/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include #include "aom_dsp/aom_dsp_common.h" #include "aom_mem/aom_mem.h" #include "aom_ports/mem.h" #include "aom_ports/aom_once.h" #include "av1/common/alloccommon.h" #include "av1/encoder/aq_cyclicrefresh.h" #include "av1/common/common.h" #include "av1/common/entropymode.h" #include "av1/common/quant_common.h" #include "av1/common/seg_common.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encode_strategy.h" #include "av1/encoder/gop_structure.h" #include "av1/encoder/random.h" #include "av1/encoder/ratectrl.h" #include "config/aom_dsp_rtcd.h" #define USE_UNRESTRICTED_Q_IN_CQ_MODE 0 // Max rate target for 1080P and below encodes under normal circumstances // (1920 * 1080 / (16 * 16)) * MAX_MB_RATE bits per MB #define MAX_MB_RATE 250 #define MAXRATE_1080P 2025000 #define MIN_BPB_FACTOR 0.005 #define MAX_BPB_FACTOR 50 #define SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO 0 #define SUPERRES_QADJ_PER_DENOM_KEYFRAME 2 #define SUPERRES_QADJ_PER_DENOM_ARFFRAME 0 #define FRAME_OVERHEAD_BITS 200 #define ASSIGN_MINQ_TABLE(bit_depth, name) \ do { \ switch (bit_depth) { \ case AOM_BITS_8: name = name##_8; break; \ case AOM_BITS_10: name = name##_10; break; \ case AOM_BITS_12: name = name##_12; break; \ default: \ assert(0 && \ "bit_depth should be AOM_BITS_8, AOM_BITS_10" \ " or AOM_BITS_12"); \ name = NULL; \ } \ } while (0) // Tables relating active max Q to active min Q static int kf_low_motion_minq_8[QINDEX_RANGE]; static int kf_high_motion_minq_8[QINDEX_RANGE]; static int arfgf_low_motion_minq_8[QINDEX_RANGE]; static int arfgf_high_motion_minq_8[QINDEX_RANGE]; static int inter_minq_8[QINDEX_RANGE]; static int rtc_minq_8[QINDEX_RANGE]; static int kf_low_motion_minq_10[QINDEX_RANGE]; static int kf_high_motion_minq_10[QINDEX_RANGE]; static int arfgf_low_motion_minq_10[QINDEX_RANGE]; static int arfgf_high_motion_minq_10[QINDEX_RANGE]; static int inter_minq_10[QINDEX_RANGE]; static int rtc_minq_10[QINDEX_RANGE]; static int kf_low_motion_minq_12[QINDEX_RANGE]; static int kf_high_motion_minq_12[QINDEX_RANGE]; static int arfgf_low_motion_minq_12[QINDEX_RANGE]; static int arfgf_high_motion_minq_12[QINDEX_RANGE]; static int inter_minq_12[QINDEX_RANGE]; static int rtc_minq_12[QINDEX_RANGE]; static int gf_high = 2400; static int gf_low = 300; #ifdef STRICT_RC static int kf_high = 3200; #else static int kf_high = 5000; #endif static int kf_low = 400; // How many times less pixels there are to encode given the current scaling. // Temporary replacement for rcf_mult and rate_thresh_mult. static double resize_rate_factor(const FrameDimensionCfg *const frm_dim_cfg, int width, int height) { return (double)(frm_dim_cfg->width * frm_dim_cfg->height) / (width * height); } // Functions to compute the active minq lookup table entries based on a // formulaic approach to facilitate easier adjustment of the Q tables. // The formulae were derived from computing a 3rd order polynomial best // fit to the original data (after plotting real maxq vs minq (not q index)) static int get_minq_index(double maxq, double x3, double x2, double x1, aom_bit_depth_t bit_depth) { const double minqtarget = AOMMIN(((x3 * maxq + x2) * maxq + x1) * maxq, maxq); // Special case handling to deal with the step from q2.0 // down to lossless mode represented by q 1.0. if (minqtarget <= 2.0) return 0; return av1_find_qindex(minqtarget, bit_depth, 0, QINDEX_RANGE - 1); } static void init_minq_luts(int *kf_low_m, int *kf_high_m, int *arfgf_low, int *arfgf_high, int *inter, int *rtc, aom_bit_depth_t bit_depth) { int i; for (i = 0; i < QINDEX_RANGE; i++) { const double maxq = av1_convert_qindex_to_q(i, bit_depth); kf_low_m[i] = get_minq_index(maxq, 0.000001, -0.0004, 0.150, bit_depth); kf_high_m[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.45, bit_depth); arfgf_low[i] = get_minq_index(maxq, 0.0000015, -0.0009, 0.30, bit_depth); arfgf_high[i] = get_minq_index(maxq, 0.0000021, -0.00125, 0.55, bit_depth); inter[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.90, bit_depth); rtc[i] = get_minq_index(maxq, 0.00000271, -0.00113, 0.70, bit_depth); } } static void rc_init_minq_luts(void) { init_minq_luts(kf_low_motion_minq_8, kf_high_motion_minq_8, arfgf_low_motion_minq_8, arfgf_high_motion_minq_8, inter_minq_8, rtc_minq_8, AOM_BITS_8); init_minq_luts(kf_low_motion_minq_10, kf_high_motion_minq_10, arfgf_low_motion_minq_10, arfgf_high_motion_minq_10, inter_minq_10, rtc_minq_10, AOM_BITS_10); init_minq_luts(kf_low_motion_minq_12, kf_high_motion_minq_12, arfgf_low_motion_minq_12, arfgf_high_motion_minq_12, inter_minq_12, rtc_minq_12, AOM_BITS_12); } void av1_rc_init_minq_luts(void) { aom_once(rc_init_minq_luts); } // These functions use formulaic calculations to make playing with the // quantizer tables easier. If necessary they can be replaced by lookup // tables if and when things settle down in the experimental bitstream double av1_convert_qindex_to_q(int qindex, aom_bit_depth_t bit_depth) { // Convert the index to a real Q value (scaled down to match old Q values) switch (bit_depth) { case AOM_BITS_8: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 4.0; case AOM_BITS_10: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 16.0; case AOM_BITS_12: return av1_ac_quant_QTX(qindex, 0, bit_depth) / 64.0; default: assert(0 && "bit_depth should be AOM_BITS_8, AOM_BITS_10 or AOM_BITS_12"); return -1.0; } } int av1_get_bpmb_enumerator(FRAME_TYPE frame_type, const int is_screen_content_type) { int enumerator; if (is_screen_content_type) { enumerator = (frame_type == KEY_FRAME) ? 1000000 : 750000; } else { enumerator = (frame_type == KEY_FRAME) ? 2000000 : 1500000; } return enumerator; } static int get_init_ratio(double sse) { return (int)(300000 / sse); } int av1_rc_bits_per_mb(const AV1_COMP *cpi, FRAME_TYPE frame_type, int qindex, double correction_factor, int accurate_estimate) { const AV1_COMMON *const cm = &cpi->common; const int is_screen_content_type = cpi->is_screen_content_type; const aom_bit_depth_t bit_depth = cm->seq_params->bit_depth; const double q = av1_convert_qindex_to_q(qindex, bit_depth); int enumerator = av1_get_bpmb_enumerator(frame_type, is_screen_content_type); assert(correction_factor <= MAX_BPB_FACTOR && correction_factor >= MIN_BPB_FACTOR); if (cpi->oxcf.rc_cfg.mode == AOM_CBR && frame_type != KEY_FRAME && accurate_estimate && cpi->rec_sse != UINT64_MAX) { const int mbs = cm->mi_params.MBs; const double sse_sqrt = (double)((int)sqrt((double)(cpi->rec_sse)) << BPER_MB_NORMBITS) / (double)mbs; const int ratio = (cpi->rc.bit_est_ratio == 0) ? get_init_ratio(sse_sqrt) : cpi->rc.bit_est_ratio; // Clamp the enumerator to lower the q fluctuations. enumerator = AOMMIN(AOMMAX((int)(ratio * sse_sqrt), 20000), 170000); } // q based adjustment to baseline enumerator return (int)(enumerator * correction_factor / q); } int av1_estimate_bits_at_q(const AV1_COMP *cpi, int q, double correction_factor) { const AV1_COMMON *const cm = &cpi->common; const FRAME_TYPE frame_type = cm->current_frame.frame_type; const int mbs = cm->mi_params.MBs; const int bpm = (int)(av1_rc_bits_per_mb(cpi, frame_type, q, correction_factor, cpi->sf.hl_sf.accurate_bit_estimate)); return AOMMAX(FRAME_OVERHEAD_BITS, (int)((uint64_t)bpm * mbs) >> BPER_MB_NORMBITS); } int av1_rc_clamp_pframe_target_size(const AV1_COMP *const cpi, int target, FRAME_UPDATE_TYPE frame_update_type) { const RATE_CONTROL *rc = &cpi->rc; const AV1EncoderConfig *oxcf = &cpi->oxcf; const int min_frame_target = AOMMAX(rc->min_frame_bandwidth, rc->avg_frame_bandwidth >> 5); // Clip the frame target to the minimum setup value. if (frame_update_type == OVERLAY_UPDATE || frame_update_type == INTNL_OVERLAY_UPDATE) { // If there is an active ARF at this location use the minimum // bits on this frame even if it is a constructed arf. // The active maximum quantizer insures that an appropriate // number of bits will be spent if needed for constructed ARFs. target = min_frame_target; } else if (target < min_frame_target) { target = min_frame_target; } // Clip the frame target to the maximum allowed value. if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; if (oxcf->rc_cfg.max_inter_bitrate_pct) { const int max_rate = rc->avg_frame_bandwidth * oxcf->rc_cfg.max_inter_bitrate_pct / 100; target = AOMMIN(target, max_rate); } return target; } int av1_rc_clamp_iframe_target_size(const AV1_COMP *const cpi, int64_t target) { const RATE_CONTROL *rc = &cpi->rc; const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; if (rc_cfg->max_intra_bitrate_pct) { const int64_t max_rate = (int64_t)rc->avg_frame_bandwidth * rc_cfg->max_intra_bitrate_pct / 100; target = AOMMIN(target, max_rate); } if (target > rc->max_frame_bandwidth) target = rc->max_frame_bandwidth; return (int)target; } // Update the buffer level for higher temporal layers, given the encoded current // temporal layer. static void update_layer_buffer_level(SVC *svc, int encoded_frame_size, bool is_screen) { const int current_temporal_layer = svc->temporal_layer_id; for (int i = current_temporal_layer + 1; i < svc->number_temporal_layers; ++i) { const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, i, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; lp_rc->bits_off_target += (int)round(lc->target_bandwidth / lc->framerate) - encoded_frame_size; // Clip buffer level to maximum buffer size for the layer. lp_rc->bits_off_target = AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); lp_rc->buffer_level = lp_rc->bits_off_target; // For screen-content mode: don't let buffer level go below threshold, // given here as -rc->maximum_ buffer_size, to allow buffer to come back // up sooner after slide change with big oveshoot. if (is_screen) { lp_rc->bits_off_target = AOMMAX(lp_rc->bits_off_target, -lp_rc->maximum_buffer_size); lp_rc->buffer_level = lp_rc->bits_off_target; } } } // Update the buffer level: leaky bucket model. static void update_buffer_level(AV1_COMP *cpi, int encoded_frame_size) { const AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; // Non-viewable frames are a special case and are treated as pure overhead. if (!cm->show_frame) p_rc->bits_off_target -= encoded_frame_size; else p_rc->bits_off_target += rc->avg_frame_bandwidth - encoded_frame_size; // Clip the buffer level to the maximum specified buffer size. p_rc->bits_off_target = AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); // For screen-content mode: don't let buffel level go below threshold, // given here as -rc->maximum_ buffer_size, to allow buffer to come back // up sooner after slide change with big oveshoot. if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) p_rc->bits_off_target = AOMMAX(p_rc->bits_off_target, -p_rc->maximum_buffer_size); p_rc->buffer_level = p_rc->bits_off_target; if (cpi->ppi->use_svc) update_layer_buffer_level(&cpi->svc, encoded_frame_size, cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN); #if CONFIG_FPMT_TEST /* The variable temp_buffer_level is introduced for quality * simulation purpose, it retains the value previous to the parallel * encode frames. The variable is updated based on the update flag. * * If there exist show_existing_frames between parallel frames, then to * retain the temp state do not update it. */ int show_existing_between_parallel_frames = (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE && cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { p_rc->temp_buffer_level = p_rc->buffer_level; } #endif } int av1_rc_get_default_min_gf_interval(int width, int height, double framerate) { // Assume we do not need any constraint lower than 4K 20 fps static const double factor_safe = 3840 * 2160 * 20.0; const double factor = (double)width * height * framerate; const int default_interval = clamp((int)(framerate * 0.125), MIN_GF_INTERVAL, MAX_GF_INTERVAL); if (factor <= factor_safe) return default_interval; else return AOMMAX(default_interval, (int)(MIN_GF_INTERVAL * factor / factor_safe + 0.5)); // Note this logic makes: // 4K24: 5 // 4K30: 6 // 4K60: 12 } int av1_rc_get_default_max_gf_interval(double framerate, int min_gf_interval) { int interval = AOMMIN(MAX_GF_INTERVAL, (int)(framerate * 0.75)); interval += (interval & 0x01); // Round to even value interval = AOMMAX(MAX_GF_INTERVAL, interval); return AOMMAX(interval, min_gf_interval); } void av1_primary_rc_init(const AV1EncoderConfig *oxcf, PRIMARY_RATE_CONTROL *p_rc) { const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; int worst_allowed_q = rc_cfg->worst_allowed_q; int min_gf_interval = oxcf->gf_cfg.min_gf_interval; int max_gf_interval = oxcf->gf_cfg.max_gf_interval; if (min_gf_interval == 0) min_gf_interval = av1_rc_get_default_min_gf_interval( oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, oxcf->input_cfg.init_framerate); if (max_gf_interval == 0) max_gf_interval = av1_rc_get_default_max_gf_interval( oxcf->input_cfg.init_framerate, min_gf_interval); p_rc->baseline_gf_interval = (min_gf_interval + max_gf_interval) / 2; p_rc->this_key_frame_forced = 0; p_rc->next_key_frame_forced = 0; p_rc->ni_frames = 0; p_rc->tot_q = 0.0; p_rc->total_actual_bits = 0; p_rc->total_target_bits = 0; p_rc->buffer_level = p_rc->starting_buffer_level; if (oxcf->target_seq_level_idx[0] < SEQ_LEVELS) { worst_allowed_q = 255; } if (oxcf->pass == AOM_RC_ONE_PASS && rc_cfg->mode == AOM_CBR) { p_rc->avg_frame_qindex[KEY_FRAME] = worst_allowed_q; p_rc->avg_frame_qindex[INTER_FRAME] = worst_allowed_q; } else { p_rc->avg_frame_qindex[KEY_FRAME] = (worst_allowed_q + rc_cfg->best_allowed_q) / 2; p_rc->avg_frame_qindex[INTER_FRAME] = (worst_allowed_q + rc_cfg->best_allowed_q) / 2; } p_rc->avg_q = av1_convert_qindex_to_q(rc_cfg->worst_allowed_q, oxcf->tool_cfg.bit_depth); p_rc->last_q[KEY_FRAME] = rc_cfg->best_allowed_q; p_rc->last_q[INTER_FRAME] = rc_cfg->worst_allowed_q; for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { p_rc->rate_correction_factors[i] = 0.7; } p_rc->rate_correction_factors[KF_STD] = 1.0; p_rc->bits_off_target = p_rc->starting_buffer_level; p_rc->rolling_target_bits = (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); p_rc->rolling_actual_bits = (int)(oxcf->rc_cfg.target_bandwidth / oxcf->input_cfg.init_framerate); } void av1_rc_init(const AV1EncoderConfig *oxcf, RATE_CONTROL *rc) { const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; rc->frames_since_key = 8; // Sensible default for first frame. rc->frames_to_fwd_kf = oxcf->kf_cfg.fwd_kf_dist; rc->frames_till_gf_update_due = 0; rc->ni_av_qi = rc_cfg->worst_allowed_q; rc->ni_tot_qi = 0; rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; if (rc->min_gf_interval == 0) rc->min_gf_interval = av1_rc_get_default_min_gf_interval( oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, oxcf->input_cfg.init_framerate); if (rc->max_gf_interval == 0) rc->max_gf_interval = av1_rc_get_default_max_gf_interval( oxcf->input_cfg.init_framerate, rc->min_gf_interval); rc->avg_frame_low_motion = 0; rc->resize_state = ORIG; rc->resize_avg_qp = 0; rc->resize_buffer_underflow = 0; rc->resize_count = 0; rc->rtc_external_ratectrl = 0; rc->frame_level_fast_extra_bits = 0; rc->use_external_qp_one_pass = 0; } static bool check_buffer_below_thresh(AV1_COMP *cpi, int64_t buffer_level, int drop_mark) { SVC *svc = &cpi->svc; if (!cpi->ppi->use_svc || cpi->svc.number_spatial_layers == 1 || cpi->svc.framedrop_mode == AOM_LAYER_DROP) { return (buffer_level <= drop_mark); } else { // For SVC in the AOM_FULL_SUPERFRAME_DROP): the condition on // buffer is checked on current and upper spatial layers. for (int i = svc->spatial_layer_id; i < svc->number_spatial_layers; ++i) { const int layer = LAYER_IDS_TO_IDX(i, svc->temporal_layer_id, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; PRIMARY_RATE_CONTROL *lrc = &lc->p_rc; // Exclude check for layer