/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/blend.h" #include "aom_mem/aom_mem.h" #include "aom_ports/aom_timer.h" #include "aom_ports/mem.h" #include "av1/common/av1_common_int.h" #include "av1/common/cfl.h" #include "av1/common/blockd.h" #include "av1/common/common.h" #include "av1/common/common_data.h" #include "av1/common/entropy.h" #include "av1/common/entropymode.h" #include "av1/common/idct.h" #include "av1/common/mvref_common.h" #include "av1/common/obmc.h" #include "av1/common/pred_common.h" #include "av1/common/quant_common.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/common/scan.h" #include "av1/common/seg_common.h" #include "av1/common/txb_common.h" #include "av1/common/warped_motion.h" #include "av1/encoder/aq_variance.h" #include "av1/encoder/av1_quantize.h" #include "av1/encoder/cost.h" #include "av1/encoder/compound_type.h" #include "av1/encoder/encodemb.h" #include "av1/encoder/encodemv.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/interp_search.h" #include "av1/encoder/intra_mode_search.h" #include "av1/encoder/intra_mode_search_utils.h" #include "av1/encoder/mcomp.h" #include "av1/encoder/ml.h" #include "av1/encoder/mode_prune_model_weights.h" #include "av1/encoder/model_rd.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/palette.h" #include "av1/encoder/pustats.h" #include "av1/encoder/random.h" #include "av1/encoder/ratectrl.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/tokenize.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/tx_search.h" #include "av1/encoder/var_based_part.h" #define LAST_NEW_MV_INDEX 6 // Mode_threshold multiplication factor table for prune_inter_modes_if_skippable // The values are kept in Q12 format and equation used to derive is // (2.5 - ((float)x->qindex / MAXQ) * 1.5) #define MODE_THRESH_QBITS 12 static const int mode_threshold_mul_factor[QINDEX_RANGE] = { 10240, 10216, 10192, 10168, 10144, 10120, 10095, 10071, 10047, 10023, 9999, 9975, 9951, 9927, 9903, 9879, 9854, 9830, 9806, 9782, 9758, 9734, 9710, 9686, 9662, 9638, 9614, 9589, 9565, 9541, 9517, 9493, 9469, 9445, 9421, 9397, 9373, 9349, 9324, 9300, 9276, 9252, 9228, 9204, 9180, 9156, 9132, 9108, 9083, 9059, 9035, 9011, 8987, 8963, 8939, 8915, 8891, 8867, 8843, 8818, 8794, 8770, 8746, 8722, 8698, 8674, 8650, 8626, 8602, 8578, 8553, 8529, 8505, 8481, 8457, 8433, 8409, 8385, 8361, 8337, 8312, 8288, 8264, 8240, 8216, 8192, 8168, 8144, 8120, 8096, 8072, 8047, 8023, 7999, 7975, 7951, 7927, 7903, 7879, 7855, 7831, 7806, 7782, 7758, 7734, 7710, 7686, 7662, 7638, 7614, 7590, 7566, 7541, 7517, 7493, 7469, 7445, 7421, 7397, 7373, 7349, 7325, 7301, 7276, 7252, 7228, 7204, 7180, 7156, 7132, 7108, 7084, 7060, 7035, 7011, 6987, 6963, 6939, 6915, 6891, 6867, 6843, 6819, 6795, 6770, 6746, 6722, 6698, 6674, 6650, 6626, 6602, 6578, 6554, 6530, 6505, 6481, 6457, 6433, 6409, 6385, 6361, 6337, 6313, 6289, 6264, 6240, 6216, 6192, 6168, 6144, 6120, 6096, 6072, 6048, 6024, 5999, 5975, 5951, 5927, 5903, 5879, 5855, 5831, 5807, 5783, 5758, 5734, 5710, 5686, 5662, 5638, 5614, 5590, 5566, 5542, 5518, 5493, 5469, 5445, 5421, 5397, 5373, 5349, 5325, 5301, 5277, 5253, 5228, 5204, 5180, 5156, 5132, 5108, 5084, 5060, 5036, 5012, 4987, 4963, 4939, 4915, 4891, 4867, 4843, 4819, 4795, 4771, 4747, 4722, 4698, 4674, 4650, 4626, 4602, 4578, 4554, 4530, 4506, 4482, 4457, 4433, 4409, 4385, 4361, 4337, 4313, 4289, 4265, 4241, 4216, 4192, 4168, 4144, 4120, 4096 }; static const THR_MODES av1_default_mode_order[MAX_MODES] = { THR_NEARESTMV, THR_NEARESTL2, THR_NEARESTL3, THR_NEARESTB, THR_NEARESTA2, THR_NEARESTA, THR_NEARESTG, THR_NEWMV, THR_NEWL2, THR_NEWL3, THR_NEWB, THR_NEWA2, THR_NEWA, THR_NEWG, THR_NEARMV, THR_NEARL2, THR_NEARL3, THR_NEARB, THR_NEARA2, THR_NEARA, THR_NEARG, THR_GLOBALMV, THR_GLOBALL2, THR_GLOBALL3, THR_GLOBALB, THR_GLOBALA2, THR_GLOBALA, THR_GLOBALG, THR_COMP_NEAREST_NEARESTLA, THR_COMP_NEAREST_NEARESTL2A, THR_COMP_NEAREST_NEARESTL3A, THR_COMP_NEAREST_NEARESTGA, THR_COMP_NEAREST_NEARESTLB, THR_COMP_NEAREST_NEARESTL2B, THR_COMP_NEAREST_NEARESTL3B, THR_COMP_NEAREST_NEARESTGB, THR_COMP_NEAREST_NEARESTLA2, THR_COMP_NEAREST_NEARESTL2A2, THR_COMP_NEAREST_NEARESTL3A2, THR_COMP_NEAREST_NEARESTGA2, THR_COMP_NEAREST_NEARESTLL2, THR_COMP_NEAREST_NEARESTLL3, THR_COMP_NEAREST_NEARESTLG, THR_COMP_NEAREST_NEARESTBA, THR_COMP_NEAR_NEARLB, THR_COMP_NEW_NEWLB, THR_COMP_NEW_NEARESTLB, THR_COMP_NEAREST_NEWLB, THR_COMP_NEW_NEARLB, THR_COMP_NEAR_NEWLB, THR_COMP_GLOBAL_GLOBALLB, THR_COMP_NEAR_NEARLA, THR_COMP_NEW_NEWLA, THR_COMP_NEW_NEARESTLA, THR_COMP_NEAREST_NEWLA, THR_COMP_NEW_NEARLA, THR_COMP_NEAR_NEWLA, THR_COMP_GLOBAL_GLOBALLA, THR_COMP_NEAR_NEARL2A, THR_COMP_NEW_NEWL2A, THR_COMP_NEW_NEARESTL2A, THR_COMP_NEAREST_NEWL2A, THR_COMP_NEW_NEARL2A, THR_COMP_NEAR_NEWL2A, THR_COMP_GLOBAL_GLOBALL2A, THR_COMP_NEAR_NEARL3A, THR_COMP_NEW_NEWL3A, THR_COMP_NEW_NEARESTL3A, THR_COMP_NEAREST_NEWL3A, THR_COMP_NEW_NEARL3A, THR_COMP_NEAR_NEWL3A, THR_COMP_GLOBAL_GLOBALL3A, THR_COMP_NEAR_NEARGA, THR_COMP_NEW_NEWGA, THR_COMP_NEW_NEARESTGA, THR_COMP_NEAREST_NEWGA, THR_COMP_NEW_NEARGA, THR_COMP_NEAR_NEWGA, THR_COMP_GLOBAL_GLOBALGA, THR_COMP_NEAR_NEARL2B, THR_COMP_NEW_NEWL2B, THR_COMP_NEW_NEARESTL2B, THR_COMP_NEAREST_NEWL2B, THR_COMP_NEW_NEARL2B, THR_COMP_NEAR_NEWL2B, THR_COMP_GLOBAL_GLOBALL2B, THR_COMP_NEAR_NEARL3B, THR_COMP_NEW_NEWL3B, THR_COMP_NEW_NEARESTL3B, THR_COMP_NEAREST_NEWL3B, THR_COMP_NEW_NEARL3B, THR_COMP_NEAR_NEWL3B, THR_COMP_GLOBAL_GLOBALL3B, THR_COMP_NEAR_NEARGB, THR_COMP_NEW_NEWGB, THR_COMP_NEW_NEARESTGB, THR_COMP_NEAREST_NEWGB, THR_COMP_NEW_NEARGB, THR_COMP_NEAR_NEWGB, THR_COMP_GLOBAL_GLOBALGB, THR_COMP_NEAR_NEARLA2, THR_COMP_NEW_NEWLA2, THR_COMP_NEW_NEARESTLA2, THR_COMP_NEAREST_NEWLA2, THR_COMP_NEW_NEARLA2, THR_COMP_NEAR_NEWLA2, THR_COMP_GLOBAL_GLOBALLA2, THR_COMP_NEAR_NEARL2A2, THR_COMP_NEW_NEWL2A2, THR_COMP_NEW_NEARESTL2A2, THR_COMP_NEAREST_NEWL2A2, THR_COMP_NEW_NEARL2A2, THR_COMP_NEAR_NEWL2A2, THR_COMP_GLOBAL_GLOBALL2A2, THR_COMP_NEAR_NEARL3A2, THR_COMP_NEW_NEWL3A2, THR_COMP_NEW_NEARESTL3A2, THR_COMP_NEAREST_NEWL3A2, THR_COMP_NEW_NEARL3A2, THR_COMP_NEAR_NEWL3A2, THR_COMP_GLOBAL_GLOBALL3A2, THR_COMP_NEAR_NEARGA2, THR_COMP_NEW_NEWGA2, THR_COMP_NEW_NEARESTGA2, THR_COMP_NEAREST_NEWGA2, THR_COMP_NEW_NEARGA2, THR_COMP_NEAR_NEWGA2, THR_COMP_GLOBAL_GLOBALGA2, THR_COMP_NEAR_NEARLL2, THR_COMP_NEW_NEWLL2, THR_COMP_NEW_NEARESTLL2, THR_COMP_NEAREST_NEWLL2, THR_COMP_NEW_NEARLL2, THR_COMP_NEAR_NEWLL2, THR_COMP_GLOBAL_GLOBALLL2, THR_COMP_NEAR_NEARLL3, THR_COMP_NEW_NEWLL3, THR_COMP_NEW_NEARESTLL3, THR_COMP_NEAREST_NEWLL3, THR_COMP_NEW_NEARLL3, THR_COMP_NEAR_NEWLL3, THR_COMP_GLOBAL_GLOBALLL3, THR_COMP_NEAR_NEARLG, THR_COMP_NEW_NEWLG, THR_COMP_NEW_NEARESTLG, THR_COMP_NEAREST_NEWLG, THR_COMP_NEW_NEARLG, THR_COMP_NEAR_NEWLG, THR_COMP_GLOBAL_GLOBALLG, THR_COMP_NEAR_NEARBA, THR_COMP_NEW_NEWBA, THR_COMP_NEW_NEARESTBA, THR_COMP_NEAREST_NEWBA, THR_COMP_NEW_NEARBA, THR_COMP_NEAR_NEWBA, THR_COMP_GLOBAL_GLOBALBA, THR_DC, THR_PAETH, THR_SMOOTH, THR_SMOOTH_V, THR_SMOOTH_H, THR_H_PRED, THR_V_PRED, THR_D135_PRED, THR_D203_PRED, THR_D157_PRED, THR_D67_PRED, THR_D113_PRED, THR_D45_PRED, }; /*!\cond */ typedef struct SingleInterModeState { int64_t rd; MV_REFERENCE_FRAME ref_frame; int valid; } SingleInterModeState; typedef struct InterModeSearchState { int64_t best_rd; int64_t best_skip_rd[2]; MB_MODE_INFO best_mbmode; int best_rate_y; int best_rate_uv; int best_mode_skippable; int best_skip2; THR_MODES best_mode_index; int num_available_refs; int64_t dist_refs[REF_FRAMES]; int dist_order_refs[REF_FRAMES]; int64_t mode_threshold[MAX_MODES]; int64_t best_intra_rd; unsigned int best_pred_sse; /*! * \brief Keep track of best intra rd for use in compound mode. */ int64_t best_pred_rd[REFERENCE_MODES]; // Save a set of single_newmv for each checked ref_mv. int_mv single_newmv[MAX_REF_MV_SEARCH][REF_FRAMES]; int single_newmv_rate[MAX_REF_MV_SEARCH][REF_FRAMES]; int single_newmv_valid[MAX_REF_MV_SEARCH][REF_FRAMES]; int64_t modelled_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; // The rd of simple translation in single inter modes int64_t simple_rd[MB_MODE_COUNT][MAX_REF_MV_SEARCH][REF_FRAMES]; int64_t best_single_rd[REF_FRAMES]; PREDICTION_MODE best_single_mode[REF_FRAMES]; // Single search results by [directions][modes][reference frames] SingleInterModeState single_state[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; int single_state_cnt[2][SINGLE_INTER_MODE_NUM]; SingleInterModeState single_state_modelled[2][SINGLE_INTER_MODE_NUM] [FWD_REFS]; int single_state_modelled_cnt[2][SINGLE_INTER_MODE_NUM]; MV_REFERENCE_FRAME single_rd_order[2][SINGLE_INTER_MODE_NUM][FWD_REFS]; IntraModeSearchState intra_search_state; RD_STATS best_y_rdcost; } InterModeSearchState; /*!\endcond */ void av1_inter_mode_data_init(TileDataEnc *tile_data) { for (int i = 0; i < BLOCK_SIZES_ALL; ++i) { InterModeRdModel *md = &tile_data->inter_mode_rd_models[i]; md->ready = 0; md->num = 0; md->dist_sum = 0; md->ld_sum = 0; md->sse_sum = 0; md->sse_sse_sum = 0; md->sse_ld_sum = 0; } } static int get_est_rate_dist(const TileDataEnc *tile_data, BLOCK_SIZE bsize, int64_t sse, int *est_residue_cost, int64_t *est_dist) { const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; if (md->ready) { if (sse < md->dist_mean) { *est_residue_cost = 0; *est_dist = sse; } else { *est_dist = (int64_t)round(md->dist_mean); const double est_ld = md->a * sse + md->b; // Clamp estimated rate cost by INT_MAX / 2. // TODO(angiebird@google.com): find better solution than clamping. if (fabs(est_ld) < 1e-2) { *est_residue_cost = INT_MAX / 2; } else { double est_residue_cost_dbl = ((sse - md->dist_mean) / est_ld); if (est_residue_cost_dbl < 0) { *est_residue_cost = 0; } else { *est_residue_cost = (int)AOMMIN((int64_t)round(est_residue_cost_dbl), INT_MAX / 2); } } if (*est_residue_cost <= 0) { *est_residue_cost = 0; *est_dist = sse; } } return 1; } return 0; } void av1_inter_mode_data_fit(TileDataEnc *tile_data, int rdmult) { for (int bsize = 0; bsize < BLOCK_SIZES_ALL; ++bsize) { const int block_idx = inter_mode_data_block_idx(bsize); InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; if (block_idx == -1) continue; if ((md->ready == 0 && md->num < 200) || (md->ready == 1 && md->num < 64)) { continue; } else { if (md->ready == 0) { md->dist_mean = md->dist_sum / md->num; md->ld_mean = md->ld_sum / md->num; md->sse_mean = md->sse_sum / md->num; md->sse_sse_mean = md->sse_sse_sum / md->num; md->sse_ld_mean = md->sse_ld_sum / md->num; } else { const double factor = 3; md->dist_mean = (md->dist_mean * factor + (md->dist_sum / md->num)) / (factor + 1); md->ld_mean = (md->ld_mean * factor + (md->ld_sum / md->num)) / (factor + 1); md->sse_mean = (md->sse_mean * factor + (md->sse_sum / md->num)) / (factor + 1); md->sse_sse_mean = (md->sse_sse_mean * factor + (md->sse_sse_sum / md->num)) / (factor + 1); md->sse_ld_mean = (md->sse_ld_mean * factor + (md->sse_ld_sum / md->num)) / (factor + 1); } const double my = md->ld_mean; const double mx = md->sse_mean; const double dx = sqrt(md->sse_sse_mean); const double dxy = md->sse_ld_mean; md->a = (dxy - mx * my) / (dx * dx - mx * mx); md->b = my - md->a * mx; md->ready = 1; md->num = 0; md->dist_sum = 0; md->ld_sum = 0; md->sse_sum = 0; md->sse_sse_sum = 0; md->sse_ld_sum = 0; } (void)rdmult; } } static AOM_INLINE void inter_mode_data_push(TileDataEnc *tile_data, BLOCK_SIZE bsize, int64_t sse, int64_t dist, int residue_cost) { if (residue_cost == 0 || sse == dist) return; const int block_idx = inter_mode_data_block_idx(bsize); if (block_idx == -1) return; InterModeRdModel *rd_model = &tile_data->inter_mode_rd_models[bsize]; if (rd_model->num < INTER_MODE_RD_DATA_OVERALL_SIZE) { const double ld = (sse - dist) * 1. / residue_cost; ++rd_model->num; rd_model->dist_sum += dist; rd_model->ld_sum += ld; rd_model->sse_sum += sse; rd_model->sse_sse_sum += (double)sse * (double)sse; rd_model->sse_ld_sum += sse * ld; } } static AOM_INLINE void inter_modes_info_push(InterModesInfo *inter_modes_info, int mode_rate, int64_t sse, int64_t rd, RD_STATS *rd_cost, RD_STATS *rd_cost_y, RD_STATS *rd_cost_uv, const MB_MODE_INFO *mbmi) { const int num = inter_modes_info->num; assert(num < MAX_INTER_MODES); inter_modes_info->mbmi_arr[num] = *mbmi; inter_modes_info->mode_rate_arr[num] = mode_rate; inter_modes_info->sse_arr[num] = sse; inter_modes_info->est_rd_arr[num] = rd; inter_modes_info->rd_cost_arr[num] = *rd_cost; inter_modes_info->rd_cost_y_arr[num] = *rd_cost_y; inter_modes_info->rd_cost_uv_arr[num] = *rd_cost_uv; ++inter_modes_info->num; } static int compare_rd_idx_pair(const void *a, const void *b) { if (((RdIdxPair *)a)->rd == ((RdIdxPair *)b)->rd) { // To avoid inconsistency in qsort() ordering when two elements are equal, // using idx as tie breaker. Refer aomedia:2928 if (((RdIdxPair *)a)->idx == ((RdIdxPair *)b)->idx) return 0; else if (((RdIdxPair *)a)->idx > ((RdIdxPair *)b)->idx) return 1; else return -1; } else if (((const RdIdxPair *)a)->rd > ((const RdIdxPair *)b)->rd) { return 1; } else { return -1; } } static AOM_INLINE void inter_modes_info_sort( const InterModesInfo *inter_modes_info, RdIdxPair *rd_idx_pair_arr) { if (inter_modes_info->num == 0) { return; } for (int i = 0; i < inter_modes_info->num; ++i) { rd_idx_pair_arr[i].idx = i; rd_idx_pair_arr[i].rd = inter_modes_info->est_rd_arr[i]; } qsort(rd_idx_pair_arr, inter_modes_info->num, sizeof(rd_idx_pair_arr[0]), compare_rd_idx_pair); } // Similar to get_horver_correlation, but also takes into account first // row/column, when computing horizontal/vertical correlation. void av1_get_horver_correlation_full_c(const int16_t *diff, int stride, int width, int height, float *hcorr, float *vcorr) { // The following notation is used: // x - current pixel // y - left neighbor pixel // z - top neighbor pixel int64_t x_sum = 0, x2_sum = 0, xy_sum = 0, xz_sum = 0; int64_t x_firstrow = 0, x_finalrow = 0, x_firstcol = 0, x_finalcol = 0; int64_t x2_firstrow = 0, x2_finalrow = 0, x2_firstcol = 0, x2_finalcol = 0; // First, process horizontal correlation on just the first row x_sum += diff[0]; x2_sum += diff[0] * diff[0]; x_firstrow += diff[0]; x2_firstrow += diff[0] * diff[0]; for (int j = 1; j < width; ++j) { const int16_t x = diff[j]; const int16_t y = diff[j - 1]; x_sum += x; x_firstrow += x; x2_sum += x * x; x2_firstrow += x * x; xy_sum += x * y; } // Process vertical correlation in the first column x_firstcol += diff[0]; x2_firstcol += diff[0] * diff[0]; for (int i = 1; i < height; ++i) { const int16_t x = diff[i * stride]; const int16_t z = diff[(i - 1) * stride]; x_sum += x; x_firstcol += x; x2_sum += x * x; x2_firstcol += x * x; xz_sum += x * z; } // Now process horiz and vert correlation through the rest unit for (int i = 1; i < height; ++i) { for (int j = 1; j < width; ++j) { const int16_t x = diff[i * stride + j]; const int16_t y = diff[i * stride + j - 1]; const int16_t z = diff[(i - 1) * stride + j]; x_sum += x; x2_sum += x * x; xy_sum += x * y; xz_sum += x * z; } } for (int j = 0; j < width; ++j) { x_finalrow += diff[(height - 1) * stride + j]; x2_finalrow += diff[(height - 1) * stride + j] * diff[(height - 1) * stride + j]; } for (int i = 0; i < height; ++i) { x_finalcol += diff[i * stride + width - 1]; x2_finalcol += diff[i * stride + width - 1] * diff[i * stride + width - 1]; } int64_t xhor_sum = x_sum - x_finalcol; int64_t xver_sum = x_sum - x_finalrow; int64_t y_sum = x_sum - x_firstcol; int64_t z_sum = x_sum - x_firstrow; int64_t x2hor_sum = x2_sum - x2_finalcol; int64_t x2ver_sum = x2_sum - x2_finalrow; int64_t y2_sum = x2_sum - x2_firstcol; int64_t z2_sum = x2_sum - x2_firstrow; const float num_hor = (float)(height * (width - 1)); const float num_ver = (float)((height - 1) * width); const float xhor_var_n = x2hor_sum - (xhor_sum * xhor_sum) / num_hor; const float xver_var_n = x2ver_sum - (xver_sum * xver_sum) / num_ver; const float y_var_n = y2_sum - (y_sum * y_sum) / num_hor; const float z_var_n = z2_sum - (z_sum * z_sum) / num_ver; const float xy_var_n = xy_sum - (xhor_sum * y_sum) / num_hor; const float xz_var_n = xz_sum - (xver_sum * z_sum) / num_ver; if (xhor_var_n > 0 && y_var_n > 0) { *hcorr = xy_var_n / sqrtf(xhor_var_n * y_var_n); *hcorr = *hcorr < 0 ? 