_best_partition) { if (bsize == cm->seq_params->sb_size) { // Encode the superblock. const int emit_output = multi_pass_mode != SB_DRY_PASS; const RUN_TYPE run_type = emit_output ? OUTPUT_ENABLED : DRY_RUN_NORMAL; // Write partition tree to file. Not used by default. if (COLLECT_MOTION_SEARCH_FEATURE_SB) { write_partition_tree(cpi, pc_tree, bsize, mi_row, mi_col); ++cpi->sb_counter; } set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, run_type, bsize, pc_tree, NULL); assert(pc_tree == td->pc_root); // Dealloc the whole PC_TREE after a superblock is done. av1_free_pc_tree_recursive(pc_tree, num_planes, 0, 0, cpi->sf.part_sf.partition_search_type); pc_tree = NULL; td->pc_root = NULL; pc_tree_dealloc = 1; } else if (should_do_dry_run_encode_for_current_block( cm->seq_params->sb_size, x->sb_enc.max_partition_size, pc_tree->index, bsize)) { // Encode the smaller blocks in DRY_RUN mode. encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, encode_sb_time); #endif // If the tree still exists (non-superblock), dealloc most nodes, only keep // nodes for the best partition and PARTITION_NONE. if (pc_tree_dealloc == 0) av1_free_pc_tree_recursive(pc_tree, num_planes, 1, 1, cpi->sf.part_sf.partition_search_type); if (bsize == cm->seq_params->sb_size) { assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } // Restore the rd multiplier. x->rdmult = orig_rdmult; return part_search_state.found_best_partition; } #endif // !CONFIG_REALTIME_ONLY #undef COLLECT_MOTION_SEARCH_FEATURE_SB #if CONFIG_RT_ML_PARTITIONING #define FEATURES 6 #define LABELS 2 static int ml_predict_var_partitioning(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; const NN_CONFIG *nn_config = NULL; const float *means = NULL; const float *vars = NULL; switch (bsize) { case BLOCK_64X64: nn_config = &av1_var_part_nnconfig_64; means = av1_var_part_means_64; vars = av1_var_part_vars_64; break; case BLOCK_32X32: nn_config = &av1_var_part_nnconfig_32; means = av1_var_part_means_32; vars = av1_var_part_vars_32; break; case BLOCK_16X16: nn_config = &av1_var_part_nnconfig_16; means = av1_var_part_means_16; vars = av1_var_part_vars_16; break; case BLOCK_8X8: default: assert(0 && "Unexpected block size."); return -1; } if (!nn_config) return -1; { const float thresh = cpi->oxcf.speed <= 5 ? 1.25f : 0.0f; float features[FEATURES] = { 0.0f }; const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, cm->seq_params->bit_depth); int feature_idx = 0; float score[LABELS]; features[feature_idx] = (log1pf((float)(dc_q * dc_q) / 256.0f) - means[feature_idx]) / sqrtf(vars[feature_idx]); feature_idx++; av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); { const int bs = block_size_wide[bsize]; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); const int sb_offset_row = 4 * (mi_row & 15); const int sb_offset_col = 4 * (mi_col & 15); const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; const uint8_t *src = x->plane[0].src.buf; const int src_stride = x->plane[0].src.stride; const int pred_stride = 64; unsigned int sse; int i; // Variance of whole block. const unsigned int var = cpi->ppi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); features[feature_idx] = (log1pf((float)var) - means[feature_idx]) / sqrtf(vars[feature_idx]); feature_idx++; for (i = 0; i < 4; ++i) { const int