whose bitrate is 0. if (lc->target_bandwidth > 0) { const int drop_thresh = cpi->oxcf.rc_cfg.drop_frames_water_mark; const int drop_mark_layer = (int)(drop_thresh * lrc->optimal_buffer_level / 100); if (lrc->buffer_level <= drop_mark_layer) return true; } } return false; } } int av1_rc_drop_frame(AV1_COMP *cpi) { const AV1EncoderConfig *oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int64_t buffer_level = simulate_parallel_frame ? p_rc->temp_buffer_level : p_rc->buffer_level; #else int64_t buffer_level = p_rc->buffer_level; #endif // Never drop on key frame, or for frame whose base layer is key. // If drop_count_consec hits or exceeds max_consec_drop then don't drop. if (cpi->common.current_frame.frame_type == KEY_FRAME || (cpi->ppi->use_svc && cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame) || !oxcf->rc_cfg.drop_frames_water_mark || (rc->max_consec_drop > 0 && rc->drop_count_consec >= rc->max_consec_drop)) { return 0; } else { SVC *svc = &cpi->svc; // In the full_superframe framedrop mode for svc, if the previous spatial // layer was dropped, drop the current spatial layer. if (cpi->ppi->use_svc && svc->spatial_layer_id > 0 && svc->drop_spatial_layer[svc->spatial_layer_id - 1] && svc->framedrop_mode == AOM_FULL_SUPERFRAME_DROP) return 1; // -1 is passed here for drop_mark since we are checking if // buffer goes below 0 (<= -1). if (check_buffer_below_thresh(cpi, buffer_level, -1)) { // Always drop if buffer is below 0. rc->drop_count_consec++; return 1; } else { // If buffer is below drop_mark, for now just drop every other frame // (starting with the next frame) until it increases back over drop_mark. const int drop_mark = (int)(oxcf->rc_cfg.drop_frames_water_mark * p_rc->optimal_buffer_level / 100); const bool buffer_below_thresh = check_buffer_below_thresh(cpi, buffer_level, drop_mark); if (!buffer_below_thresh && rc->decimation_factor > 0) { --rc->decimation_factor; } else if (buffer_below_thresh && rc->decimation_factor == 0) { rc->decimation_factor = 1; } if (rc->decimation_factor > 0) { if (rc->decimation_count > 0) { --rc->decimation_count; rc->drop_count_consec++; return 1; } else { rc->decimation_count = rc->decimation_factor; return 0; } } else { rc->decimation_count = 0; return 0; } } } } static int adjust_q_cbr(const AV1_COMP *cpi, int q, int active_worst_quality, int width, int height) { const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1_COMMON *const cm = &cpi->common; const SVC *const svc = &cpi->svc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; // Flag to indicate previous frame has overshoot, and buffer level // for current frame is low (less than ~half of optimal). For such // (inter) frames, if the source_sad is non-zero, relax the max_delta_up // and clamp applied below. const bool overshoot_buffer_low = cpi->rc.rc_1_frame == -1 && rc->frame_source_sad > 1000 && p_rc->buffer_level < (p_rc->optimal_buffer_level >> 1) && rc->frames_since_key > 4; int max_delta_down; int max_delta_up = overshoot_buffer_low ? 60 : 20; const int change_avg_frame_bandwidth = abs(rc->avg_frame_bandwidth - rc->prev_avg_frame_bandwidth) > 0.1 * (rc->avg_frame_bandwidth); // Set the maximum adjustment down for Q for this frame. if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->cyclic_refresh->apply_cyclic_refresh) { // For static screen type content limit the Q drop till the start of the // next refresh cycle. if (cpi->is_screen_content_type && (cpi->cyclic_refresh->sb_index > cpi->cyclic_refresh->last_sb_index)) { max_delta_down = AOMMIN(8, AOMMAX(1, rc->q_1_frame / 32)); } else { max_delta_down = AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8)); } if (!cpi->ppi->use_svc && cpi->is_screen_content_type) { // Link max_delta_up to max_delta_down and buffer status. if (p_rc->buffer_level > p_rc->optimal_buffer_level) { max_delta_up = AOMMAX(4, max_delta_down); } else { max_delta_up = AOMMAX(8, max_delta_down); } } } else { max_delta_down = (cpi->is_screen_content_type) ? AOMMIN(8, AOMMAX(1, rc->q_1_frame / 16)) : AOMMIN(16, AOMMAX(1, rc->q_1_frame / 8)); } // If resolution changes or avg_frame_bandwidth significantly changed, // then set this flag to indicate change in target bits per macroblock. const int change_target_bits_mb = cm->prev_frame && (width != cm->prev_frame->width || height != cm->prev_frame->height || change_avg_frame_bandwidth); // Apply some control/clamp to QP under certain conditions. // Delay the use of the clamping for svc until after num_temporal_layers, // to make they have been set for each temporal layer. if (!frame_is_intra_only(cm) && rc->frames_since_key > 1 && (!cpi->ppi->use_svc || svc->current_superframe > (unsigned int)svc->number_temporal_layers) && !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl && (!cpi->oxcf.rc_cfg.gf_cbr_boost_pct || !(refresh_frame->alt_ref_frame || refresh_frame->golden_frame))) { // If in the previous two frames we have seen both overshoot and undershoot // clamp Q between the two. Check for rc->q_1/2_frame > 0 in case they have // not been set due to dropped frames. if (rc->rc_1_frame * rc->rc_2_frame == -1 && rc->q_1_frame != rc->q_2_frame && rc->q_1_frame > 0 && rc->q_2_frame > 0 && !overshoot_buffer_low) { int qclamp = clamp(q, AOMMIN(rc->q_1_frame, rc->q_2_frame), AOMMAX(rc->q_1_frame, rc->q_2_frame)); // If the previous frame had overshoot and the current q needs to // increase above the clamped value, reduce the clamp for faster reaction // to overshoot. if (cpi->rc.rc_1_frame == -1 && q > qclamp && rc->frames_since_key > 10) q = (q + qclamp) >> 1; else q = qclamp; } // Adjust Q base on source content change from scene detection. if (cpi->sf.rt_sf.check_scene_detection && rc->prev_avg_source_sad > 0 && rc->frames_since_key > 10 && rc->frame_source_sad > 0 && !cpi->rc.rtc_external_ratectrl) { const int bit_depth = cm->seq_params->bit_depth; double delta = (double)rc->avg_source_sad / (double)rc->prev_avg_source_sad - 1.0; // Push Q downwards if content change is decreasing and buffer level // is stable (at least 1/4-optimal level), so not overshooting. Do so // only for high Q to avoid excess overshoot. // Else reduce decrease in Q from previous frame if content change is // increasing and buffer is below max (so not undershooting). if (delta < 0.0 && p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && q > (rc->worst_quality >> 1)) { double q_adj_factor = 1.0 + 0.5 * tanh(4.0 * delta); double q_val = av1_convert_qindex_to_q(q, bit_depth); q += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); } else if (rc->q_1_frame - q > 0 && delta > 0.1 && p_rc->buffer_level < AOMMIN(p_rc->maximum_buffer_size, p_rc->optimal_buffer_level << 1)) { q = (3 * q + rc->q_1_frame) >> 2; } } // Limit the decrease in Q from previous frame. if (rc->q_1_frame - q > max_delta_down) q = rc->q_1_frame - max_delta_down; // Limit the increase in Q from previous frame. else if (q - rc->q_1_frame > max_delta_up) q = rc->q_1_frame + max_delta_up; } // Adjustment for temporal layers. if (svc->number_temporal_layers > 1 && svc->spatial_layer_id == 0 && !change_target_bits_mb && !cpi->rc.rtc_external_ratectrl && cpi->oxcf.resize_cfg.resize_mode != RESIZE_DYNAMIC) { if (svc->temporal_layer_id > 0) { // Constrain enhancement relative to the previous base TL0. // Get base temporal layer TL0. const int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; // lc->rc.avg_frame_bandwidth and lc->p_rc.last_q correspond to the // last TL0 frame. if (rc->avg_frame_bandwidth < lc->rc.avg_frame_bandwidth && q < lc->p_rc.last_q[INTER_FRAME] - 4) q = lc->p_rc.last_q[INTER_FRAME] - 4; } else if (cpi->svc.temporal_layer_id == 0 && p_rc->buffer_level > (p_rc->optimal_buffer_level >> 2) && rc->frame_source_sad < 100000) { // Push base TL0 Q down if buffer is stable and frame_source_sad // is below threshold. int delta = (svc->number_temporal_layers == 2) ? 4 : 10; q = q - delta; } } // For non-svc (single layer): if resolution has increased push q closer // to the active_worst to avoid excess overshoot. if (!cpi->ppi->use_svc && cm->prev_frame && (width * height > 1.5 * cm->prev_frame->width * cm->prev_frame->height)) q = (q + active_worst_quality) >> 1; // For single layer RPS: Bias Q based on distance of closest reference. if (cpi->ppi->rtc_ref.bias_recovery_frame) { const int min_dist = av1_svc_get_min_ref_dist(cpi); q = q - AOMMIN(min_dist, 20); } return AOMMAX(AOMMIN(q, cpi->rc.worst_quality), cpi->rc.best_quality); } static const RATE_FACTOR_LEVEL rate_factor_levels[FRAME_UPDATE_TYPES] = { KF_STD, // KF_UPDATE INTER_NORMAL, // LF_UPDATE GF_ARF_STD, // GF_UPDATE GF_ARF_STD, // ARF_UPDATE INTER_NORMAL, // OVERLAY_UPDATE INTER_NORMAL, // INTNL_OVERLAY_UPDATE GF_ARF_LOW, // INTNL_ARF_UPDATE }; static RATE_FACTOR_LEVEL get_rate_factor_level(const GF_GROUP *const gf_group, int gf_frame_index) { const FRAME_UPDATE_TYPE update_type = gf_group->update_type[gf_frame_index]; assert(update_type < FRAME_UPDATE_TYPES); return rate_factor_levels[update_type]; } /*!\brief Gets a rate vs Q correction factor * * This function returns the current value of a correction factor used to * dynamilcally adjust the relationship between Q and the expected number * of bits for the frame. * * \ingroup rate_control * \param[in] cpi Top level encoder instance structure * \param[in] width Frame width * \param[in] height Frame height * * \return Returns a correction factor for the current frame */ static double get_rate_correction_factor(const AV1_COMP *cpi, int width, int height) { const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; double rcf; double rate_correction_factors_kfstd; double rate_correction_factors_gfarfstd; double rate_correction_factors_internormal; rate_correction_factors_kfstd = (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) ? rc->frame_level_rate_correction_factors[KF_STD] : p_rc->rate_correction_factors[KF_STD]; rate_correction_factors_gfarfstd = (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) ? rc->frame_level_rate_correction_factors[GF_ARF_STD] : p_rc->rate_correction_factors[GF_ARF_STD]; rate_correction_factors_internormal = (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) ? rc->frame_level_rate_correction_factors[INTER_NORMAL] : p_rc->rate_correction_factors[INTER_NORMAL]; if (cpi->common.current_frame.frame_type == KEY_FRAME) { rcf = rate_correction_factors_kfstd; } else if (is_stat_consumption_stage(cpi)) { const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); double rate_correction_factors_rflvl = (cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) ? rc->frame_level_rate_correction_factors[rf_lvl] : p_rc->rate_correction_factors[rf_lvl]; rcf = rate_correction_factors_rflvl; } else { if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && (cpi->oxcf.rc_cfg.mode != AOM_CBR || cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) rcf = rate_correction_factors_gfarfstd; else rcf = rate_correction_factors_internormal; } rcf *= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); return fclamp(rcf, MIN_BPB_FACTOR, MAX_BPB_FACTOR); } /*!\brief Sets a rate vs Q correction factor * * This function updates the current value of a correction factor used to * dynamilcally adjust the relationship between Q and the expected number * of bits for the frame. * * \ingroup rate_control * \param[in] cpi Top level encoder instance structure * \param[in] is_encode_stage Indicates if recode loop or post-encode * \param[in] factor New correction factor * \param[in] width Frame width * \param[in] height Frame height * * \remark Updates the rate correction factor for the * current frame type in cpi->rc. */ static void set_rate_correction_factor(AV1_COMP *cpi, int is_encode_stage, double factor, int width, int height) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; int update_default_rcf = 1; // Normalize RCF to account for the size-dependent scaling factor. factor /= resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height); factor = fclamp(factor, MIN_BPB_FACTOR, MAX_BPB_FACTOR); if (cpi->common.current_frame.frame_type == KEY_FRAME) { p_rc->rate_correction_factors[KF_STD] = factor; } else if (is_stat_consumption_stage(cpi)) { const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(&cpi->ppi->gf_group, cpi->gf_frame_index); if (is_encode_stage && cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { rc->frame_level_rate_correction_factors[rf_lvl] = factor; update_default_rcf = 0; } if (update_default_rcf) p_rc->rate_correction_factors[rf_lvl] = factor; } else { if ((refresh_frame->alt_ref_frame || refresh_frame->golden_frame) && !rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && (cpi->oxcf.rc_cfg.mode != AOM_CBR || cpi->oxcf.rc_cfg.gf_cbr_boost_pct > 20)) { p_rc->rate_correction_factors[GF_ARF_STD] = factor; } else { if (is_encode_stage && cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0) { rc->frame_level_rate_correction_factors[INTER_NORMAL] = factor; update_default_rcf = 0; } if (update_default_rcf) p_rc->rate_correction_factors[INTER_NORMAL] = factor; } } } void av1_rc_update_rate_correction_factors(AV1_COMP *cpi, int is_encode_stage, int width, int height) { const AV1_COMMON *const cm = &cpi->common; double correction_factor = 1.0; double rate_correction_factor = get_rate_correction_factor(cpi, width, height); double adjustment_limit; int projected_size_based_on_q = 0; int cyclic_refresh_active = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->common.seg.enabled; // Do not update the rate factors for arf overlay frames. if (cpi->rc.is_src_frame_alt_ref) return; // Don't update rate correction factors here on scene changes as // it is already reset in av1_encodedframe_overshoot_cbr(), // but reset variables related to previous frame q and size. // Note that the counter of frames since the last scene change // is only valid when cyclic refresh mode is enabled and that // this break out only applies to scene changes that are not // recorded as INTRA only key frames. if ((cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) && (cpi->cyclic_refresh->counter_encode_maxq_scene_change == 0) && !frame_is_intra_only(cm) && !cpi->ppi->use_svc) { cpi->rc.q_2_frame = cm->quant_params.base_qindex; cpi->rc.q_1_frame = cm->quant_params.base_qindex; cpi->rc.rc_2_frame = 0; cpi->rc.rc_1_frame = 0; return; } // Clear down mmx registers to allow floating point in what follows // Work out how big we would have expected the frame to be at this Q given // the current correction factor. // Stay in double to avoid int overflow when values are large if (cyclic_refresh_active) { projected_size_based_on_q = av1_cyclic_refresh_estimate_bits_at_q(cpi, rate_correction_factor); } else { projected_size_based_on_q = av1_estimate_bits_at_q( cpi, cm->quant_params.base_qindex, rate_correction_factor); } // Work out a size correction factor. if (projected_size_based_on_q > FRAME_OVERHEAD_BITS) correction_factor = (double)cpi->rc.projected_frame_size / (double)projected_size_based_on_q; // Clamp correction factor to prevent anything too extreme correction_factor = AOMMAX(correction_factor, 0.25); cpi->rc.q_2_frame = cpi->rc.q_1_frame; cpi->rc.q_1_frame = cm->quant_params.base_qindex; cpi->rc.rc_2_frame = cpi->rc.rc_1_frame; if (correction_factor > 1.1) cpi->rc.rc_1_frame = -1; else if (correction_factor < 0.9) cpi->rc.rc_1_frame = 1; else cpi->rc.rc_1_frame = 0; // Decide how heavily to dampen the adjustment if (correction_factor > 0.0) { if (cpi->is_screen_content_type) { adjustment_limit = 0.25 + 0.5 * AOMMIN(0.5, fabs(log10(correction_factor))); } else { adjustment_limit = 0.25 + 0.75 * AOMMIN(0.5, fabs(log10(correction_factor))); } } else { adjustment_limit = 0.75; } // Adjustment to delta Q and number of blocks updated in cyclic refressh // based on over or under shoot of target in current frame. if (cyclic_refresh_active && cpi->rc.this_frame_target > 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; if (correction_factor > 1.25) { cr->percent_refresh_adjustment = AOMMAX(cr->percent_refresh_adjustment - 1, -5); cr->rate_ratio_qdelta_adjustment = AOMMAX(cr->rate_ratio_qdelta_adjustment - 0.05, -0.0); } else if (correction_factor < 0.5) { cr->percent_refresh_adjustment = AOMMIN(cr->percent_refresh_adjustment + 1, 5); cr->rate_ratio_qdelta_adjustment = AOMMIN(cr->rate_ratio_qdelta_adjustment + 0.05, 0.25); } } if (correction_factor > 1.01) { // We are not already at the worst allowable quality correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); rate_correction_factor = rate_correction_factor * correction_factor; // Keep rate_correction_factor within limits if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; } else if (correction_factor < 0.99) { // We are not already at the best allowable quality correction_factor = 1.0 / correction_factor; correction_factor = (1.0 + ((correction_factor - 1.0) * adjustment_limit)); correction_factor = 1.0 / correction_factor; rate_correction_factor = rate_correction_factor * correction_factor; // Keep rate_correction_factor within limits if (rate_correction_factor < MIN_BPB_FACTOR) rate_correction_factor = MIN_BPB_FACTOR; } set_rate_correction_factor(cpi, is_encode_stage, rate_correction_factor, width, height); } // Calculate rate for the given 'q'. static int get_bits_per_mb(const AV1_COMP *cpi, int use_cyclic_refresh, double correction_factor, int q) { const AV1_COMMON *const cm = &cpi->common; return use_cyclic_refresh ? av1_cyclic_refresh_rc_bits_per_mb(cpi, q, correction_factor) : av1_rc_bits_per_mb(cpi, cm->current_frame.frame_type, q, correction_factor, cpi->sf.hl_sf.accurate_bit_estimate); } /*!