0 : *hcorr; } else { *hcorr = 1.0; } if (xver_var_n > 0 && z_var_n > 0) { *vcorr = xz_var_n / sqrtf(xver_var_n * z_var_n); *vcorr = *vcorr < 0 ? 0 : *vcorr; } else { *vcorr = 1.0; } } static int64_t get_sse(const AV1_COMP *cpi, const MACROBLOCK *x, int64_t *sse_y) { const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; int64_t total_sse = 0; for (int plane = 0; plane < num_planes; ++plane) { if (plane && !xd->is_chroma_ref) break; const struct macroblock_plane *const p = &x->plane[plane]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); unsigned int sse; cpi->ppi->fn_ptr[bs].vf(p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride, &sse); total_sse += sse; if (!plane && sse_y) *sse_y = sse; } total_sse <<= 4; return total_sse; } int64_t av1_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz) { int i; int64_t error = 0, sqcoeff = 0; for (i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += coeff[i] * coeff[i]; } *ssz = sqcoeff; return error; } int64_t av1_block_error_lp_c(const int16_t *coeff, const int16_t *dqcoeff, intptr_t block_size) { int64_t error = 0; for (int i = 0; i < block_size; i++) { const int diff = coeff[i] - dqcoeff[i]; error += diff * diff; } return error; } #if CONFIG_AV1_HIGHBITDEPTH int64_t av1_highbd_block_error_c(const tran_low_t *coeff, const tran_low_t *dqcoeff, intptr_t block_size, int64_t *ssz, int bd) { int i; int64_t error = 0, sqcoeff = 0; int shift = 2 * (bd - 8); int rounding = shift > 0 ? 1 << (shift - 1) : 0; for (i = 0; i < block_size; i++) { const int64_t diff = coeff[i] - dqcoeff[i]; error += diff * diff; sqcoeff += (int64_t)coeff[i] * (int64_t)coeff[i]; } assert(error >= 0 && sqcoeff >= 0); error = (error + rounding) >> shift; sqcoeff = (sqcoeff + rounding) >> shift; *ssz = sqcoeff; return error; } #endif static int conditional_skipintra(PREDICTION_MODE mode, PREDICTION_MODE best_intra_mode) { if (mode == D113_PRED && best_intra_mode != V_PRED && best_intra_mode != D135_PRED) return 1; if (mode == D67_PRED && best_intra_mode != V_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D203_PRED && best_intra_mode != H_PRED && best_intra_mode != D45_PRED) return 1; if (mode == D157_PRED && best_intra_mode != H_PRED && best_intra_mode != D135_PRED) return 1; return 0; } static int cost_mv_ref(const ModeCosts *const mode_costs, PREDICTION_MODE mode, int16_t mode_context) { if (is_inter_compound_mode(mode)) { return mode_costs ->inter_compound_mode_cost[mode_context][INTER_COMPOUND_OFFSET(mode)]; } int mode_cost = 0; int16_t mode_ctx = mode_context & NEWMV_CTX_MASK; assert(is_inter_mode(mode)); if (mode == NEWMV) { mode_cost = mode_costs->newmv_mode_cost[mode_ctx][0]; return mode_cost; } else { mode_cost = mode_costs->newmv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> GLOBALMV_OFFSET) & GLOBALMV_CTX_MASK; if (mode == GLOBALMV) { mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][0]; return mode_cost; } else { mode_cost += mode_costs->zeromv_mode_cost[mode_ctx][1]; mode_ctx = (mode_context >> REFMV_OFFSET) & REFMV_CTX_MASK; mode_cost += mode_costs->refmv_mode_cost[mode_ctx][mode != NEARESTMV]; return mode_cost; } } } static INLINE PREDICTION_MODE get_single_mode(PREDICTION_MODE this_mode, int ref_idx) { return ref_idx ? compound_ref1_mode(this_mode) : compound_ref0_mode(this_mode); } static AOM_INLINE void estimate_ref_frame_costs( const AV1_COMMON *cm, const MACROBLOCKD *xd, const ModeCosts *mode_costs, int segment_id, unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES]) { int seg_ref_active = segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME); if (seg_ref_active) { memset(ref_costs_single, 0, REF_FRAMES * sizeof(*ref_costs_single)); int ref_frame; for (ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) memset(ref_costs_comp[ref_frame], 0, REF_FRAMES * sizeof((*ref_costs_comp)[0])); } else { int intra_inter_ctx = av1_get_intra_inter_context(xd); ref_costs_single[INTRA_FRAME] = mode_costs->intra_inter_cost[intra_inter_ctx][0]; unsigned int base_cost = mode_costs->intra_inter_cost[intra_inter_ctx][1]; for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) ref_costs_single[i] = base_cost; const int ctx_p1 = av1_get_pred_context_single_ref_p1(xd); const int ctx_p2 = av1_get_pred_context_single_ref_p2(xd); const int ctx_p3 = av1_get_pred_context_single_ref_p3(xd); const int ctx_p4 = av1_get_pred_context_single_ref_p4(xd); const int ctx_p5 = av1_get_pred_context_single_ref_p5(xd); const int ctx_p6 = av1_get_pred_context_single_ref_p6(xd); // Determine cost of a single ref frame, where frame types are represented // by a tree: // Level 0: add cost whether this ref is a forward or backward ref ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][0]; ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1]; ref_costs_single[ALTREF2_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1]; ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p1][0][1]; // Level 1: if this ref is forward ref, // add cost whether it is last/last2 or last3/golden ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0]; ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][0]; ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1]; ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p3][2][1]; // Level 1: if this ref is backward ref // then add cost whether this ref is altref or backward ref ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0]; ref_costs_single[ALTREF2_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][0]; ref_costs_single[ALTREF_FRAME] += mode_costs->single_ref_cost[ctx_p2][1][1]; // Level 2: further add cost whether this ref is last or last2 ref_costs_single[LAST_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][0]; ref_costs_single[LAST2_FRAME] += mode_costs->single_ref_cost[ctx_p4][3][1]; // Level 2: last3 or golden ref_costs_single[LAST3_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][0]; ref_costs_single[GOLDEN_FRAME] += mode_costs->single_ref_cost[ctx_p5][4][1]; // Level 2: bwdref or altref2 ref_costs_single[BWDREF_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][0]; ref_costs_single[ALTREF2_FRAME] += mode_costs->single_ref_cost[ctx_p6][5][1]; if (cm->current_frame.reference_mode != SINGLE_REFERENCE) { // Similar to single ref, determine cost of compound ref frames. // cost_compound_refs = cost_first_ref + cost_second_ref const int bwdref_comp_ctx_p = av1_get_pred_context_comp_bwdref_p(xd); const int bwdref_comp_ctx_p1 = av1_get_pred_context_comp_bwdref_p1(xd); const int ref_comp_ctx_p = av1_get_pred_context_comp_ref_p(xd); const int ref_comp_ctx_p1 = av1_get_pred_context_comp_ref_p1(xd); const int ref_comp_ctx_p2 = av1_get_pred_context_comp_ref_p2(xd); const int comp_ref_type_ctx = av1_get_comp_reference_type_context(xd); unsigned int ref_bicomp_costs[REF_FRAMES] = { 0 }; ref_bicomp_costs[LAST_FRAME] = ref_bicomp_costs[LAST2_FRAME] = ref_bicomp_costs[LAST3_FRAME] = ref_bicomp_costs[GOLDEN_FRAME] = base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][1]; ref_bicomp_costs[BWDREF_FRAME] = ref_bicomp_costs[ALTREF2_FRAME] = 0; ref_bicomp_costs[ALTREF_FRAME] = 0; // cost of first ref frame ref_bicomp_costs[LAST_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0]; ref_bicomp_costs[LAST2_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p][0][0]; ref_bicomp_costs[LAST3_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1]; ref_bicomp_costs[GOLDEN_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p][0][1]; ref_bicomp_costs[LAST_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][0]; ref_bicomp_costs[LAST2_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p1][1][1]; ref_bicomp_costs[LAST3_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][0]; ref_bicomp_costs[GOLDEN_FRAME] += mode_costs->comp_ref_cost[ref_comp_ctx_p2][2][1]; // cost of second ref frame ref_bicomp_costs[BWDREF_FRAME] += mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; ref_bicomp_costs[ALTREF2_FRAME] += mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][0]; ref_bicomp_costs[ALTREF_FRAME] += mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p][0][1]; ref_bicomp_costs[BWDREF_FRAME] += mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][0]; ref_bicomp_costs[ALTREF2_FRAME] += mode_costs->comp_bwdref_cost[bwdref_comp_ctx_p1][1][1]; // cost: if one ref frame is forward ref, the other ref is backward ref int ref0, ref1; for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) { ref_costs_comp[ref0][ref1] = ref_bicomp_costs[ref0] + ref_bicomp_costs[ref1]; } } // cost: if both ref frames are the same side. const int uni_comp_ref_ctx_p = av1_get_pred_context_uni_comp_ref_p(xd); const int uni_comp_ref_ctx_p1 = av1_get_pred_context_uni_comp_ref_p1(xd); const int uni_comp_ref_ctx_p2 = av1_get_pred_context_uni_comp_ref_p2(xd); ref_costs_comp[LAST_FRAME][LAST2_FRAME] = base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][0]; ref_costs_comp[LAST_FRAME][LAST3_FRAME] = base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][0]; ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p1][1][1] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p2][2][1]; ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = base_cost + mode_costs->comp_ref_type_cost[comp_ref_type_ctx][0] + mode_costs->uni_comp_ref_cost[uni_comp_ref_ctx_p][0][1]; } else { int ref0, ref1; for (ref0 = LAST_FRAME; ref0 <= GOLDEN_FRAME; ++ref0) { for (ref1 = BWDREF_FRAME; ref1 <= ALTREF_FRAME; ++ref1) ref_costs_comp[ref0][ref1] = 512; } ref_costs_comp[LAST_FRAME][LAST2_FRAME] = 512; ref_costs_comp[LAST_FRAME][LAST3_FRAME] = 512; ref_costs_comp[LAST_FRAME][GOLDEN_FRAME] = 512; ref_costs_comp[BWDREF_FRAME][ALTREF_FRAME] = 512; } } } static AOM_INLINE void store_coding_context( #if CONFIG_INTERNAL_STATS MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, int mode_index, #else MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, #endif // CONFIG_INTERNAL_STATS int skippable) { MACROBLOCKD *const xd = &x->e_mbd; // Take a snapshot of the coding context so it can be // restored if we decide to encode this way ctx->rd_stats.skip_txfm = x->txfm_search_info.skip_txfm; ctx->skippable = skippable; #if CONFIG_INTERNAL_STATS ctx->best_mode_index = mode_index; #endif // CONFIG_INTERNAL_STATS ctx->mic = *xd->mi[0]; av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, av1_ref_frame_type(xd->mi[0]->ref_frame)); } static AOM_INLINE void setup_buffer_ref_mvs_inter( const AV1_COMP *const cpi, MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame, BLOCK_SIZE