/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/aom_scale_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/av1_loopfilter.h" #include "av1/common/quant_common.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/picklpf.h" // AV1 loop filter applies to the whole frame according to mi_rows and mi_cols, // which are calculated based on aligned width and aligned height, // In addition, if super res is enabled, it copies the whole frame // according to the aligned width and height (av1_superres_upscale()). // So we need to copy the whole filtered region, instead of the cropped region. // For example, input image size is: 160x90. // Then src->y_crop_width = 160, src->y_crop_height = 90. // The aligned frame size is: src->y_width = 160, src->y_height = 96. // AV1 aligns frame size to a multiple of 8, if there is // chroma subsampling, it is able to ensure the chroma is also // an integer number of mi units. mi unit is 4x4, 8 = 4 * 2, and 2 luma mi // units correspond to 1 chroma mi unit if there is subsampling. // See: aom_realloc_frame_buffer() in yv12config.c. static void yv12_copy_plane(const YV12_BUFFER_CONFIG *src_bc, YV12_BUFFER_CONFIG *dst_bc, int plane) { switch (plane) { case 0: aom_yv12_copy_y(src_bc, dst_bc, 0); break; case 1: aom_yv12_copy_u(src_bc, dst_bc, 0); break; case 2: aom_yv12_copy_v(src_bc, dst_bc, 0); break; default: assert(plane >= 0 && plane <= 2); break; } } int av1_get_max_filter_level(const AV1_COMP *cpi) { if (is_stat_consumption_stage_twopass(cpi)) { return cpi->ppi->twopass.section_intra_rating > 8 ? MAX_LOOP_FILTER * 3 / 4 : MAX_LOOP_FILTER; } else { return MAX_LOOP_FILTER; } } static int64_t try_filter_frame(const YV12_BUFFER_CONFIG *sd, AV1_COMP *const cpi, int filt_level, int partial_frame, int plane, int dir) { MultiThreadInfo *const mt_info = &cpi->mt_info; int num_workers = mt_info->num_mod_workers[MOD_LPF]; AV1_COMMON *const cm = &cpi->common; int64_t filt_err; assert(plane >= 0 && plane <= 2); int filter_level[2] = { filt_level, filt_level }; if (plane == 0 && dir == 0) filter_level[1] = cm->lf.filter_level[1]; if (plane == 0 && dir == 1) filter_level[0] = cm->lf.filter_level[0]; // set base filters for use of av1_get_filter_level when in DELTA_LF mode switch (plane) { case 0: cm->lf.filter_level[0] = filter_level[0]; cm->lf.filter_level[1] = filter_level[1]; break; case 1: cm->lf.filter_level_u = filter_level[0]; break; case 2: cm->lf.filter_level_v = filter_level[0]; break; } // lpf_opt_level = 1 : Enables dual/quad loop-filtering. int lpf_opt_level = is_inter_tx_size_search_level_one(&cpi->sf.tx_sf); av1_loop_filter_frame_mt(&cm->cur_frame->buf, cm, &cpi->td.mb.e_mbd, plane, plane + 1, partial_frame, mt_info->workers, num_workers, &mt_info->lf_row_sync, lpf_opt_level); filt_err = aom_get_sse_plane(sd, &cm->cur_frame->buf, plane, cm->seq_params->use_highbitdepth); // Re-instate the unfiltered frame yv12_copy_plane(&cpi->last_frame_uf, &cm->cur_frame->buf, plane); return filt_err; } static int search_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, int partial_frame, const int *last_frame_filter_level, int plane, int dir) { const AV1_COMMON *const cm = &cpi->common; const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); int filt_direction = 0; int64_t best_err; int filt_best; // Start the search at the previous frame filter level unless it is now out of // range. int lvl; switch (plane) { case 0: switch (dir) { case 2: lvl = (last_frame_filter_level[0] + last_frame_filter_level[1] + 1) >> 1; break; case 0: case 1: lvl = last_frame_filter_level[dir]; break; default: assert(dir >= 0 && dir <= 2); return 0; } break; case 1: lvl = last_frame_filter_level[2]; break; case 2: lvl = last_frame_filter_level[3]; break; default: assert(plane >= 0 && plane <= 2); return 0; } int filt_mid = clamp(lvl, min_filter_level, max_filter_level); int filter_step = filt_mid < 16 ? 