\brief Searches for a Q index value predicted to give an average macro * block rate closest to the target value. * * Similar to find_qindex_by_rate() function, but returns a q index with a * rate just above or below the desired rate, depending on which of the two * rates is closer to the desired rate. * Also, respects the selected aq_mode when computing the rate. * * \ingroup rate_control * \param[in] desired_bits_per_mb Target bits per mb * \param[in] cpi Top level encoder instance structure * \param[in] correction_factor Current Q to rate correction factor * \param[in] best_qindex Min allowed Q value. * \param[in] worst_qindex Max allowed Q value. * * \return Returns a correction factor for the current frame */ static int find_closest_qindex_by_rate(int desired_bits_per_mb, const AV1_COMP *cpi, double correction_factor, int best_qindex, int worst_qindex) { const int use_cyclic_refresh = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->cyclic_refresh->apply_cyclic_refresh; // Find 'qindex' based on 'desired_bits_per_mb'. assert(best_qindex <= worst_qindex); int low = best_qindex; int high = worst_qindex; while (low < high) { const int mid = (low + high) >> 1; const int mid_bits_per_mb = get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, mid); if (mid_bits_per_mb > desired_bits_per_mb) { low = mid + 1; } else { high = mid; } } assert(low == high); // Calculate rate difference of this q index from the desired rate. const int curr_q = low; const int curr_bits_per_mb = get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, curr_q); const int curr_bit_diff = (curr_bits_per_mb <= desired_bits_per_mb) ? desired_bits_per_mb - curr_bits_per_mb : INT_MAX; assert((curr_bit_diff != INT_MAX && curr_bit_diff >= 0) || curr_q == worst_qindex); // Calculate rate difference for previous q index too. const int prev_q = curr_q - 1; int prev_bit_diff; if (curr_bit_diff == INT_MAX || curr_q == best_qindex) { prev_bit_diff = INT_MAX; } else { const int prev_bits_per_mb = get_bits_per_mb(cpi, use_cyclic_refresh, correction_factor, prev_q); assert(prev_bits_per_mb > desired_bits_per_mb); prev_bit_diff = prev_bits_per_mb - desired_bits_per_mb; } // Pick one of the two q indices, depending on which one has rate closer to // the desired rate. return (curr_bit_diff <= prev_bit_diff) ? curr_q : prev_q; } int av1_rc_regulate_q(const AV1_COMP *cpi, int target_bits_per_frame, int active_best_quality, int active_worst_quality, int width, int height) { const int MBs = av1_get_MBs(width, height); const double correction_factor = get_rate_correction_factor(cpi, width, height); const int target_bits_per_mb = (int)(((uint64_t)target_bits_per_frame << BPER_MB_NORMBITS) / MBs); int q = find_closest_qindex_by_rate(target_bits_per_mb, cpi, correction_factor, active_best_quality, active_worst_quality); if (cpi->oxcf.rc_cfg.mode == AOM_CBR && has_no_stats_stage(cpi)) return adjust_q_cbr(cpi, q, active_worst_quality, width, height); return q; } static int get_active_quality(int q, int gfu_boost, int low, int high, int *low_motion_minq, int *high_motion_minq) { if (gfu_boost > high) { return low_motion_minq[q]; } else if (gfu_boost < low) { return high_motion_minq[q]; } else { const int gap = high - low; const int offset = high - gfu_boost; const int qdiff = high_motion_minq[q] - low_motion_minq[q]; const int adjustment = ((offset * qdiff) + (gap >> 1)) / gap; return low_motion_minq[q] + adjustment; } } static int get_kf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, aom_bit_depth_t bit_depth) { int *kf_low_motion_minq; int *kf_high_motion_minq; ASSIGN_MINQ_TABLE(bit_depth, kf_low_motion_minq); ASSIGN_MINQ_TABLE(bit_depth, kf_high_motion_minq); return get_active_quality(q, p_rc->kf_boost, kf_low, kf_high, kf_low_motion_minq, kf_high_motion_minq); } static int get_gf_active_quality_no_rc(int gfu_boost, int q, aom_bit_depth_t bit_depth) { int *arfgf_low_motion_minq; int *arfgf_high_motion_minq; ASSIGN_MINQ_TABLE(bit_depth, arfgf_low_motion_minq); ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); return get_active_quality(q, gfu_boost, gf_low, gf_high, arfgf_low_motion_minq, arfgf_high_motion_minq); } static int get_gf_active_quality(const PRIMARY_RATE_CONTROL *const p_rc, int q, aom_bit_depth_t bit_depth) { return get_gf_active_quality_no_rc(p_rc->gfu_boost, q, bit_depth); } static int get_gf_high_motion_quality(int q, aom_bit_depth_t bit_depth) { int *arfgf_high_motion_minq; ASSIGN_MINQ_TABLE(bit_depth, arfgf_high_motion_minq); return arfgf_high_motion_minq[q]; } static int calc_active_worst_quality_no_stats_vbr(const AV1_COMP *cpi) { const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const unsigned int curr_frame = cpi->common.current_frame.frame_number; int active_worst_quality; int last_q_key_frame; int last_q_inter_frame; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; last_q_key_frame = simulate_parallel_frame ? p_rc->temp_last_q[KEY_FRAME] : p_rc->last_q[KEY_FRAME]; last_q_inter_frame = simulate_parallel_frame ? p_rc->temp_last_q[INTER_FRAME] : p_rc->last_q[INTER_FRAME]; #else last_q_key_frame = p_rc->last_q[KEY_FRAME]; last_q_inter_frame = p_rc->last_q[INTER_FRAME]; #endif if (cpi->common.current_frame.frame_type == KEY_FRAME) { active_worst_quality = curr_frame == 0 ? rc->worst_quality : last_q_key_frame * 2; } else { if (!rc->is_src_frame_alt_ref && (refresh_frame->golden_frame || refresh_frame->bwd_ref_frame || refresh_frame->alt_ref_frame)) { active_worst_quality = curr_frame == 1 ? last_q_key_frame * 5 / 4 : last_q_inter_frame; } else { active_worst_quality = curr_frame == 1 ? last_q_key_frame * 2 : last_q_inter_frame * 2; } } return AOMMIN(active_worst_quality, rc->worst_quality); } // Adjust active_worst_quality level based on buffer level. static int calc_active_worst_quality_no_stats_cbr(const AV1_COMP *cpi) { // Adjust active_worst_quality: If buffer is above the optimal/target level, // bring active_worst_quality down depending on fullness of buffer. // If buffer is below the optimal level, let the active_worst_quality go from // ambient Q (at buffer = optimal level) to worst_quality level // (at buffer = critical level). const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *rc = &cpi->rc; const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; const SVC *const svc = &cpi->svc; unsigned int num_frames_weight_key = 5 * cpi->svc.number_temporal_layers; // Buffer level below which we push active_worst to worst_quality. int64_t critical_level = p_rc->optimal_buffer_level >> 3; int64_t buff_lvl_step = 0; int adjustment = 0; int active_worst_quality; int ambient_qp; if (cm->current_frame.frame_type == KEY_FRAME) return rc->worst_quality; // For ambient_qp we use minimum of avg_frame_qindex[KEY_FRAME/INTER_FRAME] // for the first few frames following key frame. These are both initialized // to worst_quality and updated with (3/4, 1/4) average in postencode_update. // So for first few frames following key, the qp of that key frame is weighted // into the active_worst_quality setting. For SVC the key frame should // correspond to layer (0, 0), so use that for layer context. int avg_qindex_key = p_rc->avg_frame_qindex[KEY_FRAME]; if (svc->number_temporal_layers > 1) { int layer = LAYER_IDS_TO_IDX(0, 0, svc->number_temporal_layers); const LAYER_CONTEXT *lc = &svc->layer_context[layer]; const PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; avg_qindex_key = AOMMIN(lp_rc->avg_frame_qindex[KEY_FRAME], lp_rc->last_q[KEY_FRAME]); } ambient_qp = (cm->current_frame.frame_number < num_frames_weight_key) ? AOMMIN(p_rc->avg_frame_qindex[INTER_FRAME], avg_qindex_key) : p_rc->avg_frame_qindex[INTER_FRAME]; ambient_qp = AOMMIN(rc->worst_quality, ambient_qp); if (p_rc->buffer_level > p_rc->optimal_buffer_level) { // Adjust down. int max_adjustment_down; // Maximum adjustment down for Q if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && !cpi->ppi->use_svc && (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN)) { active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp); max_adjustment_down = AOMMIN(4, active_worst_quality / 16); } else { active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp * 5 / 4); max_adjustment_down = active_worst_quality / 3; } if (max_adjustment_down) { buff_lvl_step = ((p_rc->maximum_buffer_size - p_rc->optimal_buffer_level) / max_adjustment_down); if (buff_lvl_step) adjustment = (int)((p_rc->buffer_level - p_rc->optimal_buffer_level) / buff_lvl_step); active_worst_quality -= adjustment; } } else if (p_rc->buffer_level > critical_level) { // Adjust up from ambient Q. active_worst_quality = AOMMIN(rc->worst_quality, ambient_qp); if (critical_level) { buff_lvl_step = (p_rc->optimal_buffer_level - critical_level); if (buff_lvl_step) { adjustment = (int)((rc->worst_quality - ambient_qp) * (p_rc->optimal_buffer_level - p_rc->buffer_level) / buff_lvl_step); } active_worst_quality += adjustment; } } else { // Set to worst_quality if buffer is below critical level. active_worst_quality = rc->worst_quality; } return active_worst_quality; } // Calculate the active_best_quality level. static int calc_active_best_quality_no_stats_cbr(const AV1_COMP *cpi, int active_worst_quality, int width, int height) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const CurrentFrame *const current_frame = &cm->current_frame; int *rtc_minq; const int bit_depth = cm->seq_params->bit_depth; int active_best_quality = rc->best_quality; ASSIGN_MINQ_TABLE(bit_depth, rtc_minq); if (frame_is_intra_only(cm)) { // Handle the special case for key frames forced when we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. if (p_rc->this_key_frame_forced) { int qindex = p_rc->last_boosted_qindex; double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); int delta_qindex = av1_compute_qdelta(rc, last_boosted_q, (last_boosted_q * 0.75), bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } else if (current_frame->frame_number > 0) { // not first frame of one pass and kf_boost is set double q_adj_factor = 1.0; double q_val; active_best_quality = get_kf_active_quality( p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); // Allow somewhat lower kf minq with small image formats. if ((width * height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); active_best_quality += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); } } else if (!rc->is_src_frame_alt_ref && !cpi->ppi->use_svc && cpi->oxcf.rc_cfg.gf_cbr_boost_pct && (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. int q = active_worst_quality; if (rc->frames_since_key > 1 && p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { q = p_rc->avg_frame_qindex[INTER_FRAME]; } active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); } else { // Use the lower of active_worst_quality and recent/average Q. FRAME_TYPE frame_type = (current_frame->frame_number > 1) ? INTER_FRAME : KEY_FRAME; if (p_rc->avg_frame_qindex[frame_type] < active_worst_quality) active_best_quality = rtc_minq[p_rc->avg_frame_qindex[frame_type]]; else active_best_quality = rtc_minq[active_worst_quality]; } return active_best_quality; } #if RT_PASSIVE_STRATEGY static int get_q_passive_strategy(const AV1_COMP *const cpi, const int q_candidate, const int threshold) { const AV1_COMMON *const cm = &cpi->common; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const CurrentFrame *const current_frame = &cm->current_frame; int sum = 0; int count = 0; int i = 1; while (i < MAX_Q_HISTORY) { int frame_id = current_frame->frame_number - i; if (frame_id <= 0) break; sum += p_rc->q_history[frame_id % MAX_Q_HISTORY]; ++count; ++i; } if (count > 0) { const int avg_q = sum / count; if (abs(avg_q - q_candidate) <= threshold) return avg_q; } return q_candidate; } #endif // RT_PASSIVE_STRATEGY /*!\brief Picks q and q bounds given CBR rate control parameters in \c cpi->rc. * * Handles the special case when using: * - Constant bit-rate mode: \c cpi->oxcf.rc_cfg.mode == \ref AOM_CBR, and * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are * NOT available. * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] width Coded frame width * \param[in] height Coded frame height * \param[out] bottom_index Bottom bound for q index (best quality) * \param[out] top_index Top bound for q index (worst quality) * \return Returns selected q index to be used for encoding this frame. */ static int rc_pick_q_and_bounds_no_stats_cbr(const AV1_COMP *cpi, int width, int height, int *bottom_index, int *top_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const CurrentFrame *const current_frame = &cm->current_frame; int q; int active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); int active_best_quality = calc_active_best_quality_no_stats_cbr( cpi, active_worst_quality, width, height); assert(has_no_stats_stage(cpi)); assert(cpi->oxcf.rc_cfg.mode == AOM_CBR); // Clip the active best and worst quality values to limits active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); *top_index = active_worst_quality; *bottom_index = active_best_quality; // Limit Q range for the adaptive loop. if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced && current_frame->frame_number != 0) { int qdelta = 0; qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, active_worst_quality, 2.0); *top_index = active_worst_quality + qdelta; *top_index = AOMMAX(*top_index, *bottom_index); } q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality, width, height); #if RT_PASSIVE_STRATEGY if (current_frame->frame_type != KEY_FRAME && cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { q = get_q_passive_strategy(cpi, q, 50); } #endif // RT_PASSIVE_STRATEGY if (q > *top_index) { // Special case when we are targeting the max allowed rate if (rc->this_frame_target >= rc->max_frame_bandwidth) *top_index = q; else q = *top_index; } assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } static int gf_group_pyramid_level(const GF_GROUP *gf_group, int gf_index) { return gf_group->layer_depth[gf_index]; } static int get_active_cq_level(const RATE_CONTROL *rc, const PRIMARY_RATE_CONTROL *p_rc, const AV1EncoderConfig *const oxcf, int intra_only, aom_superres_mode superres_mode, int superres_denom) { const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; static const double cq_adjust_threshold = 0.1; int active_cq_level = rc_cfg->cq_level; if (rc_cfg->mode == AOM_CQ || rc_cfg->mode == AOM_Q) { // printf("Superres %d %d %d = %d\n", superres_denom, intra_only, // rc->frames_to_key, !