/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "config/aom_scale_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_dsp/mathutils.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/quant_common.h" #include "av1/common/restoration.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/encoder.h" #include "av1/encoder/picklpf.h" #include "av1/encoder/pickrst.h" // Number of Wiener iterations #define NUM_WIENER_ITERS 5 // Penalty factor for use of dual sgr #define DUAL_SGR_PENALTY_MULT 0.01 // Working precision for Wiener filter coefficients #define WIENER_TAP_SCALE_FACTOR ((int64_t)1 << 16) #define SGRPROJ_EP_GRP1_START_IDX 0 #define SGRPROJ_EP_GRP1_END_IDX 9 #define SGRPROJ_EP_GRP1_SEARCH_COUNT 4 #define SGRPROJ_EP_GRP2_3_SEARCH_COUNT 2 static const int sgproj_ep_grp1_seed[SGRPROJ_EP_GRP1_SEARCH_COUNT] = { 0, 3, 6, 9 }; static const int sgproj_ep_grp2_3[SGRPROJ_EP_GRP2_3_SEARCH_COUNT][14] = { { 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, -1, -1, -1, -1 }, { 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15 } }; #if DEBUG_LR_COSTING RestorationUnitInfo lr_ref_params[RESTORE_TYPES][MAX_MB_PLANE] [MAX_LR_UNITS_W * MAX_LR_UNITS_H]; #endif // DEBUG_LR_COSTING typedef int64_t (*sse_extractor_type)(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b); typedef int64_t (*sse_part_extractor_type)(const YV12_BUFFER_CONFIG *a, const YV12_BUFFER_CONFIG *b, int hstart, int width, int vstart, int height); typedef uint64_t (*var_part_extractor_type)(const YV12_BUFFER_CONFIG *a, int hstart, int width, int vstart, int height); #if CONFIG_AV1_HIGHBITDEPTH #define NUM_EXTRACTORS (3 * (1 + 1)) #else #define NUM_EXTRACTORS 3 #endif static const sse_part_extractor_type sse_part_extractors[NUM_EXTRACTORS] = { aom_get_y_sse_part, aom_get_u_sse_part, aom_get_v_sse_part, #if CONFIG_AV1_HIGHBITDEPTH aom_highbd_get_y_sse_part, aom_highbd_get_u_sse_part, aom_highbd_get_v_sse_part, #endif }; static const var_part_extractor_type var_part_extractors[NUM_EXTRACTORS] = { aom_get_y_var, aom_get_u_var, aom_get_v_var, #if CONFIG_AV1_HIGHBITDEPTH aom_highbd_get_y_var, aom_highbd_get_u_var, aom_highbd_get_v_var, #endif }; static int64_t sse_restoration_unit(const RestorationTileLimits *limits, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *dst, int plane, int highbd) { return sse_part_extractors[3 * highbd + plane]( src, dst, limits->h_start, limits->h_end - limits->h_start, limits->v_start, limits->v_end - limits->v_start); } static uint64_t var_restoration_unit(const RestorationTileLimits *limits, const YV12_BUFFER_CONFIG *src, int plane, int highbd) { return var_part_extractors[3 * highbd + plane]( src, limits->h_start, limits->h_end - limits->h_start, limits->v_start, limits->v_end - limits->v_start); } typedef struct { const YV12_BUFFER_CONFIG *src; YV12_BUFFER_CONFIG *dst; const AV1_COMMON *cm; const MACROBLOCK *x; int plane; int plane_w; int plane_h; RestUnitSearchInfo *rusi; // Speed features const LOOP_FILTER_SPEED_FEATURES *lpf_sf; uint8_t *dgd_buffer; int dgd_stride; const uint8_t *src_buffer; int src_stride; // SSE values for each restoration mode for the current RU // These are saved by each search function for use in search_switchable() int64_t sse[RESTORE_SWITCHABLE_TYPES]; // This flag will be set based on the speed feature // 'prune_sgr_based_on_wiener'. 0 implies no pruning and 1 implies pruning. uint8_t skip_sgr_eval; // Total rate and distortion so far for each restoration type // These are initialised by reset_rsc in search_rest_type int64_t total_sse[RESTORE_TYPES]; int64_t total_bits[RESTORE_TYPES]; // Reference parameters for delta-coding // // For each restoration type, we need to store the latest parameter set which // has been used, so that we can properly cost up the next parameter set. // Note that we have two sets of these - one for the single-restoration-mode // search (ie, frame_restoration_type = RESTORE_WIENER or RESTORE_SGRPROJ) // and one for the switchable mode. This is because these two cases can lead // to different sets of parameters being signaled, but we don't know which // we will pick for sure until the end of the search process. WienerInfo ref_wiener; SgrprojInfo ref_sgrproj; WienerInfo switchable_ref_wiener; SgrprojInfo switchable_ref_sgrproj; // Buffers used to hold dgd-avg and src-avg data respectively during SIMD // call of Wiener filter. int16_t *dgd_avg; int16_t *src_avg; } RestSearchCtxt; static AOM_INLINE void rsc_on_tile(void *priv) { RestSearchCtxt *rsc = (RestSearchCtxt *)priv; set_default_wiener(&rsc->ref_wiener); set_default_sgrproj(&rsc->ref_sgrproj); set_default_wiener(&rsc->switchable_ref_wiener); set_default_sgrproj(&rsc->switchable_ref_sgrproj); } static AOM_INLINE void reset_rsc(RestSearchCtxt *rsc) { memset(rsc->total_sse, 0, sizeof(rsc->total_sse)); memset(rsc->total_bits, 0, sizeof(rsc->total_bits)); } static AOM_INLINE void init_rsc(const YV12_BUFFER_CONFIG *src, const AV1_COMMON *cm, const MACROBLOCK *x, const LOOP_FILTER_SPEED_FEATURES *lpf_sf, int plane, RestUnitSearchInfo *rusi, YV12_BUFFER_CONFIG *dst, RestSearchCtxt *rsc) { rsc->src = src; rsc->dst = dst; rsc->cm = cm; rsc->x = x; rsc->plane = plane; rsc->rusi = rusi; rsc->lpf_sf = lpf_sf; const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; const int is_uv = plane != AOM_PLANE_Y; int plane_w, plane_h; av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); assert(plane_w == src->crop_widths[is_uv]); assert(plane_h == src->crop_heights[is_uv]); assert(src->crop_widths[is_uv] == dgd->crop_widths[is_uv]); assert(src->crop_heights[is_uv] == dgd->crop_heights[is_uv]); rsc->plane_w = plane_w; rsc->plane_h = plane_h; rsc->src_buffer = src->buffers[plane]; rsc->src_stride = src->strides[is_uv]; rsc->dgd_buffer = dgd->buffers[plane]; rsc->dgd_stride = dgd->strides[is_uv]; } static int64_t try_restoration_unit(const RestSearchCtxt *rsc, const RestorationTileLimits *limits, const RestorationUnitInfo *rui) { const AV1_COMMON *const cm = rsc->cm; const int plane = rsc->plane; const int is_uv = plane > 0; const RestorationInfo *rsi = &cm->rst_info[plane]; RestorationLineBuffers rlbs; const int bit_depth = cm->seq_params->bit_depth; const int highbd = cm->seq_params->use_highbitdepth; const YV12_BUFFER_CONFIG *fts = &cm->cur_frame->buf; // TODO(yunqing): For now, only use optimized LR filter in decoder. Can be // also used in encoder. const int optimized_lr = 0; av1_loop_restoration_filter_unit( limits, rui, &rsi->boundaries, &rlbs, rsc->plane_w, rsc->plane_h, is_uv && cm->seq_params->subsampling_x, is_uv && cm->seq_params->subsampling_y, highbd, bit_depth, fts->buffers[plane], fts->strides[is_uv], rsc->dst->buffers[plane], rsc->dst->strides[is_uv], cm->rst_tmpbuf, optimized_lr, cm->error); return sse_restoration_unit(limits, rsc->src, rsc->dst, plane, highbd); } int64_t av1_lowbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { int i, j; const uint8_t *src = src8; const uint8_t *dat = dat8; int64_t err = 0; if (params->r[0] > 0 && params->r[1] > 0) { for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); int32_t v = u << SGRPROJ_PRJ_BITS; v += xq[0] * (flt0[j] - u) + xq[1] * (flt1[j] - u); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; flt1 += flt1_stride; } } else if (params->r[0] > 0) { for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { assert(flt0[j] < (1 << 15) && flt0[j] > -(1 << 15)); const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); int32_t v = u << SGRPROJ_PRJ_BITS; v += xq[0] * (flt0[j] - u); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; } } else if (params->r[1] > 0) { for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { assert(flt1[j] < (1 << 15) && flt1[j] > -(1 << 15)); const int32_t u = (int32_t)(dat[j] << SGRPROJ_RST_BITS); int32_t v = u << SGRPROJ_PRJ_BITS; v += xq[1] * (flt1[j] - u); const int32_t e = ROUND_POWER_OF_TWO(v, SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS) - src[j]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt1 += flt1_stride; } } else { for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t e = (int32_t)(dat[j]) - src[j]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } } return err; } #if CONFIG_AV1_HIGHBITDEPTH int64_t av1_highbd_pixel_proj_error_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); int i, j; int64_t err = 