4 : filt_mid / 4; // Sum squared error at each filter level int64_t ss_err[MAX_LOOP_FILTER + 1]; const int use_coarse_search = cpi->sf.lpf_sf.use_coarse_filter_level_search; assert(use_coarse_search <= 1); static const int min_filter_step_lookup[2] = { 0, 2 }; // min_filter_step_thesh determines the stopping criteria for the search. // The search is terminated when filter_step equals min_filter_step_thesh. const int min_filter_step_thesh = min_filter_step_lookup[use_coarse_search]; // Set each entry to -1 memset(ss_err, 0xFF, sizeof(ss_err)); yv12_copy_plane(&cm->cur_frame->buf, &cpi->last_frame_uf, plane); best_err = try_filter_frame(sd, cpi, filt_mid, partial_frame, plane, dir); filt_best = filt_mid; ss_err[filt_mid] = best_err; while (filter_step > min_filter_step_thesh) { const int filt_high = AOMMIN(filt_mid + filter_step, max_filter_level); const int filt_low = AOMMAX(filt_mid - filter_step, min_filter_level); // Bias against raising loop filter in favor of lowering it. int64_t bias = (best_err >> (15 - (filt_mid / 8))) * filter_step; if ((is_stat_consumption_stage_twopass(cpi)) && (cpi->ppi->twopass.section_intra_rating < 20)) bias = (bias * cpi->ppi->twopass.section_intra_rating) / 20; // yx, bias less for large block size if (cm->features.tx_mode != ONLY_4X4) bias >>= 1; if (filt_direction <= 0 && filt_low != filt_mid) { // Get Low filter error score if (ss_err[filt_low] < 0) { ss_err[filt_low] = try_filter_frame(sd, cpi, filt_low, partial_frame, plane, dir); } // If value is close to the best so far then bias towards a lower loop // filter value. if (ss_err[filt_low] < (best_err + bias)) { // Was it actually better than the previous best? if (ss_err[filt_low] < best_err) { best_err = ss_err[filt_low]; } filt_best = filt_low; } } // Now look at filt_high if (filt_direction >= 0 && filt_high != filt_mid) { if (ss_err[filt_high] < 0) { ss_err[filt_high] = try_filter_frame(sd, cpi, filt_high, partial_frame, plane, dir); } // If value is significantly better than previous best, bias added against // raising filter value if (ss_err[filt_high] < (best_err - bias)) { best_err = ss_err[filt_high]; filt_best = filt_high; } } // Half the step distance if the best filter value was the same as last time if (filt_best == filt_mid) { filter_step /= 2; filt_direction = 0; } else { filt_direction = (filt_best < filt_mid) ? -1 : 1; filt_mid = filt_best; } } return filt_best; } void av1_pick_filter_level(const YV12_BUFFER_CONFIG *sd, AV1_COMP *cpi, LPF_PICK_METHOD method) { AV1_COMMON *const cm = &cpi->common; const SequenceHeader *const seq_params = cm->seq_params; const int num_planes = av1_num_planes(cm); struct loopfilter *const lf = &cm->lf; int disable_filter_rt_screen = 0; (void)sd; lf->sharpness_level = 0; if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->sf.rt_sf.skip_lf_screen) disable_filter_rt_screen = av1_cyclic_refresh_disable_lf_cdef(cpi); if (disable_filter_rt_screen || cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_NONE || (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_REFERENCE && cpi->ppi->rtc_ref.non_reference_frame)) { lf->filter_level[0] = 0; lf->filter_level[1] = 0; return; } if (method == LPF_PICK_MINIMAL_LPF) { lf->filter_level[0] = 0; lf->filter_level[1] = 0; } else if (method >= LPF_PICK_FROM_Q) { const int min_filter_level = 0; const int max_filter_level = av1_get_max_filter_level(cpi); const int q = av1_ac_quant_QTX(cm->quant_params.base_qindex, 0, seq_params->bit_depth); // based on tests result for rtc test set // 0.04590 boosted or 0.02295 non-booseted in 18-bit fixed point const int strength_boost_q_treshold = 0; int inter_frame_multiplier = (q > strength_boost_q_treshold || (cpi->sf.rt_sf.use_nonrd_pick_mode && cpi->common.width * cpi->common.height > 352 * 288)) ? 