(intra_only && rc->frames_to_key <= 1)); if ((superres_mode == AOM_SUPERRES_QTHRESH || superres_mode == AOM_SUPERRES_AUTO) && superres_denom != SCALE_NUMERATOR) { int mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME_SOLO; if (intra_only && rc->frames_to_key <= 1) { mult = 0; } else if (intra_only) { mult = SUPERRES_QADJ_PER_DENOM_KEYFRAME; } else { mult = SUPERRES_QADJ_PER_DENOM_ARFFRAME; } active_cq_level = AOMMAX( active_cq_level - ((superres_denom - SCALE_NUMERATOR) * mult), 0); } } if (rc_cfg->mode == AOM_CQ && p_rc->total_target_bits > 0) { const double x = (double)p_rc->total_actual_bits / p_rc->total_target_bits; if (x < cq_adjust_threshold) { active_cq_level = (int)(active_cq_level * x / cq_adjust_threshold); } } return active_cq_level; } /*!\brief Picks q and q bounds given non-CBR rate control params in \c cpi->rc. * * Handles the special case when using: * - Any rate control other than constant bit-rate mode: * \c cpi->oxcf.rc_cfg.mode != \ref AOM_CBR, and * - 1-pass encoding without LAP (look-ahead processing), so 1st pass stats are * NOT available. * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] width Coded frame width * \param[in] height Coded frame height * \param[out] bottom_index Bottom bound for q index (best quality) * \param[out] top_index Top bound for q index (worst quality) * \return Returns selected q index to be used for encoding this frame. */ static int rc_pick_q_and_bounds_no_stats(const AV1_COMP *cpi, int width, int height, int *bottom_index, int *top_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const CurrentFrame *const current_frame = &cm->current_frame; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; assert(has_no_stats_stage(cpi)); assert(rc_mode == AOM_VBR || (!USE_UNRESTRICTED_Q_IN_CQ_MODE && rc_mode == AOM_CQ) || rc_mode == AOM_Q); const int cq_level = get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, cm->superres_scale_denominator); const int bit_depth = cm->seq_params->bit_depth; int active_best_quality; int active_worst_quality = calc_active_worst_quality_no_stats_vbr(cpi); int q; int *inter_minq; ASSIGN_MINQ_TABLE(bit_depth, inter_minq); if (frame_is_intra_only(cm)) { if (rc_mode == AOM_Q) { const int qindex = cq_level; const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); const int delta_qindex = av1_compute_qdelta(rc, q_val, q_val * 0.25, bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } else if (p_rc->this_key_frame_forced) { #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex : p_rc->last_boosted_qindex; #else int qindex = p_rc->last_boosted_qindex; #endif const double last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); const int delta_qindex = av1_compute_qdelta( rc, last_boosted_q, last_boosted_q * 0.75, bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } else { // not first frame of one pass and kf_boost is set double q_adj_factor = 1.0; active_best_quality = get_kf_active_quality( p_rc, p_rc->avg_frame_qindex[KEY_FRAME], bit_depth); // Allow somewhat lower kf minq with small image formats. if ((width * height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Convert the adjustment factor to a qindex delta on active_best_quality. { const double q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); active_best_quality += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); } } } else if (!rc->is_src_frame_alt_ref && (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. q = (rc->frames_since_key > 1 && p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) ? p_rc->avg_frame_qindex[INTER_FRAME] : p_rc->avg_frame_qindex[KEY_FRAME]; // For constrained quality dont allow Q less than the cq level if (rc_mode == AOM_CQ) { if (q < cq_level) q = cq_level; active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); // Constrained quality use slightly lower active best. active_best_quality = active_best_quality * 15 / 16; } else if (rc_mode == AOM_Q) { const int qindex = cq_level; const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); const int delta_qindex = (refresh_frame->alt_ref_frame) ? av1_compute_qdelta(rc, q_val, q_val * 0.40, bit_depth) : av1_compute_qdelta(rc, q_val, q_val * 0.50, bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } else { active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); } } else { if (rc_mode == AOM_Q) { const int qindex = cq_level; const double q_val = av1_convert_qindex_to_q(qindex, bit_depth); const double delta_rate[FIXED_GF_INTERVAL] = { 0.50, 1.0, 0.85, 1.0, 0.70, 1.0, 0.85, 1.0 }; const int delta_qindex = av1_compute_qdelta( rc, q_val, q_val * delta_rate[current_frame->frame_number % FIXED_GF_INTERVAL], bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } else { // Use the lower of active_worst_quality and recent/average Q. active_best_quality = (current_frame->frame_number > 1) ? inter_minq[p_rc->avg_frame_qindex[INTER_FRAME]] : inter_minq[p_rc->avg_frame_qindex[KEY_FRAME]]; // For the constrained quality mode we don't want // q to fall below the cq level. if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { active_best_quality = cq_level; } } } // Clip the active best and worst quality values to limits active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); *top_index = active_worst_quality; *bottom_index = active_best_quality; // Limit Q range for the adaptive loop. { int qdelta = 0; if (current_frame->frame_type == KEY_FRAME && !p_rc->this_key_frame_forced && current_frame->frame_number != 0) { qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, active_worst_quality, 2.0); } else if (!rc->is_src_frame_alt_ref && (refresh_frame->golden_frame || refresh_frame->alt_ref_frame)) { qdelta = av1_compute_qdelta_by_rate(cpi, current_frame->frame_type, active_worst_quality, 1.75); } *top_index = active_worst_quality + qdelta; *top_index = AOMMAX(*top_index, *bottom_index); } if (rc_mode == AOM_Q) { q = active_best_quality; // Special case code to try and match quality with forced key frames } else if ((current_frame->frame_type == KEY_FRAME) && p_rc->this_key_frame_forced) { #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; q = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex : p_rc->last_boosted_qindex; #else q = p_rc->last_boosted_qindex; #endif } else { q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality, width, height); if (q > *top_index) { // Special case when we are targeting the max allowed rate if (rc->this_frame_target >= rc->max_frame_bandwidth) *top_index = q; else q = *top_index; } } assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } static const double arf_layer_deltas[MAX_ARF_LAYERS + 1] = { 2.50, 2.00, 1.75, 1.50, 1.25, 1.15, 1.0 }; int av1_frame_type_qdelta(const AV1_COMP *cpi, int q) { const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const RATE_FACTOR_LEVEL rf_lvl = get_rate_factor_level(gf_group, cpi->gf_frame_index); const FRAME_TYPE frame_type = gf_group->frame_type[cpi->gf_frame_index]; const int arf_layer = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); const double rate_factor = (rf_lvl == INTER_NORMAL) ? 1.0 : arf_layer_deltas[arf_layer]; return av1_compute_qdelta_by_rate(cpi, frame_type, q, rate_factor); } // This unrestricted Q selection on CQ mode is useful when testing new features, // but may lead to Q being out of range on current RC restrictions #if USE_UNRESTRICTED_Q_IN_CQ_MODE static int rc_pick_q_and_bounds_no_stats_cq(const AV1_COMP *cpi, int width, int height, int *bottom_index, int *top_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const int cq_level = get_active_cq_level(rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, cm->superres_scale_denominator); const int bit_depth = cm->seq_params->bit_depth; const int q = (int)av1_convert_qindex_to_q(cq_level, bit_depth); (void)width; (void)height; assert(has_no_stats_stage(cpi)); assert(cpi->oxcf.rc_cfg.mode == AOM_CQ); *top_index = q; *bottom_index = q; return q; } #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE #define STATIC_MOTION_THRESH 95 static void get_intra_q_and_bounds(const AV1_COMP *cpi, int width, int height, int *active_best, int *active_worst, int cq_level) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; int active_best_quality; int active_worst_quality = *active_worst; const int bit_depth = cm->seq_params->bit_depth; if (rc->frames_to_key <= 1 && oxcf->rc_cfg.mode == AOM_Q) { // If the next frame is also a key frame or the current frame is the // only frame in the sequence in AOM_Q mode, just use the cq_level // as q. active_best_quality = cq_level; active_worst_quality = cq_level; } else if (p_rc->this_key_frame_forced) { // Handle the special case for key frames forced when we have reached // the maximum key frame interval. Here force the Q to a range // based on the ambient Q to reduce the risk of popping. double last_boosted_q; int delta_qindex; int qindex; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int last_boosted_qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex : p_rc->last_boosted_qindex; #else int last_boosted_qindex = p_rc->last_boosted_qindex; #endif if (is_stat_consumption_stage_twopass(cpi) && cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { qindex = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); active_best_quality = qindex; last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); delta_qindex = av1_compute_qdelta(rc, last_boosted_q, last_boosted_q * 1.25, bit_depth); active_worst_quality = AOMMIN(qindex + delta_qindex, active_worst_quality); } else { qindex = last_boosted_qindex; last_boosted_q = av1_convert_qindex_to_q(qindex, bit_depth); delta_qindex = av1_compute_qdelta(rc, last_boosted_q, last_boosted_q * 0.50, bit_depth); active_best_quality = AOMMAX(qindex + delta_qindex, rc->best_quality); } } else { // Not forced keyframe. double q_adj_factor = 1.0; double q_val; // Baseline value derived from active_worst_quality and kf boost. active_best_quality = get_kf_active_quality(p_rc, active_worst_quality, bit_depth); if (cpi->is_screen_content_type) { active_best_quality /= 2; } if (is_stat_consumption_stage_twopass(cpi) && cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH) { active_best_quality /= 3; } // Allow somewhat lower kf minq with small image formats. if ((width * height) <= (352 * 288)) { q_adj_factor -= 0.25; } // Make a further adjustment based on the kf zero motion measure. if (is_stat_consumption_stage_twopass(cpi)) q_adj_factor += 0.05 - (0.001 * (double)cpi->ppi->twopass.kf_zeromotion_pct); // Convert the adjustment factor to a qindex delta // on active_best_quality. q_val = av1_convert_qindex_to_q(active_best_quality, bit_depth); active_best_quality += av1_compute_qdelta(rc, q_val, q_val * q_adj_factor, bit_depth); // Tweak active_best_quality for AOM_Q mode when superres is on, as this // will be used directly as 'q' later. if (oxcf->rc_cfg.mode == AOM_Q && (cpi->superres_mode == AOM_SUPERRES_QTHRESH || cpi->superres_mode == AOM_SUPERRES_AUTO) && cm->superres_scale_denominator != SCALE_NUMERATOR) { active_best_quality = AOMMAX(active_best_quality - ((cm->superres_scale_denominator - SCALE_NUMERATOR) * SUPERRES_QADJ_PER_DENOM_KEYFRAME), 0); } } *active_best = active_best_quality; *active_worst = active_worst_quality; } static void adjust_active_best_and_worst_quality(const AV1_COMP *cpi, const int is_intrl_arf_boost, int *active_worst, int *active_best) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; int active_best_quality = *active_best; int active_worst_quality = *active_worst; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int extend_minq = simulate_parallel_frame ? p_rc->temp_extend_minq : cpi->ppi->twopass.extend_minq; int extend_maxq = simulate_parallel_frame ? p_rc->temp_extend_maxq : cpi->ppi->twopass.extend_maxq; #endif // Extension to max or min Q if undershoot or overshoot is outside // the permitted range. if (cpi->oxcf.rc_cfg.mode != AOM_Q) { if (frame_is_intra_only(cm) || (!rc->is_src_frame_alt_ref && (refresh_frame->golden_frame || is_intrl_arf_boost || refresh_frame->alt_ref_frame))) { #if CONFIG_FPMT_TEST active_best_quality -= extend_minq; active_worst_quality += (extend_maxq / 2); #else active_best_quality -= cpi->ppi->twopass.extend_minq / 4; active_worst_quality += (cpi->ppi->twopass.extend_maxq / 2); #endif } else { #if CONFIG_FPMT_TEST active_best_quality -= extend_minq / 2; active_worst_quality += extend_maxq; #else active_best_quality -= cpi->ppi->twopass.extend_minq / 4; active_worst_quality += cpi->ppi->twopass.extend_maxq; #endif } } #ifndef STRICT_RC // Static forced key frames Q restrictions dealt with elsewhere. if (!(frame_is_intra_only(cm)) || !p_rc->this_key_frame_forced || (cpi->ppi->twopass.last_kfgroup_zeromotion_pct < STATIC_MOTION_THRESH)) { const int qdelta = av1_frame_type_qdelta(cpi, active_worst_quality); active_worst_quality = AOMMAX(active_worst_quality + qdelta, active_best_quality); } #endif // Modify active_best_quality for downscaled normal frames. if (av1_frame_scaled(cm) && !frame_is_kf_gf_arf(cpi)) { int qdelta = av1_compute_qdelta_by_rate(cpi, cm->current_frame.frame_type, active_best_quality, 2.0); active_best_quality = AOMMAX(active_best_quality + qdelta, rc->best_quality); } active_best_quality = clamp(active_best_quality, rc->best_quality, rc->worst_quality); active_worst_quality = clamp(active_worst_quality, active_best_quality, rc->worst_quality); *active_best = active_best_quality; *active_worst = active_worst_quality; } /*!\brief Gets a Q value to use for the current frame * * * Selects a Q value from a permitted range that we estimate * will result in approximately the target number of bits. * * \ingroup rate_control * \param[in] cpi Top level encoder instance structure * \param[in] width Width of frame * \param[in] height Height of frame * \param[in] active_worst_quality Max Q allowed * \param[in] active_best_quality Min Q allowed * * \return The suggested Q for this frame. */ static int get_q(const AV1_COMP *cpi, const int width, const int height, const int active_worst_quality, const int active_best_quality) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; int q; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg; int last_boosted_qindex = simulate_parallel_frame ? p_rc->temp_last_boosted_qindex : p_rc->last_boosted_qindex; #else int last_boosted_qindex = p_rc->last_boosted_qindex; #endif if (cpi->oxcf.rc_cfg.mode == AOM_Q || (frame_is_intra_only(cm) && !p_rc->this_key_frame_forced && cpi->ppi->twopass.kf_zeromotion_pct >= STATIC_KF_GROUP_THRESH && rc->frames_to_key > 1)) { q = active_best_quality; // Special case code to try and match quality with forced key frames. } else if (frame_is_intra_only(cm) && p_rc->this_key_frame_forced) { // If static since last kf use better of last boosted and last kf q. if (cpi->ppi->twopass.last_kfgroup_zeromotion_pct >= STATIC_MOTION_THRESH) { q = AOMMIN(p_rc->last_kf_qindex, last_boosted_qindex); } else { q = AOMMIN(last_boosted_qindex, (active_best_quality + active_worst_quality) / 2); } q = clamp(q, active_best_quality, active_worst_quality); } else { q = av1_rc_regulate_q(cpi, rc->this_frame_target, active_best_quality, active_worst_quality, width, height); if (q > active_worst_quality) { // Special case when we are targeting the max allowed rate. if (rc->this_frame_target < rc->max_frame_bandwidth) { q = active_worst_quality; } } q = AOMMAX(q, active_best_quality); } return q; } // Returns |active_best_quality| for an inter frame. // The |active_best_quality| depends on different rate control modes: // VBR, Q, CQ, CBR. // The returning active_best_quality could further be adjusted in // adjust_active_best_and_worst_quality(). static int get_active_best_quality(const AV1_COMP *const cpi, const int active_worst_quality, const int cq_level, const int gf_index) { const AV1_COMMON *const cm = &cpi->common; const int bit_depth = cm->seq_params->bit_depth; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const GF_GROUP *gf_group = &cpi->ppi->gf_group; const enum aom_rc_mode rc_mode = oxcf->rc_cfg.mode; int *inter_minq; ASSIGN_MINQ_TABLE(bit_depth, inter_minq); int active_best_quality = 0; const int is_intrl_arf_boost = gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; int is_leaf_frame = !