/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_PARTITION_STRATEGY_H_ #define AOM_AV1_ENCODER_PARTITION_STRATEGY_H_ #include "av1/encoder/encodeframe.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encoder.h" void av1_intra_mode_cnn_partition(const AV1_COMMON *const cm, MACROBLOCK *x, int label_idx, int intra_cnn_based_part_prune_level, PartitionSearchState *part_state); // Performs a simple_motion_search with a single reference frame and extract // the variance of residues. Then use the features to determine whether we want // to go straight to splitting without trying PARTITION_NONE void av1_simple_motion_search_based_split(AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, PartitionSearchState *part_state); // Performs a simple_motion_search with two reference frames and extract // the variance of residues. Then use the features to determine whether we want // to prune some partitions. void av1_simple_motion_search_prune_rect(AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, PartitionSearchState *part_state); #if !CONFIG_REALTIME_ONLY // Early terminates PARTITION_NONE using simple_motion_search features and the // rate, distortion, and rdcost of PARTITION_NONE. This is only called when: // - The frame is a show frame // - The frame is not intra only // - The current bsize is > BLOCK_8X8 // - blk_row + blk_height/2 < total_rows and blk_col + blk_width/2 < total_cols void av1_simple_motion_search_early_term_none(AV1_COMP *const cpi, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_tree, const RD_STATS *none_rdc, PartitionSearchState *part_state); // Get the features for selecting the max and min partition size. Currently this // performs simple_motion_search on 16X16 subblocks of the current superblock, // and then extract the statistics of sse and motion vectors as features. void av1_get_max_min_partition_features(AV1_COMP *const cpi, MACROBLOCK *x, int mi_row, int mi_col, float *features); // Predict the maximum BLOCK_SIZE to be used to encoder the current superblock. BLOCK_SIZE av1_predict_max_partition(const AV1_COMP *const cpi, const MACROBLOCK *const x, const float *features); // Attempts an early termination after PARTITION_SPLIT. void av1_ml_early_term_after_split(AV1_COMP *const cpi, MACROBLOCK *const x, SIMPLE_MOTION_DATA_TREE *const sms_tree, int64_t best_rd, int64_t part_none_rd, int64_t part_split_rd, int64_t *split_block_rd, PartitionSearchState *part_state); // Use the rdcost ratio and source var ratio to prune PARTITION_HORZ and // PARTITION_VERT. // TODO(chiyotsai@google.com): Currently this model does not use q value and has // no information about rectangular partitions. Preliminary experiments suggest // that we can get better performance by adding in q_index and rectangular // sse/var from SMS. We should retrain and tune this model later. void av1_ml_prune_rect_partition(AV1_COMP *const cpi, const MACROBLOCK *const x, int64_t best_rd, int64_t none_rd, const int64_t *split_rd, PartitionSearchState *part_state); // Use a ML model to predict if horz_a, horz_b, vert_a, and vert_b should be // considered. void av1_ml_prune_ab_partition(AV1_COMP *const cpi, int part_ctx, int var_ctx, int64_t best_rd, PartitionSearchState *part_state, int *ab_partitions_allowed); // Use a ML model to predict if horz4 and vert4 should be considered. void av1_ml_prune_4_partition(AV1_COMP *const cpi, MACROBLOCK *const x, int part_ctx, int64_t best_rd, PartitionSearchState *part_state, int *part4_allowed, unsigned int pb_source_variance); // ML-based partition search breakout after PARTITION_NONE. void av1_ml_predict_breakout(AV1_COMP *const cpi, const MACROBLOCK *const x, const RD_STATS *const rd_stats, unsigned int pb_source_variance, int bit_depth, PartitionSearchState *part_state); // The first round of partition pruning determined before any partition // has been tested. The decisions will be updated and passed back // to the partition search function. void av1_prune_partitions_before_search(AV1_COMP *const cpi, MACROBLOCK *const x, SIMPLE_MOTION_DATA_TREE *const sms_tree, PartitionSearchState *part_state); // Prune out partitions that lead to coding block sizes outside the min and max // bsizes set by the encoder. Max and min square partition levels are defined as // the partition nodes that the recursive function rd_pick_partition() can // reach. To implement this: only PARTITION_NONE is allowed if the current node // equals max_partition_size, only PARTITION_SPLIT is allowed if the current // node exceeds max_partition_size. void av1_prune_partitions_by_max_min_bsize(SuperBlockEnc *sb_enc, PartitionSearchState *part_state); // Prune out AB partitions