12034 : 6017; // Increase strength on base TL0 for temporal layers, for low-resoln, // based on frame source_sad. if (cpi->svc.number_temporal_layers > 1 && cpi->svc.temporal_layer_id == 0 && cpi->common.width * cpi->common.height <= 352 * 288 && cpi->sf.rt_sf.use_nonrd_pick_mode) { if (cpi->rc.frame_source_sad > 100000) inter_frame_multiplier = inter_frame_multiplier << 1; else if (cpi->rc.frame_source_sad > 50000) inter_frame_multiplier = 3 * (inter_frame_multiplier >> 1); } else if (cpi->sf.rt_sf.use_fast_fixed_part) { inter_frame_multiplier = inter_frame_multiplier << 1; } // These values were determined by linear fitting the result of the // searched level for 8 bit depth: // Keyframes: filt_guess = q * 0.06699 - 1.60817 // Other frames: filt_guess = q * inter_frame_multiplier + 2.48225 // // And high bit depth separately: // filt_guess = q * 0.316206 + 3.87252 int filt_guess; switch (seq_params->bit_depth) { case AOM_BITS_8: filt_guess = (cm->current_frame.frame_type == KEY_FRAME) ? ROUND_POWER_OF_TWO(q * 17563 - 421574, 18) : ROUND_POWER_OF_TWO(q * inter_frame_multiplier + 650707, 18); break; case AOM_BITS_10: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 4060632, 20); break; case AOM_BITS_12: filt_guess = ROUND_POWER_OF_TWO(q * 20723 + 16242526, 22); break; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 " "or AOM_BITS_12"); return; } if (seq_params->bit_depth != AOM_BITS_8 && cm->current_frame.frame_type == KEY_FRAME) filt_guess -= 4; // TODO(chengchen): retrain the model for Y, U, V filter levels lf->filter_level[0] = clamp(filt_guess, min_filter_level, max_filter_level); lf->filter_level[1] = clamp(filt_guess, min_filter_level, max_filter_level); lf->filter_level_u = clamp(filt_guess, min_filter_level, max_filter_level); lf->filter_level_v = clamp(filt_guess, min_filter_level, max_filter_level); if (cpi->oxcf.algo_cfg.loopfilter_control == LOOPFILTER_SELECTIVELY && !frame_is_intra_only(cm) && !cpi->rc.high_source_sad) { if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { lf->filter_level[0] = 0; lf->filter_level[1] = 0; } else { const int num4x4 = (cm->width >> 2) * (cm->height >> 2); const int newmv_thresh = 7; const int distance_since_key_thresh = 5; if ((cpi->td.rd_counts.newmv_or_intra_blocks * 100 / num4x4) < newmv_thresh && cpi->rc.frames_since_key > distance_since_key_thresh) { lf->filter_level[0] = 0; lf->filter_level[1] = 0; } } } } else { int last_frame_filter_level[4] = { 0 }; if (!frame_is_intra_only(cm)) { last_frame_filter_level[0] = cpi->ppi->filter_level[0]; last_frame_filter_level[1] = cpi->ppi->filter_level[1]; last_frame_filter_level[2] = cpi->ppi->filter_level_u; last_frame_filter_level[3] = cpi->ppi->filter_level_v; } // The frame buffer last_frame_uf is used to store the non-loop filtered // reconstructed frame in search_filter_level(). if (aom_realloc_frame_buffer( &cpi->last_frame_uf, cm->width, cm->height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate last frame buffer"); lf->filter_level[0] = lf->filter_level[1] = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 0, 2); if (method != LPF_PICK_FROM_FULL_IMAGE_NON_DUAL) { lf->filter_level[0] = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 0, 0); lf->filter_level[1] = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 0, 1); } if (num_planes > 1) { lf->filter_level_u = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 1, 0); lf->filter_level_v = search_filter_level(sd, cpi, method == LPF_PICK_FROM_SUBIMAGE, last_frame_filter_level, 2, 0); } } }