(gf_group->update_type[gf_index] == ARF_UPDATE || gf_group->update_type[gf_index] == GF_UPDATE || is_intrl_arf_boost); // TODO(jingning): Consider to rework this hack that covers issues incurred // in lightfield setting. if (cm->tiles.large_scale) { is_leaf_frame = !(refresh_frame->golden_frame || refresh_frame->alt_ref_frame || is_intrl_arf_boost); } const int is_overlay_frame = rc->is_src_frame_alt_ref; if (is_leaf_frame || is_overlay_frame) { if (rc_mode == AOM_Q) return cq_level; active_best_quality = inter_minq[active_worst_quality]; // For the constrained quality mode we don't want // q to fall below the cq level. if ((rc_mode == AOM_CQ) && (active_best_quality < cq_level)) { active_best_quality = cq_level; } return active_best_quality; } // Determine active_best_quality for frames that are not leaf or overlay. int q = active_worst_quality; // Use the lower of active_worst_quality and recent // average Q as basis for GF/ARF best Q limit unless last frame was // a key frame. if (rc->frames_since_key > 1 && p_rc->avg_frame_qindex[INTER_FRAME] < active_worst_quality) { q = p_rc->avg_frame_qindex[INTER_FRAME]; } if (rc_mode == AOM_CQ && q < cq_level) q = cq_level; active_best_quality = get_gf_active_quality(p_rc, q, bit_depth); // Constrained quality use slightly lower active best. if (rc_mode == AOM_CQ) active_best_quality = active_best_quality * 15 / 16; const int min_boost = get_gf_high_motion_quality(q, bit_depth); const int boost = min_boost - active_best_quality; active_best_quality = min_boost - (int)(boost * p_rc->arf_boost_factor); if (!is_intrl_arf_boost) return active_best_quality; if (rc_mode == AOM_Q || rc_mode == AOM_CQ) active_best_quality = p_rc->arf_q; int this_height = gf_group_pyramid_level(gf_group, gf_index); while (this_height > 1) { active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; --this_height; } return active_best_quality; } // Returns the q_index for a single frame in the GOP. // This function assumes that rc_mode == AOM_Q mode. int av1_q_mode_get_q_index(int base_q_index, int gf_update_type, int gf_pyramid_level, int arf_q) { const int is_intrl_arf_boost = gf_update_type == INTNL_ARF_UPDATE; int is_leaf_or_overlay_frame = gf_update_type == LF_UPDATE || gf_update_type == OVERLAY_UPDATE || gf_update_type == INTNL_OVERLAY_UPDATE; if (is_leaf_or_overlay_frame) return base_q_index; if (!is_intrl_arf_boost) return arf_q; int active_best_quality = arf_q; int active_worst_quality = base_q_index; while (gf_pyramid_level > 1) { active_best_quality = (active_best_quality + active_worst_quality + 1) / 2; --gf_pyramid_level; } return active_best_quality; } // Returns the q_index for the ARF in the GOP. int av1_get_arf_q_index(int base_q_index, int gfu_boost, int bit_depth, double arf_boost_factor) { int active_best_quality = get_gf_active_quality_no_rc(gfu_boost, base_q_index, bit_depth); const int min_boost = get_gf_high_motion_quality(base_q_index, bit_depth); const int boost = min_boost - active_best_quality; return min_boost - (int)(boost * arf_boost_factor); } static int rc_pick_q_and_bounds_q_mode(const AV1_COMP *cpi, int width, int height, int gf_index, int *bottom_index, int *top_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const int cq_level = get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, cm->superres_scale_denominator); int active_best_quality = 0; int active_worst_quality = rc->active_worst_quality; int q; if (frame_is_intra_only(cm)) { get_intra_q_and_bounds(cpi, width, height, &active_best_quality, &active_worst_quality, cq_level); } else { // Active best quality limited by previous layer. active_best_quality = get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index); } if (cq_level > 0) active_best_quality = AOMMAX(1, active_best_quality); *top_index = active_worst_quality; *bottom_index = active_best_quality; *top_index = AOMMAX(*top_index, rc->best_quality); *top_index = AOMMIN(*top_index, rc->worst_quality); *bottom_index = AOMMAX(*bottom_index, rc->best_quality); *bottom_index = AOMMIN(*bottom_index, rc->worst_quality); q = active_best_quality; q = AOMMAX(q, rc->best_quality); q = AOMMIN(q, rc->worst_quality); assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } /*!\brief Picks q and q bounds given rate control parameters in \c cpi->rc. * * Handles the the general cases not covered by * \ref rc_pick_q_and_bounds_no_stats_cbr() and * \ref rc_pick_q_and_bounds_no_stats() * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] width Coded frame width * \param[in] height Coded frame height * \param[in] gf_index Index of this frame in the golden frame group * \param[out] bottom_index Bottom bound for q index (best quality) * \param[out] top_index Top bound for q index (worst quality) * \return Returns selected q index to be used for encoding this frame. */ static int rc_pick_q_and_bounds(const AV1_COMP *cpi, int width, int height, int gf_index, int *bottom_index, int *top_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const GF_GROUP *gf_group = &cpi->ppi->gf_group; assert(IMPLIES(has_no_stats_stage(cpi), cpi->oxcf.rc_cfg.mode == AOM_Q && gf_group->update_type[gf_index] != ARF_UPDATE)); const int cq_level = get_active_cq_level(rc, p_rc, oxcf, frame_is_intra_only(cm), cpi->superres_mode, cm->superres_scale_denominator); if (oxcf->rc_cfg.mode == AOM_Q) { return rc_pick_q_and_bounds_q_mode(cpi, width, height, gf_index, bottom_index, top_index); } int active_best_quality = 0; int active_worst_quality = rc->active_worst_quality; int q; const int is_intrl_arf_boost = gf_group->update_type[gf_index] == INTNL_ARF_UPDATE; if (frame_is_intra_only(cm)) { get_intra_q_and_bounds(cpi, width, height, &active_best_quality, &active_worst_quality, cq_level); #ifdef STRICT_RC active_best_quality = 0; #endif } else { // Active best quality limited by previous layer. const int pyramid_level = gf_group_pyramid_level(gf_group, gf_index); if ((pyramid_level <= 1) || (pyramid_level > MAX_ARF_LAYERS)) { active_best_quality = get_active_best_quality(cpi, active_worst_quality, cq_level, gf_index); } else { #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int local_active_best_quality = simulate_parallel_frame ? p_rc->temp_active_best_quality[pyramid_level - 1] : p_rc->active_best_quality[pyramid_level - 1]; active_best_quality = local_active_best_quality + 1; #else active_best_quality = p_rc->active_best_quality[pyramid_level - 1] + 1; #endif active_best_quality = AOMMIN(active_best_quality, active_worst_quality); #ifdef STRICT_RC active_best_quality += (active_worst_quality - active_best_quality) / 16; #else active_best_quality += (active_worst_quality - active_best_quality) / 2; #endif } // For alt_ref and GF frames (including internal arf frames) adjust the // worst allowed quality as well. This insures that even on hard // sections we dont clamp the Q at the same value for arf frames and // leaf (non arf) frames. This is important to the TPL model which assumes // Q drops with each arf level. if (!(rc->is_src_frame_alt_ref) && (refresh_frame->golden_frame || refresh_frame->alt_ref_frame || is_intrl_arf_boost)) { active_worst_quality = (active_best_quality + (3 * active_worst_quality) + 2) / 4; } } adjust_active_best_and_worst_quality( cpi, is_intrl_arf_boost, &active_worst_quality, &active_best_quality); q = get_q(cpi, width, height, active_worst_quality, active_best_quality); // Special case when we are targeting the max allowed rate. if (rc->this_frame_target >= rc->max_frame_bandwidth && q > active_worst_quality) { active_worst_quality = q; } *top_index = active_worst_quality; *bottom_index = active_best_quality; assert(*top_index <= rc->worst_quality && *top_index >= rc->best_quality); assert(*bottom_index <= rc->worst_quality && *bottom_index >= rc->best_quality); assert(q <= rc->worst_quality && q >= rc->best_quality); return q; } static void rc_compute_variance_onepass_rt(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; YV12_BUFFER_CONFIG const *const unscaled_src = cpi->unscaled_source; if (unscaled_src == NULL) return; const uint8_t *src_y = unscaled_src->y_buffer; const int src_ystride = unscaled_src->y_stride; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); const uint8_t *pre_y = yv12->buffers[0]; const int pre_ystride = yv12->strides[0]; // TODO(yunqing): support scaled reference frames. if (cpi->scaled_ref_buf[LAST_FRAME - 1]) return; for (int i = 0; i < 2; ++i) { if (unscaled_src->widths[i] != yv12->widths[i] || unscaled_src->heights[i] != yv12->heights[i]) { return; } } const int num_mi_cols = cm->mi_params.mi_cols; const int num_mi_rows = cm->mi_params.mi_rows; const BLOCK_SIZE bsize = BLOCK_64X64; int num_samples = 0; // sse is computed on 64x64 blocks const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) ? (cm->seq_params->mib_size >> 1) : cm->seq_params->mib_size; const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; uint64_t fsse = 0; cpi->rec_sse = 0; for (int sbi_row = 0; sbi_row < sb_rows; ++sbi_row) { for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { unsigned int sse; uint8_t src[64 * 64] = { 0 }; // Apply 4x4 block averaging/denoising on source frame. for (int i = 0; i < 64; i += 4) { for (int j = 0; j < 64; j += 4) { const unsigned int avg = aom_avg_4x4(src_y + i * src_ystride + j, src_ystride); for (int m = 0; m < 4; ++m) { for (int n = 0; n < 4; ++n) src[i * 64 + j + m * 64 + n] = avg; } } } cpi->ppi->fn_ptr[bsize].vf(src, 64, pre_y, pre_ystride, &sse); fsse += sse; num_samples++; src_y += 64; pre_y += 64; } src_y += (src_ystride << 6) - (sb_cols << 6); pre_y += (pre_ystride << 6) - (sb_cols << 6); } assert(num_samples > 0); // Ensure rec_sse > 0 if (num_samples > 0) cpi->rec_sse = fsse > 0 ? fsse : 1; } int av1_rc_pick_q_and_bounds(AV1_COMP *cpi, int width, int height, int gf_index, int *bottom_index, int *top_index) { PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; int q; // TODO(sarahparker) merge no-stats vbr and altref q computation // with rc_pick_q_and_bounds(). const GF_GROUP *gf_group = &cpi->ppi->gf_group; if ((cpi->oxcf.rc_cfg.mode != AOM_Q || gf_group->update_type[gf_index] == ARF_UPDATE) && has_no_stats_stage(cpi)) { if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { // TODO(yunqing): the results could be used for encoder optimization. cpi->rec_sse = UINT64_MAX; if (cpi->sf.hl_sf.accurate_bit_estimate && cpi->common.current_frame.frame_type != KEY_FRAME) rc_compute_variance_onepass_rt(cpi); q = rc_pick_q_and_bounds_no_stats_cbr(cpi, width, height, bottom_index, top_index); // preserve copy of active worst quality selected. cpi->rc.active_worst_quality = *top_index; #if USE_UNRESTRICTED_Q_IN_CQ_MODE } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { q = rc_pick_q_and_bounds_no_stats_cq(cpi, width, height, bottom_index, top_index); #endif // USE_UNRESTRICTED_Q_IN_CQ_MODE } else { q = rc_pick_q_and_bounds_no_stats(cpi, width, height, bottom_index, top_index); } } else { q = rc_pick_q_and_bounds(cpi, width, height, gf_index, bottom_index, top_index); } if (gf_group->update_type[gf_index] == ARF_UPDATE) p_rc->arf_q = q; return q; } void av1_rc_compute_frame_size_bounds(const AV1_COMP *cpi, int frame_target, int *frame_under_shoot_limit, int *frame_over_shoot_limit) { if (cpi->oxcf.rc_cfg.mode == AOM_Q) { *frame_under_shoot_limit = 0; *frame_over_shoot_limit = INT_MAX; } else { // For very small rate targets where the fractional adjustment // may be tiny make sure there is at least a minimum range. assert(cpi->sf.hl_sf.recode_tolerance <= 100); const int tolerance = (int)AOMMAX( 100, ((int64_t)cpi->sf.hl_sf.recode_tolerance * frame_target) / 100); *frame_under_shoot_limit = AOMMAX(frame_target - tolerance, 0); *frame_over_shoot_limit = AOMMIN(frame_target + tolerance, cpi->rc.max_frame_bandwidth); } } void av1_rc_set_frame_target(AV1_COMP *cpi, int target, int width, int height) { const AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; rc->this_frame_target = target; // Modify frame size target when down-scaled. if (av1_frame_scaled(cm) && cpi->oxcf.rc_cfg.mode != AOM_CBR) { rc->this_frame_target = (int)(rc->this_frame_target * resize_rate_factor(&cpi->oxcf.frm_dim_cfg, width, height)); } // Target rate per SB64 (including partial SB64s. rc->sb64_target_rate = (int)(((int64_t)rc->this_frame_target << 12) / (width * height)); } static void update_alt_ref_frame_stats(AV1_COMP *cpi) { // this frame refreshes means next frames don't unless specified by user RATE_CONTROL *const rc = &cpi->rc; rc->frames_since_golden = 0; } static void update_golden_frame_stats(AV1_COMP *cpi) { RATE_CONTROL *const rc = &cpi->rc; // Update the Golden frame usage counts. if (cpi->refresh_frame.golden_frame || rc->is_src_frame_alt_ref) { rc->frames_since_golden = 0; } else if (cpi->common.show_frame) { rc->frames_since_golden++; } } void av1_rc_postencode_update(AV1_COMP *cpi, uint64_t bytes_used) { const AV1_COMMON *const cm = &cpi->common; const CurrentFrame *const current_frame = &cm->current_frame; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const RefreshFrameInfo *const refresh_frame = &cpi->refresh_frame; const int is_intrnl_arf = gf_group->update_type[cpi->gf_frame_index] == INTNL_ARF_UPDATE; const int qindex = cm->quant_params.base_qindex; #if RT_PASSIVE_STRATEGY const int frame_number = current_frame->frame_number % MAX_Q_HISTORY; p_rc->q_history[frame_number] = qindex; #endif // RT_PASSIVE_STRATEGY // Update rate control heuristics rc->projected_frame_size = (int)(bytes_used << 3); // Post encode loop adjustment of Q prediction. av1_rc_update_rate_correction_factors(cpi, 0, cm->width, cm->height); // Update bit estimation ratio. if (cpi->oxcf.rc_cfg.mode == AOM_CBR && cm->current_frame.frame_type != KEY_FRAME && cpi->sf.hl_sf.accurate_bit_estimate) { const double q = av1_convert_qindex_to_q(cm->quant_params.base_qindex, cm->seq_params->bit_depth); const int this_bit_est_ratio = (int)(rc->projected_frame_size * q / sqrt((double)cpi->rec_sse)); cpi->rc.bit_est_ratio = cpi->rc.bit_est_ratio == 0 ? this_bit_est_ratio : (7 * cpi->rc.bit_est_ratio + this_bit_est_ratio) / 8; } // Keep a record of last Q and ambient average Q. if (current_frame->frame_type == KEY_FRAME) { p_rc->last_q[KEY_FRAME] = qindex; p_rc->avg_frame_qindex[KEY_FRAME] = ROUND_POWER_OF_TWO(3 * p_rc->avg_frame_qindex[KEY_FRAME] + qindex, 2); } else { if ((cpi->ppi->use_svc && cpi->oxcf.rc_cfg.mode == AOM_CBR) || cpi->rc.rtc_external_ratectrl || (!rc->is_src_frame_alt_ref && !