block_size, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); const YV12_BUFFER_CONFIG *scaled_ref_frame = av1_get_scaled_ref_frame(cpi, ref_frame); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const struct scale_factors *const sf = get_ref_scale_factors_const(cm, ref_frame); const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, ref_frame); assert(yv12 != NULL); if (scaled_ref_frame) { // Setup pred block based on scaled reference, because av1_mv_pred() doesn't // support scaling. av1_setup_pred_block(xd, yv12_mb[ref_frame], scaled_ref_frame, NULL, NULL, num_planes); } else { av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); } // Gets an initial list of candidate vectors from neighbours and orders them av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); // Further refinement that is encode side only to test the top few candidates // in full and choose the best as the center point for subsequent searches. // The current implementation doesn't support scaling. av1_mv_pred(cpi, x, yv12_mb[ref_frame][0].buf, yv12_mb[ref_frame][0].stride, ref_frame, block_size); // Go back to unscaled reference. if (scaled_ref_frame) { // We had temporarily setup pred block based on scaled reference above. Go // back to unscaled reference now, for subsequent use. av1_setup_pred_block(xd, yv12_mb[ref_frame], yv12, sf, sf, num_planes); } } #define LEFT_TOP_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) #define RIGHT_BOTTOM_MARGIN ((AOM_BORDER_IN_PIXELS - AOM_INTERP_EXTEND) << 3) // TODO(jingning): this mv clamping function should be block size dependent. static INLINE void clamp_mv2(MV *mv, const MACROBLOCKD *xd) { const SubpelMvLimits mv_limits = { xd->mb_to_left_edge - LEFT_TOP_MARGIN, xd->mb_to_right_edge + RIGHT_BOTTOM_MARGIN, xd->mb_to_top_edge - LEFT_TOP_MARGIN, xd->mb_to_bottom_edge + RIGHT_BOTTOM_MARGIN }; clamp_mv(mv, &mv_limits); } /* If the current mode shares the same mv with other modes with higher cost, * skip this mode. */ static int skip_repeated_mv(const AV1_COMMON *const cm, const MACROBLOCK *const x, PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frames[2], InterModeSearchState *search_state) { const int is_comp_pred = ref_frames[1] > INTRA_FRAME; const uint8_t ref_frame_type = av1_ref_frame_type(ref_frames); const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; PREDICTION_MODE compare_mode = MB_MODE_COUNT; if (!is_comp_pred) { if (this_mode == NEARMV) { if (ref_mv_count == 0) { // NEARMV has the same motion vector as NEARESTMV compare_mode = NEARESTMV; } if (ref_mv_count == 1 && cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { // NEARMV has the same motion vector as GLOBALMV compare_mode = GLOBALMV; } } if (this_mode == GLOBALMV) { if (ref_mv_count == 0 && cm->global_motion[ref_frames[0]].wmtype <= TRANSLATION) { // GLOBALMV has the same motion vector as NEARESTMV compare_mode = NEARESTMV; } if (ref_mv_count == 1) { // GLOBALMV has the same motion vector as NEARMV compare_mode = NEARMV; } } if (compare_mode != MB_MODE_COUNT) { // Use modelled_rd to check whether compare mode was searched if (search_state->modelled_rd[compare_mode][0][ref_frames[0]] != INT64_MAX) { const int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, ref_frames); const int compare_cost = cost_mv_ref(&x->mode_costs, compare_mode, mode_ctx); const int this_cost = cost_mv_ref(&x->mode_costs, this_mode, mode_ctx); // Only skip if the mode cost is larger than compare mode cost if (this_cost > compare_cost) { search_state->modelled_rd[this_mode][0][ref_frames[0]] = search_state->modelled_rd[compare_mode][0][ref_frames[0]]; return 1; } } } } return 0; } static INLINE int clamp_and_check_mv(int_mv *out_mv, int_mv in_mv, const AV1_COMMON *cm, const MACROBLOCK *x) { const MACROBLOCKD *const xd = &x->e_mbd; *out_mv = in_mv; lower_mv_precision(&out_mv->as_mv, cm->features.allow_high_precision_mv, cm->features.cur_frame_force_integer_mv); clamp_mv2(&out_mv->as_mv, xd); return av1_is_fullmv_in_range(&x->mv_limits, get_fullmv_from_mv(&out_mv->as_mv)); } // To use single newmv directly for compound modes, need to clamp the mv to the // valid mv range. Without this, encoder would generate out of range mv, and // this is seen in 8k encoding. static INLINE void clamp_mv_in_range(MACROBLOCK *const x, int_mv *mv, int ref_idx) { const int_mv ref_mv = av1_get_ref_mv(x, ref_idx); SubpelMvLimits mv_limits; av1_set_subpel_mv_search_range(&mv_limits, &x->mv_limits, &ref_mv.as_mv); clamp_mv(&mv->as_mv, &mv_limits); } static int64_t handle_newmv(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, int_mv *cur_mv, int *const rate_mv, HandleInterModeArgs *const args, inter_mode_info *mode_info) { MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const int is_comp_pred = has_second_ref(mbmi); const PREDICTION_MODE this_mode = mbmi->mode; const int refs[2] = { mbmi->ref_frame[0], mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1] }; const int ref_mv_idx = mbmi->ref_mv_idx; if (is_comp_pred) { const int valid_mv0 = args->single_newmv_valid[ref_mv_idx][refs[0]]; const int valid_mv1 = args->single_newmv_valid[ref_mv_idx][refs[1]]; if (this_mode == NEW_NEWMV) { if (valid_mv0) { cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; clamp_mv_in_range(x, &cur_mv[0], 0); } if (valid_mv1) { cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; clamp_mv_in_range(x, &cur_mv[1], 1); } *rate_mv = 0; for (int i = 0; i < 2; ++i) { const int_mv ref_mv = av1_get_ref_mv(x, i); *rate_mv += av1_mv_bit_cost(&cur_mv[i].