0; const int32_t half = 1 << (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS - 1); if (params->r[0] > 0 && params->r[1] > 0) { int xq0 = xq[0]; int xq1 = xq[1]; for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t d = dat[j]; const int32_t s = src[j]; const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); int32_t v0 = flt0[j] - u; int32_t v1 = flt1[j] - u; int32_t v = half; v += xq0 * v0; v += xq1 * v1; const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; err += ((int64_t)e * e); } dat += dat_stride; flt0 += flt0_stride; flt1 += flt1_stride; src += src_stride; } } else if (params->r[0] > 0 || params->r[1] > 0) { int exq; int32_t *flt; int flt_stride; if (params->r[0] > 0) { exq = xq[0]; flt = flt0; flt_stride = flt0_stride; } else { exq = xq[1]; flt = flt1; flt_stride = flt1_stride; } for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t d = dat[j]; const int32_t s = src[j]; const int32_t u = (int32_t)(d << SGRPROJ_RST_BITS); int32_t v = half; v += exq * (flt[j] - u); const int32_t e = (v >> (SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS)) + d - s; err += ((int64_t)e * e); } dat += dat_stride; flt += flt_stride; src += src_stride; } } else { for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { const int32_t d = dat[j]; const int32_t s = src[j]; const int32_t e = d - s; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } } return err; } #endif // CONFIG_AV1_HIGHBITDEPTH static int64_t get_pixel_proj_error(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int *xqd, const sgr_params_type *params) { int xq[2]; av1_decode_xq(xqd, xq, params); #if CONFIG_AV1_HIGHBITDEPTH if (use_highbitdepth) { return av1_highbd_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, xq, params); } else { return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, xq, params); } #else (void)use_highbitdepth; return av1_lowbd_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, xq, params); #endif } #define USE_SGRPROJ_REFINEMENT_SEARCH 1 static int64_t finer_search_pixel_proj_error( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int start_step, int *xqd, const sgr_params_type *params) { int64_t err = get_pixel_proj_error( src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, flt0_stride, flt1, flt1_stride, xqd, params); (void)start_step; #if USE_SGRPROJ_REFINEMENT_SEARCH int64_t err2; int tap_min[] = { SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MIN1 }; int tap_max[] = { SGRPROJ_PRJ_MAX0, SGRPROJ_PRJ_MAX1 }; for (int s = start_step; s >= 1; s >>= 1) { for (int p = 0; p < 2; ++p) { if ((params->r[0] == 0 && p == 0) || (params->r[1] == 0 && p == 1)) { continue; } int skip = 0; do { if (xqd[p] - s >= tap_min[p]) { xqd[p] -= s; err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, flt0_stride, flt1, flt1_stride, xqd, params); if (err2 > err) { xqd[p] += s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (xqd[p] + s <= tap_max[p]) { xqd[p] += s; err2 = get_pixel_proj_error(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, flt0_stride, flt1, flt1_stride, xqd, params); if (err2 > err) { xqd[p] -= s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } } #endif // USE_SGRPROJ_REFINEMENT_SEARCH return err; } static int64_t signed_rounded_divide(int64_t dividend, int64_t divisor) { if (dividend < 0) return (dividend - divisor / 2) / divisor; else return (dividend + divisor / 2) / divisor; } static AOM_INLINE void calc_proj_params_r0_r1_c( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; H[0][0] += (int64_t)f1 * f1; H[1][1] += (int64_t)f2 * f2; H[0][1] += (int64_t)f1 * f2; C[0] += (int64_t)f1 * s; C[1] += (int64_t)f2 * s; } } H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } static AOM_INLINE void calc_proj_params_r0_r1_high_bd_c( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; H[0][0] += (int64_t)f1 * f1; H[1][1] += (int64_t)f2 * f2; H[0][1] += (int64_t)f1 * f2; C[0] += (int64_t)f1 * s; C[1] += (int64_t)f2 * s; } } H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } static AOM_INLINE void calc_proj_params_r0_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; H[0][0] += (int64_t)f1 * f1; C[0] += (int64_t)f1 * s; } } H[0][0] /= size; C[0] /= size; } static AOM_INLINE void calc_proj_params_r0_high_bd_c( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f1 = (int32_t)flt0[i * flt0_stride + j] - u; H[0][0] += (int64_t)f1 * f1; C[0] += (int64_t)f1 * s; } } H[0][0] /= size; C[0] /= size; } static AOM_INLINE void calc_proj_params_r1_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; H[1][1] += (int64_t)f2 * f2; C[1] += (int64_t)f2 * s; } } H[1][1] /= size; C[1] /= size; } static AOM_INLINE void calc_proj_params_r1_high_bd_c( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); for (int i = 0; i < height; ++i) { for (int j = 0; j < width; ++j) { const int32_t u = (int32_t)(dat[i * dat_stride + j] << SGRPROJ_RST_BITS); const int32_t s = (int32_t)(src[i * src_stride + j] << SGRPROJ_RST_BITS) - u; const int32_t f2 = (int32_t)flt1[i * flt1_stride + j] - u; H[1][1] += (int64_t)f2 * f2; C[1] += (int64_t)f2 * s; } } H[1][1] /= size; C[1] /= size; } // The function calls 3 subfunctions for the following cases : // 1) When params->r[0] > 0 and params->r[1] > 0. In this case all elements // of C and H need to be computed. // 2) When only params->r[0] > 0. In this case only H[0][0] and C[0] are // non-zero and need to be computed. // 3) When only params->r[1] > 0. In this case only H[1][1] and C[1] are // non-zero and need to be computed. void av1_calc_proj_params_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_c(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } void av1_calc_proj_params_high_bd_c(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_high_bd_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_high_bd_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_high_bd_c(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } static AOM_INLINE void get_proj_subspace(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int use_highbitdepth, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int *xq, const sgr_params_type *params) { int64_t H[2][2] = { { 0, 0 }, { 0, 0 } }; int64_t C[2] = { 0, 0 }; // Default values to be returned if the problem becomes ill-posed xq[0] = 0; xq[1] = 0; if (!use_highbitdepth) { if ((width & 0x7) == 0) { av1_calc_proj_params(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C, params); } else { av1_calc_proj_params_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C, params); } } #if CONFIG_AV1_HIGHBITDEPTH else { // NOLINT if ((width & 0x7) == 0) { av1_calc_proj_params_high_bd(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C, params); } else { av1_calc_proj_params_high_bd_c(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C, params); } } #endif if (params->r[0] == 0) { // H matrix is now only the scalar H[1][1] // C vector is now only the scalar C[1] const int64_t Det = H[1][1]; if (Det == 0) return; // ill-posed, return default values xq[0] = 0; xq[1] = (int)signed_rounded_divide(C[1] * (1 << SGRPROJ_PRJ_BITS), Det); } else if (params->r[1] == 0) { // H matrix is now only the scalar H[0][0] // C vector is now only the scalar C[0] const int64_t Det = H[0][0]; if (Det == 0) return; // ill-posed, return default values xq[0] = (int)signed_rounded_divide(C[0] * (1 << SGRPROJ_PRJ_BITS), Det); xq[1] = 0; } else { const int64_t Det = H[0][0] * H[1][1] - H[0][1] * H[1][0]; if (Det == 0) return; // ill-posed, return default values // If scaling up dividend would overflow, instead scale down the divisor const int64_t div1 = H[1][1] * C[0] - H[0][1] * C[1]; if ((div1 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div1) || (div1 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div1)) xq[0] = (int)signed_rounded_divide(div1, Det / (1 << SGRPROJ_PRJ_BITS)); else xq[0] = (int)signed_rounded_divide(div1 * (1 << SGRPROJ_PRJ_BITS), Det); const int64_t div2 = H[0][0] * C[1] - H[1][0] * C[0]; if ((div2 > 0 && INT64_MAX / (1 << SGRPROJ_PRJ_BITS) < div2) || (div2 < 0 && INT64_MIN / (1 << SGRPROJ_PRJ_BITS) > div2)) xq[1] = (int)signed_rounded_divide(div2, Det / (1 << SGRPROJ_PRJ_BITS)); else xq[1] = (int)signed_rounded_divide(div2 * (1 << SGRPROJ_PRJ_BITS), Det); } } static AOM_INLINE void encode_xq(int *xq, int *xqd, const sgr_params_type *params) { if (params->r[0] == 0) { xqd[0] = 0; xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xq[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); } else if (params->r[1] == 0) { xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); } else { xqd[0] = clamp(xq[0], SGRPROJ_PRJ_MIN0, SGRPROJ_PRJ_MAX0); xqd[1] = clamp((1 << SGRPROJ_PRJ_BITS) - xqd[0] - xq[1], SGRPROJ_PRJ_MIN1, SGRPROJ_PRJ_MAX1); } } // Apply the self-guided filter across an entire restoration unit. static AOM_INLINE void apply_sgr(int sgr_params_idx, const uint8_t *dat8, int width, int height, int dat_stride, int use_highbd, int bit_depth, int pu_width, int pu_height, int32_t *flt0, int32_t *flt1, int flt_stride, struct aom_internal_error_info *error_info) { for (int i = 0; i < height; i += pu_height) { const int h = AOMMIN(pu_height, height - i); int32_t *flt0_row = flt0 + i * flt_stride; int32_t *flt1_row = flt1 + i * flt_stride; const uint8_t *dat8_row = dat8 + i * dat_stride; // Iterate over the stripe in blocks of width pu_width for (int j = 0; j < width; j += pu_width) { const int w = AOMMIN(pu_width, width - j); if (av1_selfguided_restoration( dat8_row + j, w, h, dat_stride, flt0_row + j, flt1_row + j, flt_stride, sgr_params_idx, bit_depth, use_highbd) != 0) { aom_internal_error( error_info, AOM_CODEC_MEM_ERROR, "Error allocating buffer in av1_selfguided_restoration"); } } } } static AOM_INLINE void compute_sgrproj_err( const uint8_t *dat8, const int width, const int height, const int dat_stride, const uint8_t *src8, const int src_stride, const int use_highbitdepth, const int bit_depth, const int pu_width, const int pu_height, const int ep, int32_t *flt0, int32_t *flt1, const int flt_stride, int *exqd, int64_t *err, struct aom_internal_error_info *error_info) { int exq[2]; apply_sgr(ep, dat8, width, height, dat_stride, use_highbitdepth, bit_depth, pu_width, pu_height, flt0, flt1, flt_stride, error_info); const sgr_params_type *const params = &av1_sgr_params[ep]; get_proj_subspace(src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, flt_stride, flt1, flt_stride, exq, params); encode_xq(exq, exqd, params); *err = finer_search_pixel_proj_error( src8, width, height, src_stride, dat8, dat_stride, use_highbitdepth, flt0, flt_stride, flt1, flt_stride, 2, exqd, params); } static AOM_INLINE void get_best_error(int64_t *besterr, const int64_t err, const int *exqd, int *bestxqd, int *bestep, const int ep) { if (*besterr == -1 || err < *besterr) { *bestep = ep; *besterr = err; bestxqd[0] = exqd[0]; bestxqd[1] = exqd[1]; } } static SgrprojInfo search_selfguided_restoration( const uint8_t *dat8, int width, int height, int dat_stride, const uint8_t *src8, int src_stride, int use_highbitdepth, int bit_depth, int pu_width, int pu_height, int32_t *rstbuf, int enable_sgr_ep_pruning, struct aom_internal_error_info *error_info) { int32_t *flt0 = rstbuf; int32_t *flt1 = flt0 + RESTORATION_UNITPELS_MAX; int ep, idx, bestep = 0; int64_t besterr = -1; int exqd[2], bestxqd[2] = { 0, 0 }; int flt_stride = ((width + 7) & ~7) + 8; assert(pu_width == (RESTORATION_PROC_UNIT_SIZE >> 1) || pu_width == RESTORATION_PROC_UNIT_SIZE); assert(pu_height == (RESTORATION_PROC_UNIT_SIZE >> 1) || pu_height == RESTORATION_PROC_UNIT_SIZE); if (!enable_sgr_ep_pruning) { for (ep = 0; ep < SGRPROJ_PARAMS; ep++) { int64_t err; compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, use_highbitdepth, bit_depth, pu_width, pu_height, ep, flt0, flt1, flt_stride, exqd, &err, error_info); get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); } } else { // evaluate first four seed ep in first group for (idx = 0; idx < SGRPROJ_EP_GRP1_SEARCH_COUNT; idx++) { ep = sgproj_ep_grp1_seed[idx]; int64_t err; compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, use_highbitdepth, bit_depth, pu_width, pu_height, ep, flt0, flt1, flt_stride, exqd, &err, error_info); get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); } // evaluate left and right ep of winner in seed ep int bestep_ref = bestep; for (ep = bestep_ref - 1; ep < bestep_ref + 2; ep += 2) { if (ep < SGRPROJ_EP_GRP1_START_IDX || ep > SGRPROJ_EP_GRP1_END_IDX) continue; int64_t err; compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, use_highbitdepth, bit_depth, pu_width, pu_height, ep, flt0, flt1, flt_stride, exqd, &err, error_info); get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); } // evaluate last two group for (idx = 0; idx < SGRPROJ_EP_GRP2_3_SEARCH_COUNT; idx++) { ep = sgproj_ep_grp2_3[idx][bestep]; int64_t err; compute_sgrproj_err(dat8, width, height, dat_stride, src8, src_stride, use_highbitdepth, bit_depth, pu_width, pu_height, ep, flt0, flt1, flt_stride, exqd, &err, error_info); get_best_error(&besterr, err, exqd, bestxqd, &bestep, ep); } } SgrprojInfo ret; ret.ep = bestep; ret.xqd[0] = bestxqd[0]; ret.xqd[1] = bestxqd[1]; return ret; } static int count_sgrproj_bits(SgrprojInfo *sgrproj_info, SgrprojInfo *ref_sgrproj_info) { int bits = SGRPROJ_PARAMS_BITS; const sgr_params_type *params = &av1_sgr_params[sgrproj_info->ep]; if (params->r[0] > 0) bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX0 - SGRPROJ_PRJ_MIN0 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0, sgrproj_info->xqd[0] - SGRPROJ_PRJ_MIN0); if (params->r[1] > 0) bits += aom_count_primitive_refsubexpfin( SGRPROJ_PRJ_MAX1 - SGRPROJ_PRJ_MIN1 + 1, SGRPROJ_PRJ_SUBEXP_K, ref_sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1, sgrproj_info->xqd[1] - SGRPROJ_PRJ_MIN1); return bits; } static AOM_INLINE void search_sgrproj( const RestorationTileLimits *limits, int rest_unit_idx, void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, struct aom_internal_error_info *error_info) { (void)rlbs; RestSearchCtxt *rsc = (RestSearchCtxt *)priv; RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; const MACROBLOCK *const x = rsc->x; const AV1_COMMON *const cm = rsc->cm; const int highbd = cm->seq_params->use_highbitdepth; const int bit_depth = cm->seq_params->bit_depth; const int64_t bits_none = x->mode_costs.sgrproj_restore_cost[0]; // Prune evaluation of RESTORE_SGRPROJ if 'skip_sgr_eval' is set if (rsc->skip_sgr_eval) { rsc->total_bits[RESTORE_SGRPROJ] += bits_none; rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[RESTORE_NONE]; rusi->best_rtype[RESTORE_SGRPROJ - 1] = RESTORE_NONE; rsc->sse[RESTORE_SGRPROJ] = INT64_MAX; return; } uint8_t *dgd_start = rsc->dgd_buffer + limits->v_start * rsc->dgd_stride + limits->h_start; const uint8_t *src_start = rsc->src_buffer + limits->v_start * rsc->src_stride + limits->h_start; const int is_uv = rsc->plane > 0; const int ss_x = is_uv && cm->seq_params->subsampling_x; const int ss_y = is_uv && cm->seq_params->subsampling_y; const int procunit_width = RESTORATION_PROC_UNIT_SIZE >> ss_x; const int procunit_height = RESTORATION_PROC_UNIT_SIZE >> ss_y; rusi->sgrproj = search_selfguided_restoration( dgd_start, limits->h_end - limits->h_start, limits->v_end - limits->v_start, rsc->dgd_stride, src_start, rsc->src_stride, highbd, bit_depth, procunit_width, procunit_height, tmpbuf, rsc->lpf_sf->enable_sgr_ep_pruning, error_info); RestorationUnitInfo rui; rui.restoration_type = RESTORE_SGRPROJ; rui.sgrproj_info = rusi->sgrproj; rsc->sse[RESTORE_SGRPROJ] = try_restoration_unit(rsc, limits, &rui); const int64_t bits_sgr = x->mode_costs.sgrproj_restore_cost[1] + (count_sgrproj_bits(&rusi->sgrproj, &rsc->ref_sgrproj) << AV1_PROB_COST_SHIFT); double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], bit_depth); double cost_sgr = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits_sgr >> 4, rsc->sse[RESTORE_SGRPROJ], bit_depth); if (rusi->sgrproj.ep < 10) cost_sgr *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); RestorationType rtype = (cost_sgr < cost_none) ? RESTORE_SGRPROJ : RESTORE_NONE; rusi->best_rtype[RESTORE_SGRPROJ - 1] = rtype; #if DEBUG_LR_COSTING // Store ref params for later checking lr_ref_params[RESTORE_SGRPROJ][rsc->plane][rest_unit_idx].sgrproj_info = rsc->ref_sgrproj; #endif // DEBUG_LR_COSTING rsc->total_sse[RESTORE_SGRPROJ] += rsc->sse[rtype]; rsc->total_bits[RESTORE_SGRPROJ] += (cost_sgr < cost_none) ? bits_sgr : bits_none; if (cost_sgr < cost_none) rsc->ref_sgrproj = rusi->sgrproj; } static void acc_stat_one_line(const uint8_t *dgd, const uint8_t *src, int dgd_stride, int h_start, int