based on rd decisions made from testing the // basic partitions. void av1_prune_ab_partitions(AV1_COMP *cpi, const MACROBLOCK *x, const PC_TREE *pc_tree, int pb_source_variance, int64_t best_rdcost, const RD_RECT_PART_WIN_INFO *rect_part_win_info, bool ext_partition_allowed, PartitionSearchState *part_state, int *ab_partitions_allowed); void av1_collect_motion_search_features_sb(AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, const int mi_row, const int mi_col, const BLOCK_SIZE bsize, aom_partition_features_t *features); void av1_prepare_motion_search_features_block( AV1_COMP *const cpi, ThreadData *td, TileDataEnc *tile_data, const int mi_row, const int mi_col, const BLOCK_SIZE bsize, const int valid_partition_types, unsigned int *block_sse, unsigned int *block_var, unsigned int sub_block_sse[4], unsigned int sub_block_var[4], unsigned int horz_block_sse[2], unsigned int horz_block_var[2], unsigned int vert_block_sse[2], unsigned int vert_block_var[2]); #endif // !CONFIG_REALTIME_ONLY // A simplified version of set_offsets meant to be used for // simple_motion_search. static INLINE void set_offsets_for_motion_search(const AV1_COMP *const cpi, MACROBLOCK *const x, int mi_row, int mi_col, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, mi_col); // Set up destination pointers. av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, num_planes); // Set up limit values for MV components. // Mv beyond the range do not produce new/different prediction block. av1_set_mv_limits(mi_params, &x->mv_limits, mi_row, mi_col, mi_height, mi_width, cpi->oxcf.border_in_pixels); set_plane_n4(xd, mi_width, mi_height, num_planes); xd->mi_row = mi_row; xd->mi_col = mi_col; // Set up distance of MB to edge of frame in 1/8th pel units. assert(!(mi_col & (mi_width - 1)) && !(mi_row & (mi_height - 1))); xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE); xd->mb_to_right_edge = GET_MV_SUBPEL((mi_params->mi_cols - mi_width - mi_col) * MI_SIZE); // Set up source buffers. av1_setup_src_planes(x, cpi->source, mi_row, mi_col, num_planes, bsize); } void av1_init_simple_motion_search_mvs_for_sb(const AV1_COMP *cpi, const TileInfo *tile_info, MACROBLOCK *x, SIMPLE_MOTION_DATA_TREE *sms_root, int mi_row, int mi_col); static INLINE int is_full_sb(const CommonModeInfoParams *const mi_params, int mi_row, int mi_col, BLOCK_SIZE sb_size) { const int sb_mi_wide = mi_size_wide[sb_size]; const int sb_mi_high = mi_size_high[sb_size]; return (mi_row + sb_mi_high) <= mi_params->mi_rows && (mi_col + sb_mi_wide) <= mi_params->mi_cols; } #if !CONFIG_REALTIME_ONLY // Do not use this criteria for screen content videos. // Since screen content videos could often find good predictors and the largest // block size is likely to be used. static INLINE int use_auto_max_partition(const AV1_COMP *const cpi, BLOCK_SIZE sb_size, int mi_row, int mi_col) { assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const AV1_COMMON *const cm = &cpi->common; return !frame_is_intra_only(cm) && !cpi->use_screen_content_tools && cpi->sf.part_sf.auto_max_partition_based_on_simple_motion != NOT_IN_USE && sb_size == BLOCK_128X128 && is_full_sb(&cm->mi_params, mi_row, mi_col, sb_size) && cpi->ppi->gf_group.update_type[cpi->gf_frame_index] != OVERLAY_UPDATE && cpi->ppi->gf_group.update_type[cpi->gf_frame_index] != INTNL_OVERLAY_UPDATE; } static BLOCK_SIZE dim_to_size(int dim) { switch (dim) { case 4: return BLOCK_4X4; case 8: return BLOCK_8X8; case 16: return BLOCK_16X16; case 32: return BLOCK_32X32; case 64: return BLOCK_64X64; case 128: return BLOCK_128X128; default: assert(0); return 0; } } static AOM_INLINE void set_max_min_partition_size(SuperBlockEnc *sb_enc, AV1_COMP *cpi, MACROBLOCK *x, const SPEED_FEATURES *sf, BLOCK_SIZE sb_size, int mi_row, int mi_col) { const AV1_COMMON *cm = &cpi->common; sb_enc->max_partition_size = AOMMIN(sf->part_sf.default_max_partition_size, dim_to_size(cpi->oxcf.part_cfg.max_partition_size)); sb_enc->min_partition_size = AOMMAX(sf->part_sf.default_min_partition_size, dim_to_size(cpi->oxcf.part_cfg.min_partition_size)); sb_enc->max_partition_size = AOMMIN(sb_enc->max_partition_size, cm->seq_params->sb_size); sb_enc->min_partition_size = AOMMIN(sb_enc->min_partition_size, cm->seq_params->sb_size); if (use_auto_max_partition(cpi, sb_size, mi_row, mi_col)) { float features[FEATURE_SIZE_MAX_MIN_PART_PRED] = { 0.0f }; av1_get_max_min_partition_features(cpi, x, mi_row, mi_col, features); sb_enc->max_partition_size = AOMMAX(AOMMIN(av1_predict_max_partition(cpi, x, features), sb_enc->max_partition_size), sb_enc->min_partition_size); } } #endif // !CONFIG_REALTIME_ONLY #endif // AOM_AV1_ENCODER_PARTITION_STRATEGY_H_