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); } } else if (this_mode == NEAREST_NEWMV || this_mode == NEAR_NEWMV) { if (valid_mv1) { cur_mv[1].as_int = args->single_newmv[ref_mv_idx][refs[1]].as_int; clamp_mv_in_range(x, &cur_mv[1], 1); } const int_mv ref_mv = av1_get_ref_mv(x, 1); *rate_mv = av1_mv_bit_cost(&cur_mv[1].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); } else { assert(this_mode == NEW_NEARESTMV || this_mode == NEW_NEARMV); if (valid_mv0) { cur_mv[0].as_int = args->single_newmv[ref_mv_idx][refs[0]].as_int; clamp_mv_in_range(x, &cur_mv[0], 0); } const int_mv ref_mv = av1_get_ref_mv(x, 0); *rate_mv = av1_mv_bit_cost(&cur_mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); } } else { // Single ref case. const int ref_idx = 0; int search_range = INT_MAX; if (cpi->sf.mv_sf.reduce_search_range && mbmi->ref_mv_idx > 0) { const MV ref_mv = av1_get_ref_mv(x, ref_idx).as_mv; int min_mv_diff = INT_MAX; int best_match = -1; MV prev_ref_mv[2] = { { 0 } }; for (int idx = 0; idx < mbmi->ref_mv_idx; ++idx) { prev_ref_mv[idx] = av1_get_ref_mv_from_stack(ref_idx, mbmi->ref_frame, idx, &x->mbmi_ext) .as_mv; const int ref_mv_diff = AOMMAX(abs(ref_mv.row - prev_ref_mv[idx].row), abs(ref_mv.col - prev_ref_mv[idx].col)); if (min_mv_diff > ref_mv_diff) { min_mv_diff = ref_mv_diff; best_match = idx; } } if (min_mv_diff < (16 << 3)) { if (args->single_newmv_valid[best_match][refs[0]]) { search_range = min_mv_diff; search_range += AOMMAX(abs(args->single_newmv[best_match][refs[0]].as_mv.row - prev_ref_mv[best_match].row), abs(args->single_newmv[best_match][refs[0]].as_mv.col - prev_ref_mv[best_match].col)); // Get full pixel search range. search_range = (search_range + 4) >> 3; } } } int_mv best_mv; av1_single_motion_search(cpi, x, bsize, ref_idx, rate_mv, search_range, mode_info, &best_mv, args); if (best_mv.as_int == INVALID_MV) return INT64_MAX; args->single_newmv[ref_mv_idx][refs[0]] = best_mv; args->single_newmv_rate[ref_mv_idx][refs[0]] = *rate_mv; args->single_newmv_valid[ref_mv_idx][refs[0]] = 1; cur_mv[0].as_int = best_mv.as_int; // Return after single_newmv is set. if (mode_info[mbmi->ref_mv_idx].skip) return INT64_MAX; } return 0; } static INLINE void update_mode_start_end_index( const AV1_COMP *const cpi, const MB_MODE_INFO *const mbmi, int *mode_index_start, int *mode_index_end, int last_motion_mode_allowed, int interintra_allowed, int eval_motion_mode) { *mode_index_start = (int)SIMPLE_TRANSLATION; *mode_index_end = (int)last_motion_mode_allowed + interintra_allowed; if (cpi->sf.winner_mode_sf.motion_mode_for_winner_cand) { if (!eval_motion_mode) { *mode_index_end = (int)SIMPLE_TRANSLATION; } else { // Set the start index appropriately to process motion modes other than // simple translation *mode_index_start = 1; } } if (cpi->sf.inter_sf.extra_prune_warped && mbmi->bsize > BLOCK_16X16) *mode_index_end = SIMPLE_TRANSLATION; } /*!\brief AV1 motion mode search * * \ingroup inter_mode_search * Function to search over and determine the motion mode. It will update * mbmi->motion_mode to one of SIMPLE_TRANSLATION, OBMC_CAUSAL, or * WARPED_CAUSAL and determine any necessary side information for the selected * motion mode. It will also perform the full transform search, unless the * input parameter do_tx_search indicates to do an estimation of the RD rather * than an RD corresponding to a full transform search. It will return the * RD for the final motion_mode. * Do the RD search for a given inter mode and compute all information relevant * to the input mode. It will compute the best MV, * compound parameters (if the mode is a compound mode) and interpolation filter * parameters. * * \param[in] cpi Top-level encoder structure. * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during * encoding. * \param[in] x Pointer to struct holding all the data for * the current macroblock. * \param[in] bsize Current block size. * \param[in,out] rd_stats Struct to keep track of the overall RD * information. * \param[in,out] rd_stats_y Struct to keep track of the RD information * for only the Y plane. * \param[in,out] rd_stats_uv Struct to keep track of the RD information * for only the UV planes. * \param[in] args HandleInterModeArgs struct holding * miscellaneous arguments for inter mode * search. See the documentation for this * struct for a description of each member. * \param[in] ref_best_rd Best RD found so far for this block. * It is used for early termination of this * search if the RD exceeds this value. * \param[in,out] ref_skip_rd A length 2 array, where skip_rd[0] is the * best total RD for a skip mode so far, and * skip_rd[1] is the best RD for a skip mode so * far in luma. This is used as a speed feature * to skip the transform search if the computed * skip RD for the current mode is not better * than the best skip_rd so far. * \param[in,out] rate_mv The rate associated with the motion vectors. * This will be modified if a motion search is * done in the motion mode search. * \param[in,out] orig_dst A prediction buffer to hold a computed * prediction. This will eventually hold the * final prediction, and the tmp_dst info will * be copied