h_end, uint8_t avg, const int wiener_halfwin, const int wiener_win2, int32_t *M_int32, int32_t *H_int32, int count) { int j, k, l; int16_t Y[WIENER_WIN2]; for (j = h_start; j < h_end; j++) { const int16_t X = (int16_t)src[j] - (int16_t)avg; int idx = 0; for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { Y[idx] = (int16_t)dgd[(count + l) * dgd_stride + (j + k)] - (int16_t)avg; idx++; } } assert(idx == wiener_win2); for (k = 0; k < wiener_win2; ++k) { M_int32[k] += (int32_t)Y[k] * X; for (l = k; l < wiener_win2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H_int32[k * wiener_win2 + l] += (int32_t)Y[k] * Y[l]; } } } } void av1_compute_stats_c(int wiener_win, const uint8_t *dgd, const uint8_t *src, int16_t *dgd_avg, int16_t *src_avg, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, int use_downsampled_wiener_stats) { (void)dgd_avg; (void)src_avg; int i, k, l; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); uint8_t avg = find_average(dgd, h_start, h_end, v_start, v_end, dgd_stride); int32_t M_row[WIENER_WIN2] = { 0 }; int32_t H_row[WIENER_WIN2 * WIENER_WIN2] = { 0 }; int downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; memset(M, 0, sizeof(*M) * wiener_win2); memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); for (i = v_start; i < v_end; i = i + downsample_factor) { if (use_downsampled_wiener_stats && (v_end - i < WIENER_STATS_DOWNSAMPLE_FACTOR)) { downsample_factor = v_end - i; } memset(M_row, 0, sizeof(int32_t) * WIENER_WIN2); memset(H_row, 0, sizeof(int32_t) * WIENER_WIN2 * WIENER_WIN2); acc_stat_one_line(dgd, src + i * src_stride, dgd_stride, h_start, h_end, avg, wiener_halfwin, wiener_win2, M_row, H_row, i); for (k = 0; k < wiener_win2; ++k) { // Scale M matrix based on the downsampling factor M[k] += ((int64_t)M_row[k] * downsample_factor); for (l = k; l < wiener_win2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. // Scale H Matrix based on the downsampling factor H[k * wiener_win2 + l] += ((int64_t)H_row[k * wiener_win2 + l] * downsample_factor); } } } for (k = 0; k < wiener_win2; ++k) { for (l = k + 1; l < wiener_win2; ++l) { H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; } } } #if CONFIG_AV1_HIGHBITDEPTH void av1_compute_stats_highbd_c(int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { int i, j, k, l; int32_t Y[WIENER_WIN2]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); uint16_t avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); uint8_t bit_depth_divider = 1; if (bit_depth == AOM_BITS_12) bit_depth_divider = 16; else if (bit_depth == AOM_BITS_10) bit_depth_divider = 4; memset(M, 0, sizeof(*M) * wiener_win2); memset(H, 0, sizeof(*H) * wiener_win2 * wiener_win2); for (i = v_start; i < v_end; i++) { for (j = h_start; j < h_end; j++) { const int32_t X = (int32_t)src[i * src_stride + j] - (int32_t)avg; int idx = 0; for (k = -wiener_halfwin; k <= wiener_halfwin; k++) { for (l = -wiener_halfwin; l <= wiener_halfwin; l++) { Y[idx] = (int32_t)dgd[(i + l) * dgd_stride + (j + k)] - (int32_t)avg; idx++; } } assert(idx == wiener_win2); for (k = 0; k < wiener_win2; ++k) { M[k] += (int64_t)Y[k] * X; for (l = k; l < wiener_win2; ++l) { // H is a symmetric matrix, so we only need to fill out the upper // triangle here. We can copy it down to the lower triangle outside // the (i, j) loops. H[k * wiener_win2 + l] += (int64_t)Y[k] * Y[l]; } } } } for (k = 0; k < wiener_win2; ++k) { M[k] /= bit_depth_divider; H[k * wiener_win2 + k] /= bit_depth_divider; for (l = k + 1; l < wiener_win2; ++l) { H[k * wiener_win2 + l] /= bit_depth_divider; H[l * wiener_win2 + k] = H[k * wiener_win2 + l]; } } } #endif // CONFIG_AV1_HIGHBITDEPTH static INLINE int wrap_index(int i, int wiener_win) { const int wiener_halfwin1 = (wiener_win >> 1) + 1; return (i >= wiener_halfwin1 ? wiener_win - 1 - i : i); } // Splits each w[i] into smaller components w1[i] and w2[i] such that // w[i] = w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]. static INLINE void split_wiener_filter_coefficients(int wiener_win, const int32_t *w, int32_t *w1, int32_t *w2) { for (int i = 0; i < wiener_win; i++) { w1[i] = w[i] / WIENER_TAP_SCALE_FACTOR; w2[i] = w[i] - w1[i] * WIENER_TAP_SCALE_FACTOR; assert(w[i] == w1[i] * WIENER_TAP_SCALE_FACTOR + w2[i]); } } // Calculates x * w / WIENER_TAP_SCALE_FACTOR, where // w = w1 * WIENER_TAP_SCALE_FACTOR + w2. // // The multiplication x * w may overflow, so we multiply x by the components of // w (w1 and w2) and combine the multiplication with the division. static INLINE int64_t multiply_and_scale(int64_t x, int32_t w1, int32_t w2) { // Let y = x * w / WIENER_TAP_SCALE_FACTOR // = x * (w1 * WIENER_TAP_SCALE_FACTOR + w2) / WIENER_TAP_SCALE_FACTOR const int64_t y = x * w1 + x * w2 / WIENER_TAP_SCALE_FACTOR; // Double-check the calculation using __int128. // TODO(wtc): Remove after 2024-04-30. #if !defined(NDEBUG) && defined(__GNUC__) && defined(__LP64__) const int32_t w = w1 * WIENER_TAP_SCALE_FACTOR + w2; const __int128 z = (__int128)x * w / WIENER_TAP_SCALE_FACTOR; assert(z >= INT64_MIN); assert(z <= INT64_MAX); assert(y == (int64_t)z); #endif return y; } // Solve linear equations to find Wiener filter tap values // Taps are output scaled by WIENER_FILT_STEP static int linsolve_wiener(int n, int64_t *A, int stride, int64_t *b, int64_t *x) { for (int k = 0; k < n - 1; k++) { // Partial pivoting: bring the row with the largest pivot to the top for (int i = n - 1; i > k; i--) { // If row i has a better (bigger) pivot than row (i-1), swap them if (llabs(A[(i - 1) * stride + k]) < llabs(A[i * stride + k])) { for (int j = 0; j < n; j++) { const int64_t c = A[i * stride + j]; A[i * stride + j] = A[(i - 1) * stride + j]; A[(i - 1) * stride + j] = c; } const int64_t c = b[i]; b[i] = b[i - 1]; b[i - 1] = c; } } // b/278065963: The multiplies // c / 256 * A[k * stride + j] / cd * 256 // and // c / 256 * b[k] / cd * 256 // within Gaussian elimination can cause a signed integer overflow. Rework // the multiplies so that larger scaling is used without significantly // impacting the overall precision. // // Precision guidance: // scale_threshold: Pick as high as possible. // For max_abs_akj >= scale_threshold scenario: // scaler_A: Pick as low as possible. Needed for A[(i + 1) * stride + j]. // scaler_c: Pick as low as possible while maintaining scaler_c >= // (1 << 7). Needed for A[(i + 1) * stride + j] and b[i + 1]. int64_t max_abs_akj = 0; for (int j = 0; j < n; j++) { const int64_t abs_akj = llabs(A[k * stride + j]); if (abs_akj > max_abs_akj) max_abs_akj = abs_akj; } const int scale_threshold = 1 << 22; const int scaler_A = max_abs_akj < scale_threshold ? 1 : (1 << 5); const int scaler_c = max_abs_akj < scale_threshold ? 1 : (1 << 7); const int scaler = scaler_c * scaler_A; // Forward elimination (convert A to row-echelon form) for (int i = k; i < n - 1; i++) { if (A[k * stride + k] == 0) return 0; const int64_t c = A[(i + 1) * stride + k] / scaler_c; const int64_t cd = A[k * stride + k]; for (int j = 0; j < n; j++) { A[(i + 1) * stride + j] -= A[k * stride + j] / scaler_A * c / cd * scaler; } b[i + 1] -= c * b[k] / cd * scaler_c; } } // Back-substitution for (int i = n - 1; i >= 0; i--) { if (A[i * stride + i] == 0) return 0; int64_t c = 0; for (int j = i + 1; j <= n - 1; j++) { c += A[i * stride + j] * x[j] / WIENER_TAP_SCALE_FACTOR; } // Store filter taps x in scaled form. x[i] = WIENER_TAP_SCALE_FACTOR * (b[i] - c) / A[i * stride + i]; } return 1; } // Fix vector b, update vector a static AOM_INLINE void update_a_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, int32_t *a, const int32_t *b) { int i, j; int64_t S[WIENER_WIN]; int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; int32_t b1[WIENER_WIN], b2[WIENER_WIN]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin1 = (wiener_win >> 1) + 1; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < wiener_win; i++) { for (j = 0; j < wiener_win; ++j) { const int jj = wrap_index(j, wiener_win); A[jj] += Mc[i][j] * b[i] / WIENER_TAP_SCALE_FACTOR; } } split_wiener_filter_coefficients(wiener_win, b, b1, b2); for (i = 0; i < wiener_win; i++) { for (j = 0; j < wiener_win; j++) { int k, l; for (k = 0; k < wiener_win; ++k) { const int kk = wrap_index(k, wiener_win); for (l = 0; l < wiener_win; ++l) { const int ll = wrap_index(l, wiener_win); // Calculate // B[ll * wiener_halfwin1 + kk] += // Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / // WIENER_TAP_SCALE_FACTOR * b[j] / WIENER_TAP_SCALE_FACTOR; // // The last multiplication may overflow, so we combine the last // multiplication with the last division. const int64_t x = Hc[j * wiener_win + i][k * wiener_win2 + l] * b[i] / WIENER_TAP_SCALE_FACTOR; // b[j] = b1[j] * WIENER_TAP_SCALE_FACTOR + b2[j] B[ll * wiener_halfwin1 + kk] += multiply_and_scale(x, b1[j], b2[j]); } } } } // Normalization enforcement in the system of equations itself for (i = 0; i < wiener_halfwin1 - 1; ++i) { A[i] -= A[wiener_halfwin1 - 1] * 2 + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; } for (i = 0; i < wiener_halfwin1 - 1; ++i) { for (j = 0; j < wiener_halfwin1 - 1; ++j) { B[i * wiener_halfwin1 + j] -= 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]); } } if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; for (i = wiener_halfwin1; i < wiener_win; ++i) { S[i] = S[wiener_win - 1 - i]; S[wiener_halfwin1 - 1] -= 2 * S[i]; } for (i = 0; i < wiener_win; ++i) { a[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), (1 << (WIENER_FILT_BITS - 1)) - 1); } } } // Fix vector a, update vector b static AOM_INLINE void update_b_sep_sym(int wiener_win, int64_t **Mc, int64_t **Hc, const int32_t *a, int32_t *b) { int i, j; int64_t S[WIENER_WIN]; int64_t A[WIENER_HALFWIN1], B[WIENER_HALFWIN1 * WIENER_HALFWIN1]; int32_t a1[WIENER_WIN], a2[WIENER_WIN]; const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin1 = (wiener_win >> 1) + 1; memset(A, 0, sizeof(A)); memset(B, 0, sizeof(B)); for (i = 0; i < wiener_win; i++) { const int ii = wrap_index(i, wiener_win); for (j = 0; j < wiener_win; j++) { A[ii] += Mc[i][j] * a[j] / WIENER_TAP_SCALE_FACTOR; } } split_wiener_filter_coefficients(wiener_win, a, a1, a2); for (i = 0; i < wiener_win; i++) { const int ii = wrap_index(i, wiener_win); for (j = 0; j < wiener_win; j++) { const int jj = wrap_index(j, wiener_win); int k, l; for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) { // Calculate // B[jj * wiener_halfwin1 + ii] += // Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / // WIENER_TAP_SCALE_FACTOR * a[l] / WIENER_TAP_SCALE_FACTOR; // // The last multiplication may overflow, so we combine the last // multiplication with the last division. const int64_t x = Hc[i * wiener_win + j][k * wiener_win2 + l] * a[k] / WIENER_TAP_SCALE_FACTOR; // a[l] = a1[l] * WIENER_TAP_SCALE_FACTOR + a2[l] B[jj * wiener_halfwin1 + ii] += multiply_and_scale(x, a1[l], a2[l]); } } } } // Normalization enforcement in the system of equations itself for (i = 0; i < wiener_halfwin1 - 1; ++i) { A[i] -= A[wiener_halfwin1 - 1] * 2 + B[i * wiener_halfwin1 + wiener_halfwin1 - 1] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]; } for (i = 0; i < wiener_halfwin1 - 1; ++i) { for (j = 0; j < wiener_halfwin1 - 1; ++j) { B[i * wiener_halfwin1 + j] -= 2 * (B[i * wiener_halfwin1 + (wiener_halfwin1 - 1)] + B[(wiener_halfwin1 - 1) * wiener_halfwin1 + j] - 2 * B[(wiener_halfwin1 - 1) * wiener_halfwin1 + (wiener_halfwin1 - 1)]); } } if (linsolve_wiener(wiener_halfwin1 - 1, B, wiener_halfwin1, A, S)) { S[wiener_halfwin1 - 1] = WIENER_TAP_SCALE_FACTOR; for (i = wiener_halfwin1; i < wiener_win; ++i) { S[i] = S[wiener_win - 1 - i]; S[wiener_halfwin1 - 1] -= 2 * S[i]; } for (i = 0; i < wiener_win; ++i) { b[i] = (int32_t)CLIP(S[i], -(1 << (WIENER_FILT_BITS - 1)), (1 << (WIENER_FILT_BITS - 1)) - 1); } } } static void wiener_decompose_sep_sym(int wiener_win, int64_t *M, int64_t *H, int32_t *a, int32_t *b) { static const int32_t init_filt[WIENER_WIN] = { WIENER_FILT_TAP0_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP3_MIDV, WIENER_FILT_TAP2_MIDV, WIENER_FILT_TAP1_MIDV, WIENER_FILT_TAP0_MIDV, }; int64_t *Hc[WIENER_WIN2]; int64_t *Mc[WIENER_WIN]; int i, j, iter; const int plane_off = (WIENER_WIN - wiener_win) >> 1; const int wiener_win2 = wiener_win * wiener_win; for (i = 0; i < wiener_win; i++) { a[i] = b[i] = WIENER_TAP_SCALE_FACTOR / WIENER_FILT_STEP * init_filt[i + plane_off]; } for (i = 0; i < wiener_win; i++) { Mc[i] = M + i * wiener_win; for (j = 0; j < wiener_win; j++) { Hc[i * wiener_win + j] = H + i * wiener_win * wiener_win2 + j * wiener_win; } } iter = 1; while (iter < NUM_WIENER_ITERS) { update_a_sep_sym(wiener_win, Mc, Hc, a, b); update_b_sep_sym(wiener_win, Mc, Hc, a, b); iter++; } } // Computes the function x'*H*x - x'*M for the learned 2D filter x, and compares // against identity filters; Final score is defined as the difference between // the function values static int64_t compute_score(int wiener_win, int64_t *M, int64_t *H, InterpKernel vfilt, InterpKernel hfilt) { int32_t ab[WIENER_WIN * WIENER_WIN]; int16_t a[WIENER_WIN], b[WIENER_WIN]; int64_t P = 0, Q = 0; int64_t iP = 0, iQ = 0; int64_t Score, iScore; int i, k, l; const int plane_off = (WIENER_WIN - wiener_win) >> 1; const int wiener_win2 = wiener_win * wiener_win; a[WIENER_HALFWIN] = b[WIENER_HALFWIN] = WIENER_FILT_STEP; for (i = 0; i < WIENER_HALFWIN; ++i) { a[i] = a[WIENER_WIN - i - 1] = vfilt[i]; b[i] = b[WIENER_WIN - i - 1] = hfilt[i]; a[WIENER_HALFWIN] -= 2 * a[i]; b[WIENER_HALFWIN] -= 2 * b[i]; } memset(ab, 0, sizeof(ab)); for (k = 0; k < wiener_win; ++k) { for (l = 0; l < wiener_win; ++l) ab[k * wiener_win + l] = a[l + plane_off] * b[k + plane_off]; } for (k = 0; k < wiener_win2; ++k) { P += ab[k] * M[k] / WIENER_FILT_STEP / WIENER_FILT_STEP; for (l = 0; l < wiener_win2; ++l) { Q += ab[k] * H[k * wiener_win2 + l] * ab[l] / WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP / WIENER_FILT_STEP; } } Score = Q - 2 * P; iP = M[wiener_win2 >> 1]; iQ = H[(wiener_win2 >> 1) * wiener_win2 + (wiener_win2 >> 1)]; iScore = iQ - 2 * iP; return Score - iScore; } static AOM_INLINE void finalize_sym_filter(int wiener_win, int32_t *f, InterpKernel fi) { int i; const int wiener_halfwin = (wiener_win >> 1); for (i = 0; i < wiener_halfwin; ++i) { const int64_t dividend = (int64_t)f[i] * WIENER_FILT_STEP; const int64_t divisor = WIENER_TAP_SCALE_FACTOR; // Perform this division with proper rounding rather than truncation if (dividend < 0) { fi[i] = (int16_t)((dividend - (divisor / 2)) / divisor); } else { fi[i] = (int16_t)((dividend + (divisor / 2)) / divisor); } } // Specialize for 7-tap filter if (wiener_win == WIENER_WIN) { fi[0] = CLIP(fi[0], WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP0_MAXV); fi[1] = CLIP(fi[1], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[2] = CLIP(fi[2], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); } else { fi[2] = CLIP(fi[1], WIENER_FILT_TAP2_MINV, WIENER_FILT_TAP2_MAXV); fi[1] = CLIP(fi[0], WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP1_MAXV); fi[0] = 0; } // Satisfy filter constraints fi[WIENER_WIN - 1] = fi[0]; fi[WIENER_WIN - 2] = fi[1]; fi[WIENER_WIN - 3] = fi[2]; // The central element has an implicit +WIENER_FILT_STEP fi[3] = -2 * (fi[0] + fi[1] + fi[2]); } static int count_wiener_bits(int wiener_win, WienerInfo *wiener_info, WienerInfo *ref_wiener_info) { int bits = 0; if (wiener_win == WIENER_WIN) bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->vfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->vfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->vfilter[2] - WIENER_FILT_TAP2_MINV); if (wiener_win == WIENER_WIN) bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP0_MAXV - WIENER_FILT_TAP0_MINV + 1, WIENER_FILT_TAP0_SUBEXP_K, ref_wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV, wiener_info->hfilter[0] - WIENER_FILT_TAP0_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP1_MAXV - WIENER_FILT_TAP1_MINV + 1, WIENER_FILT_TAP1_SUBEXP_K, ref_wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV, wiener_info->hfilter[1] - WIENER_FILT_TAP1_MINV); bits += aom_count_primitive_refsubexpfin( WIENER_FILT_TAP2_MAXV - WIENER_FILT_TAP2_MINV + 1, WIENER_FILT_TAP2_SUBEXP_K, ref_wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV, wiener_info->hfilter[2] - WIENER_FILT_TAP2_MINV); return bits; } static int64_t finer_search_wiener(const RestSearchCtxt *rsc, const RestorationTileLimits *limits, RestorationUnitInfo *rui, int wiener_win) { const int plane_off = (WIENER_WIN - wiener_win) >> 1; int64_t err = try_restoration_unit(rsc, limits, rui); if (rsc->lpf_sf->disable_wiener_coeff_refine_search) return err; // Refinement search around the wiener filter coefficients. int64_t err2; int tap_min[] = { WIENER_FILT_TAP0_MINV, WIENER_FILT_TAP1_MINV, WIENER_FILT_TAP2_MINV }; int tap_max[] = { WIENER_FILT_TAP0_MAXV, WIENER_FILT_TAP1_MAXV, WIENER_FILT_TAP2_MAXV }; WienerInfo *plane_wiener = &rui->wiener_info; // printf("err pre = %"PRId64"\n", err); const int start_step = 4; for (int s = start_step; s >= 1; s >>= 1) { for (int p = plane_off; p < WIENER_HALFWIN; ++p) { int skip = 0; do { if (plane_wiener->hfilter[p] - s >= tap_min[p]) { plane_wiener->hfilter[p] -= s; plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; err2 = try_restoration_unit(rsc, limits, rui); if (err2 > err) { plane_wiener->hfilter[p] += s; plane_wiener->hfilter[WIENER_WIN - p - 1] += s; plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (plane_wiener->hfilter[p] + s <= tap_max[p]) { plane_wiener->hfilter[p] += s; plane_wiener->hfilter[WIENER_WIN - p - 1] += s; plane_wiener->hfilter[WIENER_HALFWIN] -= 2 * s; err2 = try_restoration_unit(rsc, limits, rui); if (err2 > err) { plane_wiener->hfilter[p] -= s; plane_wiener->hfilter[WIENER_WIN - p - 1] -= s; plane_wiener->hfilter[WIENER_HALFWIN] += 2 * s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } for (int p = plane_off; p < WIENER_HALFWIN; ++p) { int skip = 0; do { if (plane_wiener->vfilter[p] - s >= tap_min[p]) { plane_wiener->vfilter[p] -= s; plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; err2 = try_restoration_unit(rsc, limits, rui); if (err2 > err) { plane_wiener->vfilter[p] += s; plane_wiener->vfilter[WIENER_WIN - p - 1] += s; plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; } else { err = err2; skip = 1; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); if (skip) break; do { if (plane_wiener->vfilter[p] + s <= tap_max[p]) { plane_wiener->vfilter[p] += s; plane_wiener->vfilter[WIENER_WIN - p - 1] += s; plane_wiener->vfilter[WIENER_HALFWIN] -= 2 * s; err2 = try_restoration_unit(rsc, limits, rui); if (err2 > err) { plane_wiener->vfilter[p] -= s; plane_wiener->vfilter[WIENER_WIN - p - 1] -= s; plane_wiener->vfilter[WIENER_HALFWIN] += 2 * s; } else { err = err2; // At the highest step size continue moving in the same direction if (s == start_step) continue; } } break; } while (1); } } // printf("err post = %"PRId64"\n", err); return err; } static AOM_INLINE void search_wiener( const RestorationTileLimits *limits, int rest_unit_idx, void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, struct aom_internal_error_info *error_info) { (void)tmpbuf; (void)rlbs; (void)error_info; RestSearchCtxt *rsc = (RestSearchCtxt *)priv; RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; const MACROBLOCK *const x = rsc->x; const int64_t bits_none = x->mode_costs.wiener_restore_cost[0]; // Skip Wiener search for low variance contents if (rsc->lpf_sf->prune_wiener_based_on_src_var) { const int scale[3] = { 0, 1, 2 }; // Obtain the normalized Qscale const int qs = av1_dc_quant_QTX(rsc->cm->quant_params.base_qindex, 0, rsc->cm->seq_params->bit_depth) >> 3; // Derive threshold as sqr(normalized Qscale) * scale / 16, const uint64_t thresh = (qs * qs * scale[rsc->lpf_sf->prune_wiener_based_on_src_var]) >> 4; const int highbd = rsc->cm->seq_params->use_highbitdepth; const uint64_t src_var = var_restoration_unit(limits, rsc->src, rsc->plane, highbd); // Do not perform Wiener search if source variance is lower than threshold // or if the reconstruction error is zero int prune_wiener = (src_var < thresh) || (rsc->sse[RESTORE_NONE] == 0); if (prune_wiener) { rsc->total_bits[RESTORE_WIENER] += bits_none; rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; rsc->sse[RESTORE_WIENER] = INT64_MAX; if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; return; } } const int wiener_win = (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; int reduced_wiener_win = wiener_win; if (rsc->lpf_sf->reduce_wiener_window_size) { reduced_wiener_win = (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN_REDUCED : WIENER_WIN_CHROMA; } int64_t M[WIENER_WIN2]; int64_t H[WIENER_WIN2 * WIENER_WIN2]; int32_t vfilter[WIENER_WIN], hfilter[WIENER_WIN]; #if CONFIG_AV1_HIGHBITDEPTH const AV1_COMMON *const cm = rsc->cm; if (cm->seq_params->use_highbitdepth) { // TODO(any) : Add support for use_downsampled_wiener_stats SF in HBD // functions. Optimize intrinsics of HBD design similar to LBD (i.e., // pre-calculate d and s buffers and avoid most of the C operations). av1_compute_stats_highbd(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, limits->h_start, limits->h_end, limits->v_start, limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H, cm->seq_params->bit_depth); } else { av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end, limits->v_start, limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H, rsc->lpf_sf->use_downsampled_wiener_stats); } #else av1_compute_stats(reduced_wiener_win, rsc->dgd_buffer, rsc->src_buffer, rsc->dgd_avg, rsc->src_avg, limits->h_start, limits->h_end, limits->v_start, limits->v_end, rsc->dgd_stride, rsc->src_stride, M, H, rsc->lpf_sf->use_downsampled_wiener_stats); #endif wiener_decompose_sep_sym(reduced_wiener_win, M, H, vfilter, hfilter); RestorationUnitInfo rui; memset(&rui, 0, sizeof(rui)); rui.restoration_type = RESTORE_WIENER; finalize_sym_filter(reduced_wiener_win, vfilter, rui.wiener_info.vfilter); finalize_sym_filter(reduced_wiener_win, hfilter, rui.wiener_info.hfilter); // Filter score computes the value of the function x'*A*x - x'*b for the // learned filter and compares it against identity filer. If there is no // reduction in the function, the filter is reverted back to identity if (compute_score(reduced_wiener_win, M, H, rui.wiener_info.vfilter, rui.wiener_info.hfilter) > 0) { rsc->total_bits[RESTORE_WIENER] += bits_none; rsc->total_sse[RESTORE_WIENER] += rsc->sse[RESTORE_NONE]; rusi->best_rtype[RESTORE_WIENER - 1] = RESTORE_NONE; rsc->sse[RESTORE_WIENER] = INT64_MAX; if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) rsc->skip_sgr_eval = 1; return; } rsc->sse[RESTORE_WIENER] = finer_search_wiener(rsc, limits, &rui, reduced_wiener_win); rusi->wiener = rui.wiener_info; if (reduced_wiener_win != WIENER_WIN) { assert(rui.wiener_info.vfilter[0] == 0 && rui.wiener_info.vfilter[WIENER_WIN - 1] == 0); assert(rui.wiener_info.hfilter[0] == 0 && rui.wiener_info.hfilter[WIENER_WIN - 1] == 0); } const int64_t bits_wiener = x->mode_costs.wiener_restore_cost[1] + (count_wiener_bits(wiener_win, &rusi->wiener, &rsc->ref_wiener) << AV1_PROB_COST_SHIFT); double cost_none = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits_none >> 4, rsc->sse[RESTORE_NONE], rsc->cm->seq_params->bit_depth); double cost_wiener = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits_wiener >> 4, rsc->sse[RESTORE_WIENER], rsc->cm->seq_params->bit_depth); RestorationType rtype = (cost_wiener < cost_none) ? RESTORE_WIENER : RESTORE_NONE; rusi->best_rtype[RESTORE_WIENER - 1] = rtype; // Set 'skip_sgr_eval' based on rdcost ratio of RESTORE_WIENER and // RESTORE_NONE or based on best_rtype if (rsc->lpf_sf->prune_sgr_based_on_wiener == 1) { rsc->skip_sgr_eval = cost_wiener > (1.01 * cost_none); } else if (rsc->lpf_sf->prune_sgr_based_on_wiener == 2) { rsc->skip_sgr_eval = rusi->best_rtype[RESTORE_WIENER - 1] == RESTORE_NONE; } #if DEBUG_LR_COSTING // Store ref params for later checking lr_ref_params[RESTORE_WIENER][rsc->plane][rest_unit_idx].wiener_info = rsc->ref_wiener; #endif // DEBUG_LR_COSTING rsc->total_sse[RESTORE_WIENER] += rsc->sse[rtype]; rsc->total_bits[RESTORE_WIENER] += (cost_wiener < cost_none) ? bits_wiener : bits_none; if (cost_wiener < cost_none) rsc->ref_wiener = rusi->wiener; } static AOM_INLINE void search_norestore( const RestorationTileLimits *limits, int rest_unit_idx, void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, struct aom_internal_error_info *error_info) { (void)rest_unit_idx; (void)tmpbuf; (void)rlbs; (void)error_info; RestSearchCtxt *rsc = (RestSearchCtxt *)priv; const int highbd = rsc->cm->seq_params->use_highbitdepth; rsc->sse[RESTORE_NONE] = sse_restoration_unit( limits, rsc->src, &rsc->cm->cur_frame->buf, rsc->plane, highbd); rsc->total_sse[RESTORE_NONE] += rsc->sse[RESTORE_NONE]; } static AOM_INLINE void search_switchable( const