/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_RC_UTILS_H_ #define AOM_AV1_ENCODER_RC_UTILS_H_ #include "av1/encoder/encoder.h" #include "aom_dsp/psnr.h" #ifdef __cplusplus extern "C" { #endif static AOM_INLINE void check_reset_rc_flag(AV1_COMP *cpi) { RATE_CONTROL *rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; if (cpi->common.current_frame.frame_number > (unsigned int)cpi->svc.number_spatial_layers) { if (cpi->ppi->use_svc) { av1_svc_check_reset_layer_rc_flag(cpi); } else { if (rc->avg_frame_bandwidth > (3 * rc->prev_avg_frame_bandwidth >> 1) || rc->avg_frame_bandwidth < (rc->prev_avg_frame_bandwidth >> 1)) { rc->rc_1_frame = 0; rc->rc_2_frame = 0; p_rc->bits_off_target = p_rc->optimal_buffer_level; p_rc->buffer_level = p_rc->optimal_buffer_level; } } } } static AOM_INLINE void set_primary_rc_buffer_sizes(const AV1EncoderConfig *oxcf, AV1_PRIMARY *ppi) { PRIMARY_RATE_CONTROL *p_rc = &ppi->p_rc; const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; const int64_t bandwidth = rc_cfg->target_bandwidth; const int64_t starting = rc_cfg->starting_buffer_level_ms; const int64_t optimal = rc_cfg->optimal_buffer_level_ms; const int64_t maximum = rc_cfg->maximum_buffer_size_ms; p_rc->starting_buffer_level = starting * bandwidth / 1000; p_rc->optimal_buffer_level = (optimal == 0) ? bandwidth / 8 : optimal * bandwidth / 1000; p_rc->maximum_buffer_size = (maximum == 0) ? bandwidth / 8 : maximum * bandwidth / 1000; // Under a configuration change, where maximum_buffer_size may change, // keep buffer level clipped to the maximum allowed buffer size. p_rc->bits_off_target = AOMMIN(p_rc->bits_off_target, p_rc->maximum_buffer_size); p_rc->buffer_level = AOMMIN(p_rc->buffer_level, p_rc->maximum_buffer_size); } static AOM_INLINE void config_target_level(AV1_COMP *const cpi, AV1_LEVEL target_level, int tier) { AV1EncoderConfig *const oxcf = &cpi->oxcf; SequenceHeader *const seq_params = cpi->common.seq_params; TileConfig *const tile_cfg = &oxcf->tile_cfg; RateControlCfg *const rc_cfg = &oxcf->rc_cfg; // Adjust target bitrate to be no larger than 70% of level limit. const BITSTREAM_PROFILE profile = seq_params->profile; const double level_bitrate_limit = av1_get_max_bitrate_for_level(target_level, tier, profile); const int64_t max_bitrate = (int64_t)(level_bitrate_limit * 0.70); rc_cfg->target_bandwidth = AOMMIN(rc_cfg->target_bandwidth, max_bitrate); // Also need to update cpi->ppi->twopass.bits_left. TWO_PASS *const twopass = &cpi->ppi->twopass; FIRSTPASS_STATS *stats = twopass->stats_buf_ctx->total_stats; if (stats != NULL) cpi->ppi->twopass.bits_left = (int64_t)(stats->duration * rc_cfg->target_bandwidth / 10000000.0); // Adjust max over-shoot percentage. rc_cfg->over_shoot_pct = 0; // Adjust max quantizer. rc_cfg->worst_allowed_q = 255; // Adjust number of tiles and tile columns to be under level limit. int max_tiles, max_tile_cols; av1_get_max_tiles_for_level(target_level, &max_tiles, &max_tile_cols); while (tile_cfg->tile_columns > 0 && (1 << tile_cfg->tile_columns) > max_tile_cols) { --tile_cfg->tile_columns; } const int tile_cols = (1 << tile_cfg->tile_columns); while (tile_cfg->tile_rows > 0 && tile_cols * (1 << tile_cfg->tile_rows) > max_tiles) { --tile_cfg->tile_rows; } // Adjust min compression ratio. const int still_picture = seq_params->still_picture; const double min_cr = av1_get_min_cr_for_level(target_level, tier, still_picture); rc_cfg->min_cr = AOMMAX(rc_cfg->min_cr, (unsigned int)(min_cr * 100)); } #if !CONFIG_REALTIME_ONLY /*!