x_idx = (i & 1) * bs / 2; const int y_idx = (i >> 1) * bs / 2; const int src_offset = y_idx * src_stride + x_idx; const int pred_offset = y_idx * pred_stride + x_idx; // Variance of quarter block. const unsigned int sub_var = cpi->ppi->fn_ptr[subsize].vf(src + src_offset, src_stride, pred + pred_offset, pred_stride, &sse); const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; features[feature_idx] = (var_ratio - means[feature_idx]) / sqrtf(vars[feature_idx]); feature_idx++; } } // for (int i = 0; i thresh) return PARTITION_SPLIT; if (score[0] < -thresh) return PARTITION_NONE; return -1; } } #undef FEATURES #undef LABELS // Uncomment for collecting data for ML-based partitioning // #define _COLLECT_GROUND_TRUTH_ #ifdef _COLLECT_GROUND_TRUTH_ static int store_partition_data(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, PARTITION_TYPE part) { AV1_COMMON *const cm = &cpi->common; char fname[128]; switch (bsize) { case BLOCK_64X64: sprintf(fname, "data_64x64.txt"); break; case BLOCK_32X32: sprintf(fname, "data_32x32.txt"); break; case BLOCK_16X16: sprintf(fname, "data_16x16.txt"); break; case BLOCK_8X8: sprintf(fname, "data_8x8.txt"); break; default: assert(0 && "Unexpected block size."); return -1; } float features[6]; // DC_Q, VAR, VAR_RATIO-0..3 FILE *f = fopen(fname, "a"); { const int dc_q = av1_dc_quant_QTX(cm->quant_params.base_qindex, 0, cm->seq_params->bit_depth); int feature_idx = 0; features[feature_idx++] = log1pf((float)(dc_q * dc_q) / 256.0f); av1_setup_src_planes(x, cpi->source, mi_row, mi_col, 1, bsize); { const int bs = block_size_wide[bsize]; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); const int sb_offset_row = 4 * (mi_row & 15); const int sb_offset_col = 4 * (mi_col & 15); const uint8_t *pred = x->est_pred + sb_offset_row * 64 + sb_offset_col; const uint8_t *src = x->plane[0].src.buf; const int src_stride = x->plane[0].src.stride; const int pred_stride = 64; unsigned int sse; int i; // Variance of whole block. /* if (bs == 8) { int r, c; printf("%d %d\n", mi_row, mi_col); for (r = 0; r < bs; ++r) { for (c = 0; c < bs; ++c) { printf("%3d ", src[r * src_stride + c] - pred[64 * r + c]); } printf("\n"); } printf("\n"); } */ const unsigned int var = cpi->fn_ptr[bsize].vf(src, src_stride, pred, pred_stride, &sse); const float factor = (var == 0) ? 1.0f : (1.0f / (float)var); features[feature_idx++] = log1pf((float)var); fprintf(f, "%f,%f,", features[0], features[1]); for (i = 0; i < 4; ++i) { const int x_idx = (i & 1) * bs / 2; const int y_idx = (i >> 1) * bs / 2; const int src_offset = y_idx * src_stride + x_idx; const int pred_offset = y_idx * pred_stride + x_idx; // Variance of quarter block. const unsigned int sub_var = cpi->fn_ptr[subsize].vf(src + src_offset, src_stride, pred + pred_offset, pred_stride, &sse); const float var_ratio = (var == 0) ? 1.0f : factor * (float)sub_var; features[feature_idx++] = var_ratio; fprintf(f, "%f,", var_ratio); } fprintf(f, "%d\n", part == PARTITION_NONE ? 