RestorationTileLimits *limits, int rest_unit_idx, void *priv, int32_t *tmpbuf, RestorationLineBuffers *rlbs, struct aom_internal_error_info *error_info) { (void)limits; (void)tmpbuf; (void)rlbs; (void)error_info; RestSearchCtxt *rsc = (RestSearchCtxt *)priv; RestUnitSearchInfo *rusi = &rsc->rusi[rest_unit_idx]; const MACROBLOCK *const x = rsc->x; const int wiener_win = (rsc->plane == AOM_PLANE_Y) ? WIENER_WIN : WIENER_WIN_CHROMA; double best_cost = 0; int64_t best_bits = 0; RestorationType best_rtype = RESTORE_NONE; for (RestorationType r = 0; r < RESTORE_SWITCHABLE_TYPES; ++r) { // If this restoration mode was skipped, or could not find a solution // that was better than RESTORE_NONE, then we can't select it here either. // // Note: It is possible for the restoration search functions to find a // filter which is better than RESTORE_NONE when looking purely at SSE, but // for it to be rejected overall due to its rate cost. In this case, there // is a chance that it may be have a lower rate cost when looking at // RESTORE_SWITCHABLE, and so it might be acceptable here. // // Therefore we prune based on SSE, rather than on whether or not the // previous search function selected this mode. if (r > RESTORE_NONE) { if (rsc->sse[r] > rsc->sse[RESTORE_NONE]) continue; } const int64_t sse = rsc->sse[r]; int64_t coeff_pcost = 0; switch (r) { case RESTORE_NONE: coeff_pcost = 0; break; case RESTORE_WIENER: coeff_pcost = count_wiener_bits(wiener_win, &rusi->wiener, &rsc->switchable_ref_wiener); break; case RESTORE_SGRPROJ: coeff_pcost = count_sgrproj_bits(&rusi->sgrproj, &rsc->switchable_ref_sgrproj); break; default: assert(0); break; } const int64_t coeff_bits = coeff_pcost << AV1_PROB_COST_SHIFT; const int64_t bits = x->mode_costs.switchable_restore_cost[r] + coeff_bits; double cost = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits >> 4, sse, rsc->cm->seq_params->bit_depth); if (r == RESTORE_SGRPROJ && rusi->sgrproj.ep < 10) cost *= (1 + DUAL_SGR_PENALTY_MULT * rsc->lpf_sf->dual_sgr_penalty_level); if (r == 0 || cost < best_cost) { best_cost = cost; best_bits = bits; best_rtype = r; } } rusi->best_rtype[RESTORE_SWITCHABLE - 1] = best_rtype; #if DEBUG_LR_COSTING // Store ref params for later checking lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].wiener_info = rsc->switchable_ref_wiener; lr_ref_params[RESTORE_SWITCHABLE][rsc->plane][rest_unit_idx].sgrproj_info = rsc->switchable_ref_sgrproj; #endif // DEBUG_LR_COSTING rsc->total_sse[RESTORE_SWITCHABLE] += rsc->sse[best_rtype]; rsc->total_bits[RESTORE_SWITCHABLE] += best_bits; if (best_rtype == RESTORE_WIENER) rsc->switchable_ref_wiener = rusi->wiener; if (best_rtype == RESTORE_SGRPROJ) rsc->switchable_ref_sgrproj = rusi->sgrproj; } static AOM_INLINE void copy_unit_info(RestorationType frame_rtype, const RestUnitSearchInfo *rusi, RestorationUnitInfo *rui) { assert(frame_rtype > 0); rui->restoration_type = rusi->best_rtype[frame_rtype - 1]; if (rui->restoration_type == RESTORE_WIENER) rui->wiener_info = rusi->wiener; else rui->sgrproj_info = rusi->sgrproj; } static void restoration_search(AV1_COMMON *cm, int plane, RestSearchCtxt *rsc, bool *disable_lr_filter) { const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int mib_size_log2 = cm->seq_params->mib_size_log2; const CommonTileParams *tiles = &cm->tiles; const int is_uv = plane > 0; const int ss_y = is_uv && cm->seq_params->subsampling_y; RestorationInfo *rsi = &cm->rst_info[plane]; const int ru_size = rsi->restoration_unit_size; const int ext_size = ru_size * 3 / 2; int plane_w, plane_h; av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); static const rest_unit_visitor_t funs[RESTORE_TYPES] = { search_norestore, search_wiener, search_sgrproj, search_switchable }; const int plane_num_units = rsi->num_rest_units; const RestorationType num_rtypes = (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; reset_rsc(rsc); // Iterate over restoration units in encoding order, so that each RU gets // the correct reference parameters when we cost it up. This is effectively // a nested iteration over: // * Each tile, order does not matter // * Each superblock within that tile, in raster order // * Each LR unit which is coded within that superblock, in raster order for (int tile_row = 0; tile_row < tiles->rows; tile_row++) { int sb_row_start = tiles->row_start_sb[tile_row]; int sb_row_end = tiles->row_start_sb[tile_row + 1]; for (int tile_col = 0; tile_col < tiles->cols; tile_col++) { int sb_col_start = tiles->col_start_sb[tile_col]; int sb_col_end = tiles->col_start_sb[tile_col + 1]; // Reset reference parameters for delta-coding at the start of each tile rsc_on_tile(rsc); for (int sb_row = sb_row_start; sb_row < sb_row_end; sb_row++) { int mi_row = sb_row << mib_size_log2; for (int sb_col = sb_col_start; sb_col < sb_col_end; sb_col++) { int mi_col = sb_col << mib_size_log2; int rcol0, rcol1, rrow0, rrow1; int has_lr_info = av1_loop_restoration_corners_in_sb( cm, plane, mi_row, mi_col, sb_size, &rcol0, &rcol1, &rrow0, &rrow1); if (!has_lr_info) continue; RestorationTileLimits limits; for (int rrow = rrow0; rrow < rrow1; rrow++) { int y0 = rrow * ru_size; int remaining_h = plane_h - y0; int h = (remaining_h < ext_size) ? remaining_h : ru_size; limits.v_start = y0; limits.v_end = y0 + h; assert(limits.v_end <= plane_h); // Offset upwards to align with the restoration processing stripe const int voffset = RESTORATION_UNIT_OFFSET >> ss_y; limits.v_start = AOMMAX(0, limits.v_start - voffset); if (limits.v_end < plane_h) limits.v_end -= voffset; for (int rcol = rcol0; rcol < rcol1; rcol++) { int x0 = rcol * ru_size; int remaining_w = plane_w - x0; int w = (remaining_w < ext_size) ? remaining_w : ru_size; limits.h_start = x0; limits.h_end = x0 + w; assert(limits.h_end <= plane_w); const int unit_idx = rrow * rsi->horz_units + rcol; rsc->skip_sgr_eval = 0; for (RestorationType r = RESTORE_NONE; r < num_rtypes; r++) { if (disable_lr_filter[r]) continue; funs[r](&limits, unit_idx, rsc, rsc->cm->rst_tmpbuf, NULL, cm->error); } } } } } } } } static INLINE void av1_derive_flags_for_lr_processing( const LOOP_FILTER_SPEED_FEATURES *lpf_sf, bool *disable_lr_filter) { const bool is_wiener_disabled = lpf_sf->disable_wiener_filter; const bool is_sgr_disabled = lpf_sf->disable_sgr_filter; // Enable None Loop restoration filter if either of Wiener or Self-guided is // enabled. disable_lr_filter[RESTORE_NONE] = (is_wiener_disabled && is_sgr_disabled); disable_lr_filter[RESTORE_WIENER] = is_wiener_disabled; disable_lr_filter[RESTORE_SGRPROJ] = is_sgr_disabled; // Enable Swicthable Loop restoration filter if both of the Wiener and // Self-guided are enabled. disable_lr_filter[RESTORE_SWITCHABLE] = (is_wiener_disabled || is_sgr_disabled); } #define COUPLED_CHROMA_FROM_LUMA_RESTORATION 0 // Allocate both decoder-side and encoder-side info structs for a single plane. // The unit size passed in should be the minimum size which we are going to // search; before each search, set_restoration_unit_size() must be called to // configure the actual size. static RestUnitSearchInfo *allocate_search_structs(AV1_COMMON *cm, RestorationInfo *rsi, int is_uv, int min_luma_unit_size) { #if COUPLED_CHROMA_FROM_LUMA_RESTORATION int sx = cm->seq_params.subsampling_x; int sy = cm->seq_params.subsampling_y; int s = (p > 0) ? AOMMIN(sx, sy) : 0; #else int s = 0; #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION int min_unit_size = min_luma_unit_size >> s; int plane_w, plane_h; av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); const int max_horz_units = av1_lr_count_units(min_unit_size, plane_w); const int max_vert_units = av1_lr_count_units(min_unit_size, plane_h); const int max_num_units = max_horz_units * max_vert_units; aom_free(rsi->unit_info); CHECK_MEM_ERROR(cm, rsi->unit_info, (RestorationUnitInfo *)aom_memalign( 16, sizeof(*rsi->unit_info) * max_num_units)); RestUnitSearchInfo *rusi; CHECK_MEM_ERROR( cm, rusi, (RestUnitSearchInfo *)aom_memalign(16, sizeof(*rusi) * max_num_units)); // If the restoration unit dimensions are not multiples of // rsi->restoration_unit_size then some elements of the rusi array may be // left uninitialised when we reach copy_unit_info(...). This is not a // problem, as these elements are ignored later, but in order to quiet // Valgrind's