\brief Function to test for conditions that indicate we should loop * back and recode a frame. * * \ingroup rate_control * * \param[in] cpi Top-level encoder structure * \param[in] high_limit Upper rate threshold * \param[in] low_limit Lower rate threshold * \param[in] q Current q index * \param[in] maxq Maximum allowed q index * \param[in] minq Minimum allowed q index * * \return Indicates if a recode is required. * \retval 1 Recode Required * \retval 0 No Recode required */ static AOM_INLINE int recode_loop_test(AV1_COMP *cpi, int high_limit, int low_limit, int q, int maxq, int minq) { const RATE_CONTROL *const rc = &cpi->rc; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const int frame_is_kfgfarf = frame_is_kf_gf_arf(cpi); int force_recode = 0; if ((rc->projected_frame_size >= rc->max_frame_bandwidth) || (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE) || (frame_is_kfgfarf && (cpi->sf.hl_sf.recode_loop == ALLOW_RECODE_KFARFGF))) { // TODO(agrange) high_limit could be greater than the scale-down threshold. if ((rc->projected_frame_size > high_limit && q < maxq) || (rc->projected_frame_size < low_limit && q > minq)) { force_recode = 1; } else if (cpi->oxcf.rc_cfg.mode == AOM_CQ) { // Deal with frame undershoot and whether or not we are // below the automatically set cq level. if (q > oxcf->rc_cfg.cq_level && rc->projected_frame_size < ((rc->this_frame_target * 7) >> 3)) { force_recode = 1; } } } return force_recode; } static AOM_INLINE double av1_get_gfu_boost_projection_factor(double min_factor, double max_factor, int frame_count) { double factor = sqrt((double)frame_count); factor = AOMMIN(factor, max_factor); factor = AOMMAX(factor, min_factor); factor = (200.0 + 10.0 * factor); return factor; } static AOM_INLINE int get_gfu_boost_from_r0_lap(double min_factor, double max_factor, double r0, int frames_to_key) { double factor = av1_get_gfu_boost_projection_factor(min_factor, max_factor, frames_to_key); const int boost = (int)rint(factor / r0); return boost; } static AOM_INLINE double av1_get_kf_boost_projection_factor(int frame_count) { double factor = sqrt((double)frame_count); factor = AOMMIN(factor, 10.0); factor = AOMMAX(factor, 4.0); factor = (75.0 + 14.0 * factor); return factor; } static AOM_INLINE int get_regulated_q_overshoot(AV1_COMP *const cpi, int is_encode_stage, int q_low, int q_high, int top_index, int bottom_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, cm->height); int q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, AOMMAX(q_high, top_index), cm->width, cm->height); int retries = 0; while (q_regulated < q_low && retries < 10) { av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, cm->height); q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, AOMMAX(q_high, top_index), cm->width, cm->height); retries++; } return q_regulated; } static AOM_INLINE int get_regulated_q_undershoot(AV1_COMP *const cpi, int is_encode_stage, int q_high, int top_index, int bottom_index) { const AV1_COMMON *const cm = &cpi->common; const RATE_CONTROL *const rc = &cpi->rc; av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, cm->height); int q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index, cm->width, cm->height); int retries = 0; while (q_regulated > q_high && retries < 10) { av1_rc_update_rate_correction_factors(cpi, is_encode_stage, cm->width, cm->height); q_regulated = av1_rc_regulate_q(cpi, rc->this_frame_target, bottom_index, top_index, cm->width, cm->height); retries++; } return q_regulated; } /*!