0 : 1); } fclose(f); return -1; } } #endif static void duplicate_mode_info_in_sb(AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, BLOCK_SIZE bsize) { const int block_width = AOMMIN(mi_size_wide[bsize], cm->mi_params.mi_cols - mi_col); const int block_height = AOMMIN(mi_size_high[bsize], cm->mi_params.mi_rows - mi_row); const int mi_stride = xd->mi_stride; MB_MODE_INFO *const src_mi = xd->mi[0]; int i, j; for (j = 0; j < block_height; ++j) for (i = 0; i < block_width; ++i) xd->mi[j * mi_stride + i] = src_mi; } static INLINE void copy_mbmi_ext_frame_to_mbmi_ext( MB_MODE_INFO_EXT *const mbmi_ext, const MB_MODE_INFO_EXT_FRAME *mbmi_ext_best, uint8_t ref_frame_type) { memcpy(mbmi_ext->ref_mv_stack[ref_frame_type], mbmi_ext_best->ref_mv_stack, sizeof(mbmi_ext->ref_mv_stack[USABLE_REF_MV_STACK_SIZE])); memcpy(mbmi_ext->weight[ref_frame_type], mbmi_ext_best->weight, sizeof(mbmi_ext->weight[USABLE_REF_MV_STACK_SIZE])); mbmi_ext->mode_context[ref_frame_type] = mbmi_ext_best->mode_context; mbmi_ext->ref_mv_count[ref_frame_type] = mbmi_ext_best->ref_mv_count; memcpy(mbmi_ext->global_mvs, mbmi_ext_best->global_mvs, sizeof(mbmi_ext->global_mvs)); } static void fill_mode_info_sb(AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; int hbs = mi_size_wide[bsize] >> 1; PARTITION_TYPE partition = pc_tree->partitioning; BLOCK_SIZE subsize = get_partition_subsize(bsize, partition); assert(bsize >= BLOCK_8X8); if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) return; switch (partition) { case PARTITION_NONE: set_mode_info_offsets(&cm->mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, mi_col); *(xd->mi[0]) = pc_tree->none->mic; copy_mbmi_ext_frame_to_mbmi_ext( &x->mbmi_ext, &pc_tree->none->mbmi_ext_best, LAST_FRAME); duplicate_mode_info_in_sb(cm, xd, mi_row, mi_col, bsize); break; case PARTITION_SPLIT: { fill_mode_info_sb(cpi, x, mi_row, mi_col, subsize, pc_tree->split[0]); fill_mode_info_sb(cpi, x, mi_row, mi_col + hbs, subsize, pc_tree->split[1]); fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col, subsize, pc_tree->split[2]); fill_mode_info_sb(cpi, x, mi_row + hbs, mi_col + hbs, subsize, pc_tree->split[3]); break; } default: break; } } void av1_nonrd_pick_partition(AV1_COMP *cpi, ThreadData *td, TileDataEnc *tile_data, TokenExtra **tp, int mi_row, int mi_col, BLOCK_SIZE bsize, RD_STATS *rd_cost, int do_recon, int64_t best_rd, PC_TREE *pc_tree) { AV1_COMMON *const cm = &cpi->common; TileInfo *const tile_info = &tile_data->tile_info; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int hbs = mi_size_wide[bsize] >> 1; TokenExtra *tp_orig = *tp; const ModeCosts *mode_costs = &x->mode_costs; RD_STATS this_rdc, best_rdc; RD_SEARCH_MACROBLOCK_CONTEXT x_ctx; int do_split = bsize > BLOCK_8X8; // Override skipping rectangular partition operations for edge blocks const int force_horz_split = (mi_row + 2 * hbs > cm->mi_params.mi_rows); const int force_vert_split = (mi_col + 2 * hbs > cm->mi_params.mi_cols); int partition_none_allowed = !force_horz_split && !force_vert_split; assert(mi_size_wide[bsize] == mi_size_high[bsize]); // Square partition only assert(cm->seq_params->sb_size == BLOCK_64X64); // Small SB so far (void)*tp_orig; av1_invalid_rd_stats(&best_rdc); best_rdc.rdcost = best_rd; #ifndef _COLLECT_GROUND_TRUTH_ if (partition_none_allowed && do_split) { const int ml_predicted_partition = ml_predict_var_partitioning(cpi, x, bsize, mi_row, mi_col); if (ml_predicted_partition == PARTITION_NONE) do_split = 0; if (ml_predicted_partition == PARTITION_SPLIT) partition_none_allowed = 0; } #endif xd->above_txfm_context = cm->above_contexts.txfm[tile_info->tile_row] + mi_col; xd->left_txfm_context = xd->left_txfm_context_buffer + (mi_row & MAX_MIB_MASK); av1_save_context(x, &x_ctx, mi_row, mi_col, bsize, 3); // PARTITION_NONE if (partition_none_allowed) { pc_tree->none = av1_alloc_pmc(cpi, bsize, &td->shared_coeff_buf); if (!pc_tree->none) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PICK_MODE_CONTEXT"); PICK_MODE_CONTEXT *ctx = pc_tree->none; // Flip for RDO based pick mode #if 0 RD_STATS dummy; av1_invalid_rd_stats(&dummy); pick_sb_modes(cpi, tile_data, x, mi_row, mi_col, &this_rdc, PARTITION_NONE, bsize, ctx, dummy); #else pick_sb_modes_nonrd(cpi, tile_data, x, mi_row, mi_col, &this_rdc, bsize, ctx); #endif if (this_rdc.rate != INT_MAX) { const int pl = partition_plane_context(xd, mi_row, mi_col, bsize); this_rdc.rate += mode_costs->partition_cost[pl][PARTITION_NONE]; this_rdc.rdcost = RDCOST(x->rdmult, this_rdc.rate, this_rdc.dist); if (this_rdc.rdcost < best_rdc.rdcost) { best_rdc = this_rdc; if (bsize >= BLOCK_8X8) pc_tree->partitioning = PARTITION_NONE; } } } // PARTITION_SPLIT if (do_split) { RD_STATS sum_rdc; const BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_SPLIT); av1_init_rd_stats(&sum_rdc); for (int i = 0; i < SUB_PARTITIONS_SPLIT; ++i) { pc_tree->split[i] = av1_alloc_pc_tree_node(subsize); if (!pc_tree->split[i]) aom_internal_error(xd->error_info, AOM_CODEC_MEM_ERROR, "Failed to allocate PC_TREE"); pc_tree->split[i]->index = i; } int pl = partition_plane_context(xd, mi_row, mi_col, bsize); sum_rdc.rate += mode_costs->partition_cost[pl][PARTITION_SPLIT]; sum_rdc.rdcost = RDCOST(x->rdmult, sum_rdc.rate, sum_rdc.dist); for (int i = 0; i < SUB_PARTITIONS_SPLIT && sum_rdc.rdcost < best_rdc.rdcost; ++i) { const int x_idx = (i & 1) * hbs; const int y_idx = (i >> 1) * hbs; if (mi_row + y_idx >= cm->mi_params.mi_rows || mi_col + x_idx >= cm->mi_params.mi_cols) continue; av1_nonrd_pick_partition(cpi, td, tile_data, tp, mi_row + y_idx, mi_col + x_idx, subsize, &this_rdc, i < 3, best_rdc.rdcost - sum_rdc.rdcost, pc_tree->split[i]); if (this_rdc.rate == INT_MAX) { av1_invalid_rd_stats(&sum_rdc); } else { sum_rdc.rate += this_rdc.rate; sum_rdc.dist += this_rdc.dist; sum_rdc.rdcost += this_rdc.rdcost; } } if (sum_rdc.rdcost < best_rdc.rdcost) { best_rdc = sum_rdc; pc_tree->partitioning = PARTITION_SPLIT; } } #ifdef _COLLECT_GROUND_TRUTH_ store_partition_data(cpi, x, bsize, mi_row, mi_col, pc_tree->partitioning); #endif *rd_cost = best_rdc; av1_restore_context(x, &x_ctx, mi_row, mi_col, bsize, 3); if (best_rdc.rate == INT_MAX) { av1_invalid_rd_stats(rd_cost); return; } // update mode info array fill_mode_info_sb(cpi, x, mi_row, mi_col, bsize, pc_tree); if (do_recon) { if (bsize == cm->seq_params->sb_size) { // NOTE: To get estimate for rate due to the tokens, use: // int rate_coeffs = 0; // encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_COSTCOEFFS, // bsize, pc_tree, &rate_coeffs); set_cb_offsets(x->cb_offset, 0, 0); encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, OUTPUT_ENABLED, bsize, pc_tree, NULL); } else { encode_sb(cpi, td, tile_data, tp, mi_row, mi_col, DRY_RUN_NORMAL, bsize, pc_tree, NULL); } } if (bsize == BLOCK_64X64 && do_recon) { assert(best_rdc.rate < INT_MAX); assert(best_rdc.dist < INT64_MAX); } else { assert(tp_orig == *tp); } } #endif // CONFIG_RT_ML_PARTITIONING