warnings we initialise the array below. memset(rusi, 0, sizeof(*rusi) * max_num_units); return rusi; } static void set_restoration_unit_size(AV1_COMMON *cm, RestorationInfo *rsi, int is_uv, int luma_unit_size) { #if COUPLED_CHROMA_FROM_LUMA_RESTORATION int sx = cm->seq_params.subsampling_x; int sy = cm->seq_params.subsampling_y; int s = (p > 0) ? AOMMIN(sx, sy) : 0; #else int s = 0; #endif // !COUPLED_CHROMA_FROM_LUMA_RESTORATION int unit_size = luma_unit_size >> s; int plane_w, plane_h; av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); const int horz_units = av1_lr_count_units(unit_size, plane_w); const int vert_units = av1_lr_count_units(unit_size, plane_h); rsi->restoration_unit_size = unit_size; rsi->num_rest_units = horz_units * vert_units; rsi->horz_units = horz_units; rsi->vert_units = vert_units; } void av1_pick_filter_restoration(const YV12_BUFFER_CONFIG *src, AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &cpi->td.mb; const SequenceHeader *const seq_params = cm->seq_params; const LOOP_FILTER_SPEED_FEATURES *lpf_sf = &cpi->sf.lpf_sf; const int num_planes = av1_num_planes(cm); const int highbd = cm->seq_params->use_highbitdepth; assert(!cm->features.all_lossless); av1_fill_lr_rates(&x->mode_costs, x->e_mbd.tile_ctx); // Select unit size based on speed feature settings, and allocate // rui structs based on this size int min_lr_unit_size = cpi->sf.lpf_sf.min_lr_unit_size; int max_lr_unit_size = cpi->sf.lpf_sf.max_lr_unit_size; // The minimum allowed unit size at a syntax level is 1 superblock. // Apply this constraint here so that the speed features code which sets // cpi->sf.lpf_sf.min_lr_unit_size does not need to know the superblock size min_lr_unit_size = AOMMAX(min_lr_unit_size, block_size_wide[cm->seq_params->sb_size]); for (int plane = 0; plane < num_planes; ++plane) { cpi->pick_lr_ctxt.rusi[plane] = allocate_search_structs( cm, &cm->rst_info[plane], plane > 0, min_lr_unit_size); } x->rdmult = cpi->rd.RDMULT; // Allocate the frame buffer trial_frame_rst, which is used to temporarily // store the loop restored frame. if (aom_realloc_frame_buffer( &cpi->trial_frame_rst, cm->superres_upscaled_width, cm->superres_upscaled_height, seq_params->subsampling_x, seq_params->subsampling_y, highbd, AOM_RESTORATION_FRAME_BORDER, cm->features.byte_alignment, NULL, NULL, NULL, false, 0)) aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Failed to allocate trial restored frame buffer"); RestSearchCtxt rsc; // The buffers 'src_avg' and 'dgd_avg' are used to compute H and M buffers. // These buffers are only required for the AVX2 and NEON implementations of // av1_compute_stats. The buffer size required is calculated based on maximum // width and height of the LRU (i.e., from foreach_rest_unit_in_plane() 1.5 // times the RESTORATION_UNITSIZE_MAX) allowed for Wiener filtering. The width // and height aligned to multiple of 16 is considered for intrinsic purpose. rsc.dgd_avg = NULL; rsc.src_avg = NULL; #if HAVE_AVX2 || HAVE_NEON // The buffers allocated below are used during Wiener filter processing of low // bitdepth path. Hence, allocate the same when Wiener filter is enabled in // low bitdepth path. if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) { const int buf_size = sizeof(*cpi->pick_lr_ctxt.dgd_avg) * 6 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; CHECK_MEM_ERROR(cm, cpi->pick_lr_ctxt.dgd_avg, (int16_t *)aom_memalign(32, buf_size)); rsc.dgd_avg = cpi->pick_lr_ctxt.dgd_avg; // When LRU width isn't multiple of 16, the 256 bits load instruction used // in AVX2 intrinsic can read data beyond valid LRU. Hence, in order to // silence Valgrind warning this buffer is initialized with zero. Overhead // due to this initialization is negligible since it is done at frame level. memset(rsc.dgd_avg, 0, buf_size); rsc.src_avg = rsc.dgd_avg + 3 * RESTORATION_UNITSIZE_MAX * RESTORATION_UNITSIZE_MAX; // Asserts the starting address of src_avg is always 32-bytes aligned. assert(!((intptr_t)rsc.src_avg % 32)); } #endif // Initialize all planes, so that any planes we skip searching will still have // valid data for (int plane = 0; plane < num_planes; plane++) { cm->rst_info[plane].frame_restoration_type = RESTORE_NONE; } // Decide which planes to search int plane_start, plane_end; if (lpf_sf->disable_loop_restoration_luma) { plane_start = AOM_PLANE_U; } else { plane_start = AOM_PLANE_Y; } if (num_planes == 1 || lpf_sf->disable_loop_restoration_chroma) { plane_end = AOM_PLANE_Y; } else { plane_end = AOM_PLANE_V; } // Derive the flags to enable/disable Loop restoration filters based on the // speed features 'disable_wiener_filter' and 'disable_sgr_filter'. bool disable_lr_filter[RESTORE_TYPES] = { false }; av1_derive_flags_for_lr_processing(lpf_sf, disable_lr_filter); for (int plane = plane_start; plane <= plane_end; plane++) { const YV12_BUFFER_CONFIG *dgd = &cm->cur_frame->buf; const int is_uv = plane != AOM_PLANE_Y; int plane_w, plane_h; av1_get_upsampled_plane_size(cm, is_uv, &plane_w, &plane_h); av1_extend_frame(dgd->buffers[plane], plane_w, plane_h, dgd->strides[is_uv], RESTORATION_BORDER, RESTORATION_BORDER, highbd); } double best_cost = DBL_MAX; int best_luma_unit_size = max_lr_unit_size; for (int luma_unit_size = max_lr_unit_size; luma_unit_size >= min_lr_unit_size; luma_unit_size >>= 1) { int64_t bits_this_size = 0; int64_t sse_this_size = 0; RestorationType best_rtype[MAX_MB_PLANE] = { RESTORE_NONE, RESTORE_NONE, RESTORE_NONE }; for (int plane = plane_start; plane <= plane_end; ++plane) { set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, luma_unit_size); init_rsc(src, &cpi->common, x, lpf_sf, plane, cpi->pick_lr_ctxt.rusi[plane], &cpi->trial_frame_rst, &rsc); restoration_search(cm, plane, &rsc, disable_lr_filter); const int plane_num_units = cm->rst_info[plane].num_rest_units; const RestorationType num_rtypes = (plane_num_units > 1) ? RESTORE_TYPES : RESTORE_SWITCHABLE_TYPES; double best_cost_this_plane = DBL_MAX; for (RestorationType r = 0; r < num_rtypes; ++r) { // Disable Loop restoration filter based on the flags set using speed // feature 'disable_wiener_filter' and 'disable_sgr_filter'. if (disable_lr_filter[r]) continue; double cost_this_plane = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, rsc.total_bits[r] >> 4, rsc.total_sse[r], cm->seq_params->bit_depth); if (cost_this_plane < best_cost_this_plane) { best_cost_this_plane = cost_this_plane; best_rtype[plane] = r; } } bits_this_size += rsc.total_bits[best_rtype[plane]]; sse_this_size += rsc.total_sse[best_rtype[plane]]; } double cost_this_size = RDCOST_DBL_WITH_NATIVE_BD_DIST( x->rdmult, bits_this_size >> 4, sse_this_size, cm->seq_params->bit_depth); if (cost_this_size < best_cost) { best_cost = cost_this_size; best_luma_unit_size = luma_unit_size; // Copy parameters out of rusi struct, before we overwrite it at // the start of the next iteration bool all_none = true; for (int plane = plane_start; plane <= plane_end; ++plane) { cm->rst_info[plane].frame_restoration_type = best_rtype[plane]; if (best_rtype[plane] != RESTORE_NONE) { all_none = false; const int plane_num_units = cm->rst_info[plane].num_rest_units; for (int u = 0; u < plane_num_units; ++u) { copy_unit_info(best_rtype[plane], &cpi->pick_lr_ctxt.rusi[plane][u], &cm->rst_info[plane].unit_info[u]); } } } // Heuristic: If all best_rtype entries are RESTORE_NONE, this means we // couldn't find any good filters at this size. So we likely won't find // any good filters at a smaller size either, so skip if (all_none) { break; } } else { // Heuristic: If this size is worse than the previous (larger) size, then // the next size down will likely be even worse, so skip break; } } // Final fixup to set the correct unit size // We set this for all planes, even ones we have skipped searching, // so that other code does not need to care which planes were and weren't // searched for (int plane = 0; plane < num_planes; ++plane) { set_restoration_unit_size(cm, &cm->rst_info[plane], plane > 0, best_luma_unit_size); } #if HAVE_AVX || HAVE_NEON if (!cpi->sf.lpf_sf.disable_wiener_filter && !highbd) { aom_free(cpi->pick_lr_ctxt.dgd_avg); cpi->pick_lr_ctxt.dgd_avg = NULL; } #endif for (int plane = 0; plane < num_planes; plane++) { aom_free(cpi->pick_lr_ctxt.rusi[plane]); cpi->pick_lr_ctxt.rusi[plane] = NULL; } }