\brief Called after encode_with_recode_loop() has just encoded a frame. * This function works out whether we undershot or overshot our bitrate * target and adjusts q as appropriate. It also decides whether or not * we need to recode the frame to get closer to the target rate. * * \ingroup rate_control * * \param[in] cpi Top-level encoder structure * \param[out] loop Should we go around the recode loop again * \param[in,out] q New q index value * \param[in,out] q_low Low q index limit for this loop itteration * \param[in,out] q_high High q index limit for this loop itteration * \param[in] top_index Max permited new value for q index * \param[in] bottom_index Min permited new value for q index * \param[in,out] undershoot_seen Have we seen undershoot on this frame * \param[in,out] overshoot_seen Have we seen overshoot on this frame * \param[in,out] low_cr_seen Have we previously trriggered recode * because the compression ration was less * than a given minimum threshold. * \param[in] loop_count Loop itterations so far. * */ static AOM_INLINE void recode_loop_update_q( AV1_COMP *const cpi, int *const loop, int *const q, int *const q_low, int *const q_high, const int top_index, const int bottom_index, int *const undershoot_seen, int *const overshoot_seen, int *const low_cr_seen, const int loop_count) { AV1_COMMON *const cm = &cpi->common; RATE_CONTROL *const rc = &cpi->rc; PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; const RateControlCfg *const rc_cfg = &cpi->oxcf.rc_cfg; *loop = 0; // Special case for overlay frame. if (rc->is_src_frame_alt_ref && rc->projected_frame_size < rc->max_frame_bandwidth) return; const int min_cr = rc_cfg->min_cr; if (min_cr > 0) { const double compression_ratio = av1_get_compression_ratio(cm, rc->projected_frame_size >> 3); const double target_cr = min_cr / 100.0; if (compression_ratio < target_cr) { *low_cr_seen = 1; if (*q < rc->worst_quality) { const double cr_ratio = target_cr / compression_ratio; const int projected_q = AOMMAX(*q + 1, (int)(*q * cr_ratio * cr_ratio)); *q = AOMMIN(AOMMIN(projected_q, *q + 32), rc->worst_quality); *q_low = AOMMAX(*q, *q_low); *q_high = AOMMAX(*q, *q_high); *loop = 1; } } if (*low_cr_seen) return; } if (cpi->ppi->level_params.keep_level_stats && !is_stat_generation_stage(cpi)) { // Initialize level info. at the beginning of each sequence. if (cm->current_frame.frame_type == KEY_FRAME && cpi->ppi->gf_group.refbuf_state[cpi->gf_frame_index] == REFBUF_RESET) { av1_init_level_info(cpi); } const AV1LevelParams *const level_params = &cpi->ppi->level_params; // TODO(any): currently only checking operating point 0 const AV1LevelInfo *const level_info = level_params->level_info[0]; const DECODER_MODEL *const decoder_models = level_info->decoder_models; const AV1_LEVEL target_level = level_params->target_seq_level_idx[0]; if (target_level < SEQ_LEVELS && decoder_models[target_level].status == DECODER_MODEL_OK) { DECODER_MODEL_STATUS status = av1_decoder_model_try_smooth_buf( cpi, rc->projected_frame_size, &decoder_models[target_level]); if ((status == SMOOTHING_BUFFER_UNDERFLOW || status == SMOOTHING_BUFFER_OVERFLOW) && *q < rc->worst_quality) { *q = AOMMIN(*q + 10, rc->worst_quality); *q_low = AOMMAX(*q, *q_low); *q_high = AOMMAX(*q, *q_high); *loop = 1; return; } } } if (rc_cfg->mode == AOM_Q) return; const int last_q = *q; int frame_over_shoot_limit = 0, frame_under_shoot_limit = 0; av1_rc_compute_frame_size_bounds(cpi, rc->this_frame_target, &frame_under_shoot_limit, &frame_over_shoot_limit); if (frame_over_shoot_limit == 0) frame_over_shoot_limit = 1; if (cm->current_frame.frame_type == KEY_FRAME && p_rc->this_key_frame_forced && rc->projected_frame_size < rc->max_frame_bandwidth) { int64_t kf_err; const int64_t high_err_target = cpi->ambient_err; const int64_t low_err_target = cpi->ambient_err >> 1; #if CONFIG_AV1_HIGHBITDEPTH if (cm->seq_params->use_highbitdepth) { kf_err = aom_highbd_get_y_sse(cpi->source, &cm->cur_frame->buf); } else { kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); } #else kf_err = aom_get_y_sse(cpi->source, &cm->cur_frame->buf); #endif // Prevent possible divide by