(refresh_frame->golden_frame || is_intrnl_arf || refresh_frame->alt_ref_frame))) { p_rc->last_q[INTER_FRAME] = qindex; p_rc->avg_frame_qindex[INTER_FRAME] = ROUND_POWER_OF_TWO( 3 * p_rc->avg_frame_qindex[INTER_FRAME] + qindex, 2); p_rc->ni_frames++; p_rc->tot_q += av1_convert_qindex_to_q(qindex, cm->seq_params->bit_depth); p_rc->avg_q = p_rc->tot_q / p_rc->ni_frames; // Calculate the average Q for normal inter frames (not key or GFU // frames). rc->ni_tot_qi += qindex; rc->ni_av_qi = rc->ni_tot_qi / p_rc->ni_frames; } } // Keep record of last boosted (KF/GF/ARF) Q value. // If the current frame is coded at a lower Q then we also update it. // If all mbs in this group are skipped only update if the Q value is // better than that already stored. // This is used to help set quality in forced key frames to reduce popping if ((qindex < p_rc->last_boosted_qindex) || (current_frame->frame_type == KEY_FRAME) || (!p_rc->constrained_gf_group && (refresh_frame->alt_ref_frame || is_intrnl_arf || (refresh_frame->golden_frame && !rc->is_src_frame_alt_ref)))) { p_rc->last_boosted_qindex = qindex; } if (current_frame->frame_type == KEY_FRAME) p_rc->last_kf_qindex = qindex; update_buffer_level(cpi, rc->projected_frame_size); rc->prev_avg_frame_bandwidth = rc->avg_frame_bandwidth; // Rolling monitors of whether we are over or underspending used to help // regulate min and Max Q in two pass. if (av1_frame_scaled(cm)) rc->this_frame_target = (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg, cm->width, cm->height)); if (current_frame->frame_type != KEY_FRAME) { p_rc->rolling_target_bits = (int)ROUND_POWER_OF_TWO_64( p_rc->rolling_target_bits * 3 + rc->this_frame_target, 2); p_rc->rolling_actual_bits = (int)ROUND_POWER_OF_TWO_64( p_rc->rolling_actual_bits * 3 + rc->projected_frame_size, 2); } // Actual bits spent p_rc->total_actual_bits += rc->projected_frame_size; p_rc->total_target_bits += cm->show_frame ? rc->avg_frame_bandwidth : 0; if (is_altref_enabled(cpi->oxcf.gf_cfg.lag_in_frames, cpi->oxcf.gf_cfg.enable_auto_arf) && refresh_frame->alt_ref_frame && (current_frame->frame_type != KEY_FRAME && !frame_is_sframe(cm))) // Update the alternate reference frame stats as appropriate. update_alt_ref_frame_stats(cpi); else // Update the Golden frame stats as appropriate. update_golden_frame_stats(cpi); #if CONFIG_FPMT_TEST /*The variables temp_avg_frame_qindex, temp_last_q, temp_avg_q, * temp_last_boosted_qindex are introduced only for quality simulation * purpose, it retains the value previous to the parallel encode frames. The * variables are updated based on the update flag. * * If there exist show_existing_frames between parallel frames, then to * retain the temp state do not update it. */ int show_existing_between_parallel_frames = (cpi->ppi->gf_group.update_type[cpi->gf_frame_index] == INTNL_OVERLAY_UPDATE && cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index + 1] == 2); if (cpi->do_frame_data_update && !show_existing_between_parallel_frames && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) { for (int i = 0; i < FRAME_TYPES; i++) { p_rc->temp_last_q[i] = p_rc->last_q[i]; } p_rc->temp_avg_q = p_rc->avg_q; p_rc->temp_last_boosted_qindex = p_rc->last_boosted_qindex; p_rc->temp_total_actual_bits = p_rc->total_actual_bits; p_rc->temp_projected_frame_size = rc->projected_frame_size; for (int i = 0; i < RATE_FACTOR_LEVELS; i++) p_rc->temp_rate_correction_factors[i] = p_rc->rate_correction_factors[i]; } #endif if (current_frame->frame_type == KEY_FRAME) rc->frames_since_key = 0; if (cpi->refresh_frame.golden_frame) rc->frame_num_last_gf_refresh = current_frame->frame_number; rc->prev_coded_width = cm->width; rc->prev_coded_height = cm->height; rc->frame_number_encoded++; rc->prev_frame_is_dropped = 0; rc->drop_count_consec = 0; // if (current_frame->frame_number == 1 && cm->show_frame) /* rc->this_frame_target = (int)(rc->this_frame_target / resize_rate_factor(&cpi->oxcf.frm_dim_cfg, cm->width, cm->height)); */ } void av1_rc_postencode_update_drop_frame(AV1_COMP *cpi) { // Update buffer level with zero size, update frame counters, and return. update_buffer_level(cpi, 0); if (cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { cpi->rc.frames_since_key++; cpi->rc.frames_to_key--; } cpi->rc.rc_2_frame = 0; cpi->rc.rc_1_frame = 0; cpi->rc.prev_avg_frame_bandwidth = cpi->rc.avg_frame_bandwidth; cpi->rc.prev_coded_width = cpi->common.width; cpi->rc.prev_coded_height = cpi->common.height; cpi->rc.prev_frame_is_dropped = 1; // On a scene/slide change for dropped frame: reset the avg_source_sad to 0, // otherwise the avg_source_sad can get too large and subsequent frames // may miss the scene/slide detection. if (cpi->rc.high_source_sad) cpi->rc.avg_source_sad = 0; if (cpi->ppi->use_svc && cpi->svc.number_spatial_layers > 1) { cpi->svc.last_layer_dropped[cpi->svc.spatial_layer_id] = true; cpi->svc.drop_spatial_layer[cpi->svc.spatial_layer_id] = true; } } int av1_find_qindex(double desired_q, aom_bit_depth_t bit_depth, int best_qindex, int worst_qindex) { assert(best_qindex <= worst_qindex); int low = best_qindex; int high = worst_qindex; while (low < high) { const int mid = (low + high) >> 1; const double mid_q = av1_convert_qindex_to_q(mid, bit_depth); if (mid_q < desired_q) { low = mid + 1; } else { high = mid; } } assert(low == high); assert(av1_convert_qindex_to_q(low, bit_depth) >= desired_q || low == worst_qindex); return low; } int av1_compute_qdelta(const RATE_CONTROL *rc, double qstart, double qtarget, aom_bit_depth_t bit_depth) { const int start_index = av1_find_qindex(qstart, bit_depth, rc->best_quality, rc->worst_quality); const int target_index = av1_find_qindex(qtarget, bit_depth, rc->best_quality, rc->worst_quality); return target_index - start_index; } // Find q_index for the desired_bits_per_mb, within [best_qindex, worst_qindex], // assuming 'correction_factor' is 1.0. // To be precise, 'q_index' is the smallest integer, for which the corresponding // bits per mb <= desired_bits_per_mb. // If no such q index is found, returns 'worst_qindex'. static int find_qindex_by_rate(const AV1_COMP *const cpi, int desired_bits_per_mb, FRAME_TYPE frame_type, int best_qindex, int worst_qindex) { assert(best_qindex <= worst_qindex); int low = best_qindex; int high = worst_qindex; while (low < high) { const int mid = (low + high) >> 1; const int mid_bits_per_mb = av1_rc_bits_per_mb(cpi, frame_type, mid, 1.0, 0); if (mid_bits_per_mb > desired_bits_per_mb) { low = mid + 1; } else { high = mid; } } assert(low == high); assert(av1_rc_bits_per_mb(cpi, frame_type, low, 1.0, 0) <= desired_bits_per_mb || low == worst_qindex); return low; } int av1_compute_qdelta_by_rate(const AV1_COMP *cpi, FRAME_TYPE frame_type, int qindex, double rate_target_ratio) { const RATE_CONTROL *rc = &cpi->rc; // Look up the current projected bits per block for the base index const int base_bits_per_mb = av1_rc_bits_per_mb(cpi, frame_type, qindex, 1.0, 0); // Find the target bits per mb based on the base value and given ratio. const int target_bits_per_mb = (int)(rate_target_ratio * base_bits_per_mb); const int target_index = find_qindex_by_rate( cpi, target_bits_per_mb, frame_type, rc->best_quality, rc->worst_quality); return target_index - qindex; } void av1_rc_set_gf_interval_range(const AV1_COMP *const cpi, RATE_CONTROL *const rc) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; // Special case code for 1 pass fixed Q mode tests if ((has_no_stats_stage(cpi)) && (oxcf->rc_cfg.mode == AOM_Q)) { rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; rc->static_scene_max_gf_interval = rc->min_gf_interval + 1; } else { // Set Maximum gf/arf interval rc->max_gf_interval = oxcf->gf_cfg.max_gf_interval; rc->min_gf_interval = oxcf->gf_cfg.min_gf_interval; if (rc->min_gf_interval == 0) rc->min_gf_interval = av1_rc_get_default_min_gf_interval( oxcf->frm_dim_cfg.width, oxcf->frm_dim_cfg.height, cpi->framerate); if (rc->max_gf_interval == 0) rc->max_gf_interval = av1_rc_get_default_max_gf_interval( cpi->framerate, rc->min_gf_interval); /* * Extended max interval for genuinely static scenes like slide shows. * The no.of.stats available in the case of LAP is limited, * hence setting to max_gf_interval. */ if (cpi->ppi->lap_enabled) rc->static_scene_max_gf_interval = rc->max_gf_interval + 1; else rc->static_scene_max_gf_interval = MAX_STATIC_GF_GROUP_LENGTH; if (rc->max_gf_interval > rc->static_scene_max_gf_interval) rc->max_gf_interval = rc->static_scene_max_gf_interval; // Clamp min to max rc->min_gf_interval = AOMMIN(rc->min_gf_interval, rc->max_gf_interval); } } void av1_rc_update_framerate(AV1_COMP *cpi, int width, int height) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; RATE_CONTROL *const rc = &cpi->rc; int vbr_max_bits; const int MBs = av1_get_MBs(width, height); rc->avg_frame_bandwidth = (int)round(oxcf->rc_cfg.target_bandwidth / cpi->framerate); rc->min_frame_bandwidth = (int)(rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmin_section / 100); rc->min_frame_bandwidth = AOMMAX(rc->min_frame_bandwidth, FRAME_OVERHEAD_BITS); // A maximum bitrate for a frame is defined. // The baseline for this aligns with HW implementations that // can support decode of 1080P content up to a bitrate of MAX_MB_RATE bits // per 16x16 MB (averaged over a frame). However this limit is extended if // a very high rate is given on the command line or the the rate cannnot // be acheived because of a user specificed max q (e.g. when the user // specifies lossless encode. vbr_max_bits = (int)(((int64_t)rc->avg_frame_bandwidth * oxcf->rc_cfg.vbrmax_section) / 100); rc->max_frame_bandwidth = AOMMAX(AOMMAX((MBs * MAX_MB_RATE), MAXRATE_1080P), vbr_max_bits); av1_rc_set_gf_interval_range(cpi, rc); } #define VBR_PCT_ADJUSTMENT_LIMIT 50 // For VBR...adjustment to the frame target based on error from previous frames static void vbr_rate_correction(AV1_COMP *cpi, int *this_frame_target) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; #if CONFIG_FPMT_TEST const int simulate_parallel_frame = cpi->ppi->gf_group.frame_parallel_level[cpi->gf_frame_index] > 0 && cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE; int64_t vbr_bits_off_target = simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target : p_rc->vbr_bits_off_target; #else int64_t vbr_bits_off_target = p_rc->vbr_bits_off_target; #endif const int stats_count = cpi->ppi->twopass.stats_buf_ctx->total_stats != NULL ? (int)cpi->ppi->twopass.stats_buf_ctx->total_stats->count : 0; const int frame_window = AOMMIN( 16, (int)(stats_count - (int)cpi->common.current_frame.frame_number)); assert(VBR_PCT_ADJUSTMENT_LIMIT <= 100); if (frame_window > 0) { const int max_delta = (int)AOMMIN( abs((int)(vbr_bits_off_target / frame_window)), ((int64_t)(*this_frame_target) * VBR_PCT_ADJUSTMENT_LIMIT) / 100); // vbr_bits_off_target > 0 means we have extra bits to spend // vbr_bits_off_target < 0 we are currently overshooting *this_frame_target += (vbr_bits_off_target >= 0) ? max_delta : -max_delta; } #if CONFIG_FPMT_TEST int64_t vbr_bits_off_target_fast = simulate_parallel_frame ? cpi->ppi->p_rc.temp_vbr_bits_off_target_fast : p_rc->vbr_bits_off_target_fast; #endif // Fast redistribution of bits arising from massive local undershoot. // Dont do it for kf,arf,gf or overlay frames. if (!frame_is_kf_gf_arf(cpi) && #if CONFIG_FPMT_TEST vbr_bits_off_target_fast && #else p_rc->vbr_bits_off_target_fast && #endif !rc->is_src_frame_alt_ref) { int one_frame_bits = AOMMAX(rc->avg_frame_bandwidth, *this_frame_target); int fast_extra_bits; #if CONFIG_FPMT_TEST fast_extra_bits = (int)AOMMIN(vbr_bits_off_target_fast, one_frame_bits); fast_extra_bits = (int)AOMMIN(fast_extra_bits, AOMMAX(one_frame_bits / 8, vbr_bits_off_target_fast / 8)); #else fast_extra_bits = (int)AOMMIN(p_rc->vbr_bits_off_target_fast, one_frame_bits); fast_extra_bits = (int)AOMMIN( fast_extra_bits, AOMMAX(one_frame_bits / 8, p_rc->vbr_bits_off_target_fast / 8)); #endif if (fast_extra_bits > 0) { // Update this_frame_target only if additional bits are available from // local undershoot. *this_frame_target += (int)fast_extra_bits; } // Store the fast_extra_bits of the frame and reduce it from // vbr_bits_off_target_fast during postencode stage. rc->frame_level_fast_extra_bits = fast_extra_bits; // Retaining the condition to udpate during postencode stage since // fast_extra_bits are calculated based on vbr_bits_off_target_fast. cpi->do_update_vbr_bits_off_target_fast = 1; } } void av1_set_target_rate(AV1_COMP *cpi, int width, int height) { RATE_CONTROL *const rc = &cpi->rc; int target_rate = rc->base_frame_target; // Correction to rate target based on prior over or under shoot. if (cpi->oxcf.rc_cfg.mode == AOM_VBR || cpi->oxcf.rc_cfg.mode == AOM_CQ) vbr_rate_correction(cpi, &target_rate); av1_rc_set_frame_target(cpi, target_rate, width, height); } int av1_calc_pframe_target_size_one_pass_vbr( const AV1_COMP *const cpi, FRAME_UPDATE_TYPE frame_update_type) { static const int af_ratio = 10; const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; int64_t target; #if USE_ALTREF_FOR_ONE_PASS if (frame_update_type == KF_UPDATE || frame_update_type == GF_UPDATE || frame_update_type == ARF_UPDATE) { target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * af_ratio) / (p_rc->baseline_gf_interval + af_ratio - 1); } else { target = ((int64_t)rc->avg_frame_bandwidth * p_rc->baseline_gf_interval) / (p_rc->baseline_gf_interval + af_ratio - 1); } if (target > INT_MAX) target = INT_MAX; #else target = rc->avg_frame_bandwidth; #endif return av1_rc_clamp_pframe_target_size(cpi, (int)target, frame_update_type); } int av1_calc_iframe_target_size_one_pass_vbr(const AV1_COMP *const cpi) { static const int kf_ratio = 25; const RATE_CONTROL *rc = &cpi->rc; const int64_t target = (int64_t)rc->avg_frame_bandwidth * kf_ratio; return av1_rc_clamp_iframe_target_size(cpi, target); } int av1_calc_pframe_target_size_one_pass_cbr( const AV1_COMP *cpi, FRAME_UPDATE_TYPE frame_update_type) { const AV1EncoderConfig *oxcf = &cpi->oxcf; const RATE_CONTROL *rc = &cpi->rc; const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; const RateControlCfg *rc_cfg = &oxcf->rc_cfg; const int64_t diff = p_rc->optimal_buffer_level - p_rc->buffer_level; const int64_t one_pct_bits = 1 + p_rc->optimal_buffer_level / 100; int min_frame_target = AOMMAX(rc->avg_frame_bandwidth >> 4, FRAME_OVERHEAD_BITS); int target; if (rc_cfg->gf_cbr_boost_pct) { const int af_ratio_pct = rc_cfg->gf_cbr_boost_pct + 100; if (frame_update_type == GF_UPDATE || frame_update_type == OVERLAY_UPDATE) { target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * af_ratio_pct) / (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); } else { target = (rc->avg_frame_bandwidth * p_rc->baseline_gf_interval * 100) / (p_rc->baseline_gf_interval * 100 + af_ratio_pct - 100); } } else { target = rc->avg_frame_bandwidth; } if (cpi->ppi->use_svc) { // Note that for layers, avg_frame_bandwidth is the cumulative // per-frame-bandwidth. For the target size of this frame, use the // layer average frame size (i.e., non-cumulative per-frame-bw). int layer = LAYER_IDS_TO_IDX(cpi->svc.spatial_layer_id, cpi->svc.temporal_layer_id, cpi->svc.number_temporal_layers); const LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; target = lc->avg_frame_size; min_frame_target = AOMMAX(lc->avg_frame_size >> 4, FRAME_OVERHEAD_BITS); } if (diff > 0) { // Lower the target bandwidth for this frame. const int pct_low = (int)AOMMIN(diff / one_pct_bits, rc_cfg->under_shoot_pct); target -= (target * pct_low) / 200; } else if (diff < 0) { // Increase the target bandwidth for this frame. const int pct_high = (int)AOMMIN(-diff / one_pct_bits, rc_cfg->over_shoot_pct); target += (target * pct_high) / 200; } if (rc_cfg->max_inter_bitrate_pct) { const int max_rate = rc->avg_frame_bandwidth * rc_cfg->max_inter_bitrate_pct / 100; target = AOMMIN(target, max_rate); } return AOMMAX(min_frame_target, target); } int av1_calc_iframe_target_size_one_pass_cbr(const AV1_COMP *cpi) { const RATE_CONTROL *rc = &cpi->rc; const PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; int64_t target; if (cpi->common.current_frame.frame_number == 0) { target = ((p_rc->starting_buffer_level / 2) > INT_MAX) ? INT_MAX : (int)(p_rc->starting_buffer_level / 2); if (cpi->svc.number_temporal_layers > 1 && target < (INT_MAX >> 2)) { target = target << AOMMIN(2, (cpi->svc.number_temporal_layers - 1)); } } else { int kf_boost = 32; int framerate = (int)round(cpi->framerate); kf_boost = AOMMAX(kf_boost, (int)(2 * framerate - 16)); if (rc->frames_since_key < framerate / 2) { kf_boost = (int)(kf_boost * rc->frames_since_key / (framerate / 2)); } target = ((16 + kf_boost) * rc->avg_frame_bandwidth) >> 4; } return av1_rc_clamp_iframe_target_size(cpi, target); } static void set_golden_update(AV1_COMP *const cpi) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; int divisor = 10; if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ) divisor = cpi->cyclic_refresh->percent_refresh; // Set minimum gf_interval for GF update to a multiple of the refresh period, // with some max limit. Depending on past encoding stats, GF flag may be // reset and update may not occur until next baseline_gf_interval. const int gf_length_mult[2] = { 8, 4 }; if (divisor > 0) p_rc->baseline_gf_interval = AOMMIN(gf_length_mult[cpi->sf.rt_sf.gf_length_lvl] * (100 / divisor), MAX_GF_INTERVAL_RT); else p_rc->baseline_gf_interval = FIXED_GF_INTERVAL_RT; if (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 40) p_rc->baseline_gf_interval = 16; } static void set_baseline_gf_interval(AV1_COMP *cpi, FRAME_TYPE frame_type) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; GF_GROUP *const gf_group = &cpi->ppi->gf_group; set_golden_update(cpi); if (p_rc->baseline_gf_interval > rc->frames_to_key && cpi->oxcf.kf_cfg.auto_key) p_rc->baseline_gf_interval = rc->frames_to_key; p_rc->gfu_boost = DEFAULT_GF_BOOST_RT; p_rc->constrained_gf_group = (p_rc->baseline_gf_interval >= rc->frames_to_key && cpi->oxcf.kf_cfg.auto_key) ? 