zero error below for perfect KF kf_err += !kf_err; // The key frame is not good enough or we can afford // to make it better without undue risk of popping. if ((kf_err > high_err_target && rc->projected_frame_size <= frame_over_shoot_limit) || (kf_err > low_err_target && rc->projected_frame_size <= frame_under_shoot_limit)) { // Lower q_high *q_high = AOMMAX(*q - 1, *q_low); // Adjust Q *q = (int)((*q * high_err_target) / kf_err); *q = AOMMIN(*q, (*q_high + *q_low) >> 1); } else if (kf_err < low_err_target && rc->projected_frame_size >= frame_under_shoot_limit) { // The key frame is much better than the previous frame // Raise q_low *q_low = AOMMIN(*q + 1, *q_high); // Adjust Q *q = (int)((*q * low_err_target) / kf_err); *q = AOMMIN(*q, (*q_high + *q_low + 1) >> 1); } // Clamp Q to upper and lower limits: *q = clamp(*q, *q_low, *q_high); *loop = (*q != last_q); return; } if (recode_loop_test(cpi, frame_over_shoot_limit, frame_under_shoot_limit, *q, AOMMAX(*q_high, top_index), bottom_index)) { // Is the projected frame size out of range and are we allowed // to attempt to recode. // Frame size out of permitted range: // Update correction factor & compute new Q to try... // Frame is too large if (rc->projected_frame_size > rc->this_frame_target) { // Special case if the projected size is > the max allowed. if (*q == *q_high && rc->projected_frame_size >= rc->max_frame_bandwidth) { const double q_val_high_current = av1_convert_qindex_to_q(*q_high, cm->seq_params->bit_depth); const double q_val_high_new = q_val_high_current * ((double)rc->projected_frame_size / rc->max_frame_bandwidth); *q_high = av1_find_qindex(q_val_high_new, cm->seq_params->bit_depth, rc->best_quality, rc->worst_quality); } // Raise Qlow as to at least the current value *q_low = AOMMIN(*q + 1, *q_high); if (*undershoot_seen || loop_count > 2 || (loop_count == 2 && !frame_is_intra_only(cm))) { av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height); *q = (*q_high + *q_low + 1) / 2; } else if (loop_count == 2 && frame_is_intra_only(cm)) { const int q_mid = (*q_high + *q_low + 1) / 2; const int q_regulated = get_regulated_q_overshoot( cpi, 1, *q_low, *q_high, top_index, bottom_index); // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth // transition between loop_count < 2 and loop_count > 2. *q = (q_mid + q_regulated + 1) / 2; } else { *q = get_regulated_q_overshoot(cpi, 1, *q_low, *q_high, top_index, bottom_index); } *overshoot_seen = 1; } else { // Frame is too small *q_high = AOMMAX(*q - 1, *q_low); if (*overshoot_seen || loop_count > 2 || (loop_count == 2 && !frame_is_intra_only(cm))) { av1_rc_update_rate_correction_factors(cpi, 1, cm->width, cm->height); *q = (*q_high + *q_low) / 2; } else if (loop_count == 2 && frame_is_intra_only(cm)) { const int q_mid = (*q_high + *q_low) / 2; const int q_regulated = get_regulated_q_undershoot( cpi, 1, *q_high, top_index, bottom_index); // Get 'q' in-between 'q_mid' and 'q_regulated' for a smooth // transition between loop_count < 2 and loop_count > 2. *q = (q_mid + q_regulated) / 2; // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (rc_cfg->mode == AOM_CQ && q_regulated < *q_low) { *q_low = *q; } } else { *q = get_regulated_q_undershoot(cpi, 1, *q_high, top_index, bottom_index); // Special case reset for qlow for constrained quality. // This should only trigger where there is very substantial // undershoot on a frame and the auto cq level is above // the user passsed in value. if (rc_cfg->mode == AOM_CQ && *q < *q_low) { *q_low = *q; } } *undershoot_seen = 1; } // Clamp Q to upper and lower limits: *q = clamp(*q, *q_low, *q_high); } *loop = (*q != last_q); } #endif #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_RC_UTILS_H_