1 : 0; rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; cpi->gf_frame_index = 0; // SVC does not use GF as periodic boost. // TODO(marpan): Find better way to disable this for SVC. if (cpi->ppi->use_svc) { SVC *const svc = &cpi->svc; p_rc->baseline_gf_interval = MAX_STATIC_GF_GROUP_LENGTH - 1; p_rc->gfu_boost = 1; p_rc->constrained_gf_group = 0; rc->frames_till_gf_update_due = p_rc->baseline_gf_interval; for (int layer = 0; layer < svc->number_spatial_layers * svc->number_temporal_layers; ++layer) { LAYER_CONTEXT *const lc = &svc->layer_context[layer]; lc->p_rc.baseline_gf_interval = p_rc->baseline_gf_interval; lc->p_rc.gfu_boost = p_rc->gfu_boost; lc->p_rc.constrained_gf_group = p_rc->constrained_gf_group; lc->rc.frames_till_gf_update_due = rc->frames_till_gf_update_due; lc->group_index = 0; } } gf_group->size = p_rc->baseline_gf_interval; gf_group->update_type[0] = (frame_type == KEY_FRAME) ? KF_UPDATE : GF_UPDATE; gf_group->refbuf_state[cpi->gf_frame_index] = (frame_type == KEY_FRAME) ? REFBUF_RESET : REFBUF_UPDATE; } void av1_adjust_gf_refresh_qp_one_pass_rt(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; const int resize_pending = is_frame_resize_pending(cpi); if (!resize_pending && !rc->high_source_sad) { // Check if we should disable GF refresh (if period is up), // or force a GF refresh update (if we are at least halfway through // period) based on QP. Look into add info on segment deltaq. PRIMARY_RATE_CONTROL *p_rc = &cpi->ppi->p_rc; const int avg_qp = p_rc->avg_frame_qindex[INTER_FRAME]; const int allow_gf_update = rc->frames_till_gf_update_due <= (p_rc->baseline_gf_interval - 10); int gf_update_changed = 0; int thresh = 87; if ((cm->current_frame.frame_number - cpi->rc.frame_num_last_gf_refresh) < FIXED_GF_INTERVAL_RT && rc->frames_till_gf_update_due == 1 && cm->quant_params.base_qindex > avg_qp) { // Disable GF refresh since QP is above the running average QP. rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 0; gf_update_changed = 1; cpi->refresh_frame.golden_frame = 0; } else if (allow_gf_update && ((cm->quant_params.base_qindex < thresh * avg_qp / 100) || (rc->avg_frame_low_motion && rc->avg_frame_low_motion < 20))) { // Force refresh since QP is well below average QP or this is a high // motion frame. rtc_ref->refresh[rtc_ref->gld_idx_1layer] = 1; gf_update_changed = 1; cpi->refresh_frame.golden_frame = 1; } if (gf_update_changed) { set_baseline_gf_interval(cpi, INTER_FRAME); int refresh_mask = 0; for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { int ref_frame_map_idx = rtc_ref->ref_idx[i]; refresh_mask |= rtc_ref->refresh[ref_frame_map_idx] << ref_frame_map_idx; } cm->current_frame.refresh_frame_flags = refresh_mask; } } } /*!\brief Setup the reference prediction structure for 1 pass real-time * * Set the reference prediction structure for 1 layer. * Current structue is to use 3 references (LAST, GOLDEN, ALTREF), * where ALT_REF always behind current by lag_alt frames, and GOLDEN is * either updated on LAST with period baseline_gf_interval (fixed slot) * or always behind current by lag_gld (gld_fixed_slot = 0, lag_gld <= 7). * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] gf_update Flag to indicate if GF is updated * * \remark Nothing is returned. Instead the settings for the prediction * structure are set in \c cpi-ext_flags; and the buffer slot index * (for each of 7 references) and refresh flags (for each of the 8 slots) * are set in \c cpi->svc.ref_idx[] and \c cpi->svc.refresh[]. */ void av1_set_rtc_reference_structure_one_layer(AV1_COMP *cpi, int gf_update) { AV1_COMMON *const cm = &cpi->common; ExternalFlags *const ext_flags = &cpi->ext_flags; RATE_CONTROL *const rc = &cpi->rc; ExtRefreshFrameFlagsInfo *const ext_refresh_frame_flags = &ext_flags->refresh_frame; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; unsigned int frame_number = (cpi->oxcf.rc_cfg.drop_frames_water_mark) ? rc->frame_number_encoded : cm->current_frame.frame_number; unsigned int lag_alt = 4; int last_idx = 0; int last_idx_refresh = 0; int gld_idx = 0; int alt_ref_idx = 0; int last2_idx = 0; ext_refresh_frame_flags->update_pending = 1; ext_flags->ref_frame_flags = 0; ext_refresh_frame_flags->last_frame = 1; ext_refresh_frame_flags->golden_frame = 0; ext_refresh_frame_flags->alt_ref_frame = 0; // Decide altref lag adaptively for rt if (cpi->sf.rt_sf.sad_based_adp_altref_lag) { lag_alt = 6; const uint64_t th_frame_sad[4][3] = { { 18000, 18000, 18000 }, // HDRES CPU 9 { 25000, 25000, 25000 }, // MIDRES CPU 9 { 40000, 30000, 20000 }, // HDRES CPU10 { 30000, 25000, 20000 } // MIDRES CPU 10 }; int th_idx = cpi->sf.rt_sf.sad_based_adp_altref_lag - 1; assert(th_idx < 4); if (rc->avg_source_sad > th_frame_sad[th_idx][0]) lag_alt = 3; else if (rc->avg_source_sad > th_frame_sad[th_idx][1]) lag_alt = 4; else if (rc->avg_source_sad > th_frame_sad[th_idx][2]) lag_alt = 5; } // This defines the reference structure for 1 layer (non-svc) RTC encoding. // To avoid the internal/default reference structure for non-realtime // overwriting this behavior, we use the "svc" ref parameters from the // external control SET_SVC_REF_FRAME_CONFIG. // TODO(marpan): rename that control and the related internal parameters // to rtc_ref. for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) rtc_ref->ref_idx[i] = 7; for (int i = 0; i < REF_FRAMES; ++i) rtc_ref->refresh[i] = 0; // Set the reference frame flags. ext_flags->ref_frame_flags ^= AOM_LAST_FLAG; if (!cpi->sf.rt_sf.force_only_last_ref) { ext_flags->ref_frame_flags ^= AOM_ALT_FLAG; ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) ext_flags->ref_frame_flags ^= AOM_LAST2_FLAG; } const int sh = 6; // Moving index slot for last: 0 - (sh - 1). if (frame_number > 1) last_idx = ((frame_number - 1) % sh); // Moving index for refresh of last: one ahead for next frame. last_idx_refresh = (frame_number % sh); gld_idx = 6; // Moving index for alt_ref, lag behind LAST by lag_alt frames. if (frame_number > lag_alt) alt_ref_idx = ((frame_number - lag_alt) % sh); if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { // Moving index for LAST2, lag behind LAST by 2 frames. if (frame_number > 2) last2_idx = ((frame_number - 2) % sh); } rtc_ref->ref_idx[0] = last_idx; // LAST rtc_ref->ref_idx[1] = last_idx_refresh; // LAST2 (for refresh of last). if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) { rtc_ref->ref_idx[1] = last2_idx; // LAST2 rtc_ref->ref_idx[2] = last_idx_refresh; // LAST3 (for refresh of last). } rtc_ref->ref_idx[3] = gld_idx; // GOLDEN rtc_ref->ref_idx[6] = alt_ref_idx; // ALT_REF // Refresh this slot, which will become LAST on next frame. rtc_ref->refresh[last_idx_refresh] = 1; // Update GOLDEN on period for fixed slot case. if (gf_update && cm->current_frame.frame_type != KEY_FRAME) { ext_refresh_frame_flags->golden_frame = 1; rtc_ref->refresh[gld_idx] = 1; } rtc_ref->gld_idx_1layer = gld_idx; // Set the flag to reduce the number of reference frame buffers used. // This assumes that slot 7 is never used. cpi->rt_reduce_num_ref_buffers = 1; cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[0] < 7); cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[1] < 7); cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[3] < 7); cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[6] < 7); if (cpi->sf.rt_sf.ref_frame_comp_nonrd[1]) cpi->rt_reduce_num_ref_buffers &= (rtc_ref->ref_idx[2] < 7); } /*!\brief Check for scene detection, for 1 pass real-time mode. * * Compute average source sad (temporal sad: between current source and * previous source) over a subset of superblocks. Use this is detect big changes * in content and set the \c cpi->rc.high_source_sad flag. * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] frame_input Current and last input source frames * * \remark Nothing is returned. Instead the flag \c cpi->rc.high_source_sad * is set if scene change is detected, and \c cpi->rc.avg_source_sad is updated. */ static void rc_scene_detection_onepass_rt(AV1_COMP *cpi, const EncodeFrameInput *frame_input) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; YV12_BUFFER_CONFIG const *const unscaled_src = frame_input->source; YV12_BUFFER_CONFIG const *const unscaled_last_src = frame_input->last_source; uint8_t *src_y; int src_ystride; int src_width; int src_height; uint8_t *last_src_y; int last_src_ystride; int last_src_width; int last_src_height; int width = cm->width; int height = cm->height; if (cpi->svc.number_spatial_layers > 1) { width = cpi->oxcf.frm_dim_cfg.width; height = cpi->oxcf.frm_dim_cfg.height; } if (width != cm->render_width || height != cm->render_height || unscaled_src == NULL || unscaled_last_src == NULL) { aom_free(cpi->src_sad_blk_64x64); cpi->src_sad_blk_64x64 = NULL; } if (unscaled_src == NULL || unscaled_last_src == NULL) return; src_y = unscaled_src->y_buffer; src_ystride = unscaled_src->y_stride; src_width = unscaled_src->y_width; src_height = unscaled_src->y_height; last_src_y = unscaled_last_src->y_buffer; last_src_ystride = unscaled_last_src->y_stride; last_src_width = unscaled_last_src->y_width; last_src_height = unscaled_last_src->y_height; if (src_width != last_src_width || src_height != last_src_height) { aom_free(cpi->src_sad_blk_64x64); cpi->src_sad_blk_64x64 = NULL; return; } rc->high_source_sad = 0; rc->percent_blocks_with_motion = 0; rc->max_block_source_sad = 0; rc->prev_avg_source_sad = rc->avg_source_sad; int num_mi_cols = cm->mi_params.mi_cols; int num_mi_rows = cm->mi_params.mi_rows; if (cpi->svc.number_spatial_layers > 1) { num_mi_cols = cpi->svc.mi_cols_full_resoln; num_mi_rows = cpi->svc.mi_rows_full_resoln; } int num_zero_temp_sad = 0; uint32_t min_thresh = 10000; if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) { min_thresh = cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0 ? 50000 : 100000; } const BLOCK_SIZE bsize = BLOCK_64X64; // Loop over sub-sample of frame, compute average sad over 64x64 blocks. uint64_t avg_sad = 0; uint64_t tmp_sad = 0; int num_samples = 0; const int thresh = cm->width * cm->height <= 320 * 240 && cpi->framerate < 10.0 ? 5 : 6; // SAD is computed on 64x64 blocks const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) ? (cm->seq_params->mib_size >> 1) : cm->seq_params->mib_size; const int sb_cols = (num_mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; const int sb_rows = (num_mi_rows + sb_size_by_mb - 1) / sb_size_by_mb; uint64_t sum_sq_thresh = 10000; // sum = sqrt(thresh / 64*64)) ~1.5 int num_low_var_high_sumdiff = 0; int light_change = 0; // Flag to check light change or not. const int check_light_change = 0; // TODO(marpan): There seems some difference along the bottom border when // using the source_last_tl0 for last_source (used for temporal layers or // when previous frame is dropped). // Remove this bord parameter when issue is resolved: difference is that // non-zero sad exists along bottom border even though source is static. const int border = rc->prev_frame_is_dropped || cpi->svc.number_temporal_layers > 1; // Store blkwise SAD for later use if (width == cm->render_width && height == cm->render_height) { if (cpi->src_sad_blk_64x64 == NULL) { CHECK_MEM_ERROR(cm, cpi->src_sad_blk_64x64, (uint64_t *)aom_calloc(sb_cols * sb_rows, sizeof(*cpi->src_sad_blk_64x64))); } } // Avoid bottom and right border. for (int sbi_row = 0; sbi_row < sb_rows - border; ++sbi_row) { for (int sbi_col = 0; sbi_col < sb_cols; ++sbi_col) { tmp_sad = cpi->ppi->fn_ptr[bsize].sdf(src_y, src_ystride, last_src_y, last_src_ystride); if (cpi->src_sad_blk_64x64 != NULL) cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols] = tmp_sad; if (check_light_change) { unsigned int sse, variance; variance = cpi->ppi->fn_ptr[bsize].vf(src_y, src_ystride, last_src_y, last_src_ystride, &sse); // Note: sse - variance = ((sum * sum) >> 12) // Detect large lighting change. if (variance < (sse >> 1) && (sse - variance) > sum_sq_thresh) { num_low_var_high_sumdiff++; } } avg_sad += tmp_sad; num_samples++; if (tmp_sad == 0) num_zero_temp_sad++; if (tmp_sad > rc->max_block_source_sad) rc->max_block_source_sad = tmp_sad; src_y += 64; last_src_y += 64; } src_y += (src_ystride << 6) - (sb_cols << 6); last_src_y += (last_src_ystride << 6) - (sb_cols << 6); } if (check_light_change && num_samples > 0 && num_low_var_high_sumdiff > (num_samples >> 1)) light_change = 1; if (num_samples > 0) avg_sad = avg_sad / num_samples; // Set high_source_sad flag if we detect very high increase in avg_sad // between current and previous frame value(s). Use minimum threshold // for cases where there is small change from content that is completely // static. if (!light_change && avg_sad > AOMMAX(min_thresh, (unsigned int)(rc->avg_source_sad * thresh)) && rc->frames_since_key > 1 + cpi->svc.number_spatial_layers && num_zero_temp_sad < 3 * (num_samples >> 2)) rc->high_source_sad = 1; else rc->high_source_sad = 0; rc->avg_source_sad = (3 * rc->avg_source_sad + avg_sad) >> 2; rc->frame_source_sad = avg_sad; if (num_samples > 0) rc->percent_blocks_with_motion = ((num_samples - num_zero_temp_sad) * 100) / num_samples; // Scene detection is only on base SLO, and using full/orignal resolution. // Pass the state to the upper spatial layers. if (cpi->svc.number_spatial_layers > 1) { SVC *svc = &cpi->svc; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { int tl = svc->temporal_layer_id; const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; lrc->high_source_sad = rc->high_source_sad; lrc->frame_source_sad = rc->frame_source_sad; lrc->avg_source_sad = rc->avg_source_sad; lrc->percent_blocks_with_motion = rc->percent_blocks_with_motion; lrc->max_block_source_sad = rc->max_block_source_sad; } } } /*!\brief Set the GF baseline interval for 1 pass real-time mode. * * * \ingroup rate_control * \param[in] cpi Top level encoder structure * \param[in] frame_type frame type * * \return Return GF update flag, and update the \c cpi->rc with * the next GF interval settings. */ static int set_gf_interval_update_onepass_rt(AV1_COMP *cpi, FRAME_TYPE frame_type) { RATE_CONTROL *const rc = &cpi->rc; int gf_update = 0; const int resize_pending = is_frame_resize_pending(cpi); // GF update based on frames_till_gf_update_due, also // force upddate on resize pending frame or for scene change. if ((resize_pending || rc->high_source_sad || rc->frames_till_gf_update_due == 0) && cpi->svc.temporal_layer_id == 0 && cpi->svc.spatial_layer_id == 0) { set_baseline_gf_interval(cpi, frame_type); gf_update = 1; } return gf_update; } static void resize_reset_rc(AV1_COMP *cpi, int resize_width, int resize_height, int prev_width, int prev_height) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; SVC *const svc = &cpi->svc; int target_bits_per_frame; int active_worst_quality; int qindex; double tot_scale_change = (double)(resize_width * resize_height) / (double)(prev_width * prev_height); // Disable the skip mv search for svc on resize frame. svc->skip_mvsearch_last = 0; svc->skip_mvsearch_gf = 0; svc->skip_mvsearch_altref = 0; // Reset buffer level to optimal, update target size. p_rc->buffer_level = p_rc->optimal_buffer_level; p_rc->bits_off_target = p_rc->optimal_buffer_level; rc->this_frame_target = av1_calc_pframe_target_size_one_pass_cbr(cpi, INTER_FRAME); target_bits_per_frame = rc->this_frame_target; if (tot_scale_change > 4.0) p_rc->avg_frame_qindex[INTER_FRAME] = rc->worst_quality; else if (tot_scale_change > 1.0) p_rc->avg_frame_qindex[INTER_FRAME] = (p_rc->avg_frame_qindex[INTER_FRAME] + rc->worst_quality) >> 1; active_worst_quality = calc_active_worst_quality_no_stats_cbr(cpi); qindex = av1_rc_regulate_q(cpi, target_bits_per_frame, rc->best_quality, active_worst_quality, resize_width, resize_height); // If resize is down, check if projected q index is close to worst_quality, // and if so, reduce the rate correction factor (since likely can afford // lower q for resized frame). if (tot_scale_change < 1.0 && qindex > 90 * rc->worst_quality / 100) p_rc->rate_correction_factors[INTER_NORMAL] *= 0.85; // If resize is back up: check if projected q index is too much above the // previous index, and if so, reduce the rate correction factor // (since prefer to keep q for resized frame at least closet to previous q). // Also check if projected qindex is close to previous qindex, if so // increase correction factor (to push qindex higher and avoid overshoot). if (tot_scale_change >= 1.0) { if (tot_scale_change < 4.0 && qindex > 130 * p_rc->last_q[INTER_FRAME] / 100) p_rc->rate_correction_factors[INTER_NORMAL] *= 0.8; if (qindex <= 120 * p_rc->last_q[INTER_FRAME] / 100) p_rc->rate_correction_factors[INTER_NORMAL] *= 1.5; } if (svc->number_temporal_layers > 1) { // Apply the same rate control reset to all temporal layers. for (int tl = 0; tl < svc->number_temporal_layers; tl++) { LAYER_CONTEXT *lc = NULL; lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + tl]; lc->rc.resize_state = rc->resize_state; lc->p_rc.buffer_level = lc->p_rc.optimal_buffer_level; lc->p_rc.bits_off_target = lc->p_rc.optimal_buffer_level; lc->p_rc.rate_correction_factors[INTER_NORMAL] = p_rc->rate_correction_factors[INTER_NORMAL]; lc->p_rc.avg_frame_qindex[INTER_FRAME] = p_rc->avg_frame_qindex[INTER_FRAME]; } } } /*!\brief ChecK for resize based on Q, for 1 pass real-time mode. * * Check if we should resize, based on average QP from past x frames. * Only allow for resize at most 1/2 scale down for now, Scaling factor * for each step may be 3/4 or 1/2. * * \ingroup rate_control * \param[in] cpi Top level encoder structure * * \remark Return resized width/height in \c cpi->resize_pending_params, * and update some resize counters in \c rc. */ static void dynamic_resize_one_pass_cbr(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; RESIZE_ACTION resize_action = NO_RESIZE; const int avg_qp_thr1 = 70; const int avg_qp_thr2 = 50; // Don't allow for resized frame to go below 160x90, resize in steps of 3/4. const int min_width = (160 * 4) / 3; const int min_height = (90 * 4) / 3; int down_size_on = 1; // Don't resize on key frame; reset the counters on key frame. if (cm->current_frame.frame_type == KEY_FRAME) { rc->resize_avg_qp = 0; rc->resize_count = 0; rc->resize_buffer_underflow = 0; return; } // No resizing down if frame size is below some limit. if ((cm->width * cm->height) < min_width * min_height) down_size_on = 0; // Resize based on average buffer underflow and QP over some window. // Ignore samples close to key frame, since QP is usually high after key. if (cpi->rc.frames_since_key > cpi->framerate) { const int window = AOMMIN(30, (int)(2 * cpi->framerate)); rc->resize_avg_qp += p_rc->last_q[INTER_FRAME]; if (cpi->ppi->p_rc.buffer_level < (int)(30 * p_rc->optimal_buffer_level / 100)) ++rc->resize_buffer_underflow; ++rc->resize_count; // Check for resize action every "window" frames. if (rc->resize_count >= window) { int avg_qp = rc->resize_avg_qp / rc->resize_count; // Resize down if buffer level has underflowed sufficient amount in past // window, and we are at original or 3/4 of original resolution. // Resize back up if average QP is low, and we are currently in a resized // down state, i.e. 1/2 or 3/4 of original resolution. // Currently, use a flag to turn 3/4 resizing feature on/off. if (rc->resize_buffer_underflow > (rc->resize_count >> 2) && down_size_on) { if (rc->resize_state == THREE_QUARTER) { resize_action = DOWN_ONEHALF; rc->resize_state = ONE_HALF; } else if (rc->resize_state == ORIG) { resize_action = DOWN_THREEFOUR; rc->resize_state = THREE_QUARTER; } } else if (rc->resize_state != ORIG && avg_qp < avg_qp_thr1 * cpi->rc.worst_quality / 100) { if (rc->resize_state == THREE_QUARTER || avg_qp < avg_qp_thr2 * cpi->rc.worst_quality / 100) { resize_action = UP_ORIG; rc->resize_state = ORIG; } else if (rc->resize_state == ONE_HALF) { resize_action = UP_THREEFOUR; rc->resize_state = THREE_QUARTER; } } // Reset for next window measurement. rc->resize_avg_qp = 0; rc->resize_count = 0; rc->resize_buffer_underflow = 0; } } // If decision is to resize, reset some quantities, and check is we should // reduce rate correction factor, if (resize_action != NO_RESIZE) { int resize_width = cpi->oxcf.frm_dim_cfg.width; int resize_height = cpi->oxcf.frm_dim_cfg.height; int resize_scale_num = 1; int resize_scale_den = 1; if (resize_action == DOWN_THREEFOUR || resize_action == UP_THREEFOUR) { resize_scale_num = 3; resize_scale_den = 4; } else if (resize_action == DOWN_ONEHALF) { resize_scale_num = 1; resize_scale_den = 2; } resize_width = resize_width * resize_scale_num / resize_scale_den; resize_height = resize_height * resize_scale_num / resize_scale_den; resize_reset_rc(cpi, resize_width, resize_height, cm->width, cm->height); } return; } static INLINE int set_key_frame(AV1_COMP *cpi, unsigned int frame_flags) { RATE_CONTROL *const rc = &cpi->rc; AV1_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; // Very first frame has to be key frame. if (cm->current_frame.frame_number == 0) return 1; // Set key frame if forced by frame flags. if (frame_flags & FRAMEFLAGS_KEY) return 1; if (!cpi->ppi->use_svc) { // Non-SVC if (cpi->oxcf.kf_cfg.auto_key && rc->frames_to_key == 0) return 1; } else { // SVC if (svc->spatial_layer_id == 0 && (cpi->oxcf.kf_cfg.auto_key && (cpi->oxcf.kf_cfg.key_freq_max == 0 || svc->current_superframe % cpi->oxcf.kf_cfg.key_freq_max == 0))) return 1; } return 0; } // Set to true if this frame is a recovery frame, for 1 layer RPS, // and whether we should apply some boost (QP, adjust speed features, etc). // Recovery frame here means frame whose closest reference suddenly // switched from previous frame to one much further away. // TODO(marpan): Consider adding on/off flag to SVC_REF_FRAME_CONFIG to // allow more control for applications. static bool set_flag_rps_bias_recovery_frame(const AV1_COMP *const cpi) { if (cpi->ppi->rtc_ref.set_ref_frame_config && cpi->svc.number_temporal_layers == 1 && cpi->svc.number_spatial_layers == 1 && cpi->ppi->rtc_ref.reference_was_previous_frame) { int min_dist = av1_svc_get_min_ref_dist(cpi); // Only consider boost for this frame if its closest reference is further // than x frames away, using x = 4 for now. if (min_dist != INT_MAX && min_dist > 4) return true; } return false; } void av1_get_one_pass_rt_params(AV1_COMP *cpi, FRAME_TYPE *const frame_type, const EncodeFrameInput *frame_input, unsigned int frame_flags) { RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; AV1_COMMON *const cm = &cpi->common; GF_GROUP *const gf_group = &cpi->ppi->gf_group; SVC *const svc = &cpi->svc; ResizePendingParams *const resize_pending_params = &cpi->resize_pending_params; int target; const int layer = LAYER_IDS_TO_IDX(svc->spatial_layer_id, svc->temporal_layer_id, svc->number_temporal_layers); if (cpi->ppi->use_svc) { av1_update_temporal_layer_framerate(cpi); av1_restore_layer_context(cpi); } cpi->ppi->rtc_ref.bias_recovery_frame = set_flag_rps_bias_recovery_frame(cpi); // Set frame type. if (set_key_frame(cpi, frame_flags)) { *frame_type = KEY_FRAME; p_rc->this_key_frame_forced = cm->current_frame.frame_number != 0 && rc->frames_to_key == 0; rc->frames_to_key = cpi->oxcf.kf_cfg.key_freq_max; p_rc->kf_boost = DEFAULT_KF_BOOST_RT; gf_group->update_type[cpi->gf_frame_index] = KF_UPDATE; gf_group->frame_type[cpi->gf_frame_index] = KEY_FRAME; gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_RESET; if (cpi->ppi->use_svc) { if (cm->current_frame.frame_number > 0) av1_svc_reset_temporal_layers(cpi, 1); svc->layer_context[layer].is_key_frame = 1; } rc->frame_number_encoded = 0; cpi->ppi->rtc_ref.non_reference_frame = 0; } else { *frame_type = INTER_FRAME; gf_group->update_type[cpi->gf_frame_index] = LF_UPDATE; gf_group->frame_type[cpi->gf_frame_index] = INTER_FRAME; gf_group->refbuf_state[cpi->gf_frame_index] = REFBUF_UPDATE; if (cpi->ppi->use_svc) { LAYER_CONTEXT *lc = &svc->layer_context[layer]; lc->is_key_frame = svc->spatial_layer_id == 0 ? 0 : svc->layer_context[svc->temporal_layer_id].is_key_frame; // If the user is setting the reference structure with // set_ref_frame_config and did not set any references, set the // frame type to Intra-only. if (cpi->ppi->rtc_ref.set_ref_frame_config) { int no_references_set = 1; for (int i = 0; i < INTER_REFS_PER_FRAME; i++) { if (cpi->ppi->rtc_ref.reference[i]) { no_references_set = 0; break; } } // Set to intra_only_frame if no references are set. // The stream can start decoding on INTRA_ONLY_FRAME so long as the // layer with the intra_only_frame doesn't signal a reference to a slot // that hasn't been set yet. if (no_references_set) *frame_type = INTRA_ONLY_FRAME; } } } // Check for scene change: for SVC check on base spatial layer only. if (cpi->sf.rt_sf.check_scene_detection && svc->spatial_layer_id == 0) { if (rc->prev_coded_width == cm->width && rc->prev_coded_height == cm->height) { rc_scene_detection_onepass_rt(cpi, frame_input); } else { aom_free(cpi->src_sad_blk_64x64); cpi->src_sad_blk_64x64 = NULL; } } // Check for dynamic resize, for single spatial layer for now. // For temporal layers only check on base temporal layer. if (cpi->oxcf.resize_cfg.resize_mode == RESIZE_DYNAMIC) { if (svc->number_spatial_layers == 1 && svc->temporal_layer_id == 0) dynamic_resize_one_pass_cbr(cpi); if (rc->resize_state == THREE_QUARTER) { resize_pending_params->width = (3 + cpi->oxcf.frm_dim_cfg.width * 3) >> 2; resize_pending_params->height = (3 + cpi->oxcf.frm_dim_cfg.height * 3) >> 2; } else if (rc->resize_state == ONE_HALF) { resize_pending_params->width = (1 + cpi->oxcf.frm_dim_cfg.width) >> 1; resize_pending_params->height = (1 + cpi->oxcf.frm_dim_cfg.height) >> 1; } else { resize_pending_params->width = cpi->oxcf.frm_dim_cfg.width; resize_pending_params->height = cpi->oxcf.frm_dim_cfg.height; } } else if (is_frame_resize_pending(cpi)) { resize_reset_rc(cpi, resize_pending_params->width, resize_pending_params->height, cm->width, cm->height); } // Set the GF interval and update flag. if (!rc->rtc_external_ratectrl) set_gf_interval_update_onepass_rt(cpi, *frame_type); // Set target size. if (cpi->oxcf.rc_cfg.mode == AOM_CBR) { if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) { target = av1_calc_iframe_target_size_one_pass_cbr(cpi); } else { target = av1_calc_pframe_target_size_one_pass_cbr( cpi, gf_group->update_type[cpi->gf_frame_index]); } } else { if (*frame_type == KEY_FRAME || *frame_type == INTRA_ONLY_FRAME) { target = av1_calc_iframe_target_size_one_pass_vbr(cpi); } else { target = av1_calc_pframe_target_size_one_pass_vbr( cpi, gf_group->update_type[cpi->gf_frame_index]); } } if (cpi->oxcf.rc_cfg.mode == AOM_Q) rc->active_worst_quality = cpi->oxcf.rc_cfg.cq_level; av1_rc_set_frame_target(cpi, target, cm->width, cm->height); rc->base_frame_target = target; cm->current_frame.frame_type = *frame_type; // For fixed mode SVC: if KSVC is enabled remove inter layer // prediction on spatial enhancement layer frames for frames // whose base is not KEY frame. if (cpi->ppi->use_svc && !svc->use_flexible_mode && svc->ksvc_fixed_mode && svc->number_spatial_layers > 1 && !svc->layer_context[layer].is_key_frame) { ExternalFlags *const ext_flags = &cpi->ext_flags; ext_flags->ref_frame_flags ^= AOM_GOLD_FLAG; } } int av1_encodedframe_overshoot_cbr(AV1_COMP *cpi, int *q) { AV1_COMMON *const cm = &cpi->common; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; double rate_correction_factor = cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL]; const int target_size = cpi->rc.avg_frame_bandwidth; double new_correction_factor; int target_bits_per_mb; double q2; int enumerator; int is_screen_content = (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN); *q = (3 * cpi->rc.worst_quality + *q) >> 2; // For screen content use the max-q set by the user to allow for less // overshoot on slide changes. if (is_screen_content) *q = cpi->rc.worst_quality; cpi->cyclic_refresh->counter_encode_maxq_scene_change = 0; // Adjust avg_frame_qindex, buffer_level, and rate correction factors, as // these parameters will affect QP selection for subsequent frames. If they // have settled down to a very different (low QP) state, then not adjusting // them may cause next frame to select low QP and overshoot again. p_rc->avg_frame_qindex[INTER_FRAME] = *q; p_rc->buffer_level = p_rc->optimal_buffer_level; p_rc->bits_off_target = p_rc->optimal_buffer_level; // Reset rate under/over-shoot flags. cpi->rc.rc_1_frame = 0; cpi->rc.rc_2_frame = 0; // Adjust rate correction factor. target_bits_per_mb = (int)(((uint64_t)target_size << BPER_MB_NORMBITS) / cm->mi_params.MBs); // Reset rate correction factor: for now base it on target_bits_per_mb // and qp (==max_QP). This comes from the inverse computation of // av1_rc_bits_per_mb(). q2 = av1_convert_qindex_to_q(*q, cm->seq_params->bit_depth); enumerator = av1_get_bpmb_enumerator(INTER_NORMAL, is_screen_content); new_correction_factor = (double)target_bits_per_mb * q2 / enumerator; if (new_correction_factor > rate_correction_factor) { rate_correction_factor = (new_correction_factor + rate_correction_factor) / 2.0; if (rate_correction_factor > MAX_BPB_FACTOR) rate_correction_factor = MAX_BPB_FACTOR; cpi->ppi->p_rc.rate_correction_factors[INTER_NORMAL] = rate_correction_factor; } // For temporal layers: reset the rate control parameters across all // temporal layers. if (cpi->svc.number_temporal_layers > 1) { SVC *svc = &cpi->svc; for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { int sl = svc->spatial_layer_id; const int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; PRIMARY_RATE_CONTROL *lp_rc = &lc->p_rc; lp_rc->avg_frame_qindex[INTER_FRAME] = *q; lp_rc->buffer_level = lp_rc->optimal_buffer_level; lp_rc->bits_off_target = lp_rc->optimal_buffer_level; lrc->rc_1_frame = 0; lrc->rc_2_frame = 0; lp_rc->rate_correction_factors[INTER_NORMAL] = rate_correction_factor; } } return 1; }