here. * \param[in,out] best_est_rd Estimated RD for motion mode search if * do_tx_search (see below) is 0. * \param[in] do_tx_search Parameter to indicate whether or not to do * a full transform search. This will compute * an estimated RD for the modes without the * transform search and later perform the full * transform search on the best candidates. * \param[in] inter_modes_info InterModesInfo struct to hold inter mode * information to perform a full transform * search only on winning candidates searched * with an estimate for transform coding RD. * \param[in] eval_motion_mode Boolean whether or not to evaluate motion * motion modes other than SIMPLE_TRANSLATION. * \param[out] yrd Stores the rdcost corresponding to encoding * the luma plane. * \return Returns INT64_MAX if the determined motion mode is invalid and the * current motion mode being tested should be skipped. It returns 0 if the * motion mode search is a success. */ static int64_t motion_mode_rd( const AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *const x, BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, HandleInterModeArgs *const args, int64_t ref_best_rd, int64_t *ref_skip_rd, int *rate_mv, const BUFFER_SET *orig_dst, int64_t *best_est_rd, int do_tx_search, InterModesInfo *inter_modes_info, int eval_motion_mode, int64_t *yrd) { const AV1_COMMON *const cm = &cpi->common; const FeatureFlags *const features = &cm->features; TxfmSearchInfo *txfm_info = &x->txfm_search_info; const int num_planes = av1_num_planes(cm); MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; const int is_comp_pred = has_second_ref(mbmi); const PREDICTION_MODE this_mode = mbmi->mode; const int rate2_nocoeff = rd_stats->rate; int best_xskip_txfm = 0; RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; const int rate_mv0 = *rate_mv; const int interintra_allowed = cm->seq_params->enable_interintra_compound && is_interintra_allowed(mbmi) && mbmi->compound_idx; WARP_SAMPLE_INFO *const warp_sample_info = &x->warp_sample_info[mbmi->ref_frame[0]]; int *pts0 = warp_sample_info->pts; int *pts_inref0 = warp_sample_info->pts_inref; assert(mbmi->ref_frame[1] != INTRA_FRAME); const MV_REFERENCE_FRAME ref_frame_1 = mbmi->ref_frame[1]; av1_invalid_rd_stats(&best_rd_stats); mbmi->num_proj_ref = 1; // assume num_proj_ref >=1 MOTION_MODE last_motion_mode_allowed = SIMPLE_TRANSLATION; *yrd = INT64_MAX; if (features->switchable_motion_mode) { // Determine which motion modes to search if more than SIMPLE_TRANSLATION // is allowed. last_motion_mode_allowed = motion_mode_allowed( xd->global_motion, xd, mbmi, features->allow_warped_motion); } if (last_motion_mode_allowed == WARPED_CAUSAL) { // Collect projection samples used in least squares approximation of // the warped motion parameters if WARPED_CAUSAL is going to be searched. if (warp_sample_info->num < 0) { warp_sample_info->num = av1_findSamples(cm, xd, pts0, pts_inref0); } mbmi->num_proj_ref = warp_sample_info->num; } const int total_samples = mbmi->num_proj_ref; if (total_samples == 0) { // Do not search WARPED_CAUSAL if there are no samples to use to determine // warped parameters. last_motion_mode_allowed = OBMC_CAUSAL; } const MB_MODE_INFO base_mbmi = *mbmi; MB_MODE_INFO best_mbmi; const int interp_filter = features->interp_filter; const int switchable_rate = av1_is_interp_needed(xd) ? av1_get_switchable_rate(x, xd, interp_filter, cm->seq_params->enable_dual_filter) : 0; int64_t best_rd = INT64_MAX; int best_rate_mv = rate_mv0; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int mode_index_start, mode_index_end; const int txfm_rd_gate_level = get_txfm_rd_gate_level(cm->seq_params->enable_masked_compound, cpi->sf.inter_sf.txfm_rd_gate_level, bsize, TX_SEARCH_MOTION_MODE, eval_motion_mode); // Modify the start and end index according to speed features. For example, // if SIMPLE_TRANSLATION has already been searched according to // the motion_mode_for_winner_cand speed feature, update the mode_index_start // to avoid searching it again. update_mode_start_end_index(cpi, mbmi, &mode_index_start, &mode_index_end, last_motion_mode_allowed, interintra_allowed, eval_motion_mode); // Main function loop. This loops over all of the possible motion modes and // computes RD to determine the best one. This process includes computing // any necessary side information for the motion mode and performing the // transform search. for (int mode_index = mode_index_start; mode_index <= mode_index_end; mode_index++) { if (args->skip_motion_mode && mode_index) continue; int tmp_rate2 = rate2_nocoeff; const int is_interintra_mode = mode_index > (int)last_motion_mode_allowed; int tmp_rate_mv = rate_mv0; *mbmi = base_mbmi; if (is_interintra_mode) { // Only use SIMPLE_TRANSLATION for interintra mbmi->motion_mode = SIMPLE_TRANSLATION; } else { mbmi->motion_mode = (MOTION_MODE)mode_index; assert(mbmi->ref_frame[1] != INTRA_FRAME); } // Do not search OBMC if the probability of selecting it is below a // predetermined threshold for this update_type and block size. const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); int use_actual_frame_probs = 1; int prune_obmc; #if CONFIG_FPMT_TEST use_actual_frame_probs = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; if (!use_actual_frame_probs) { prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] < cpi->sf.inter_sf.prune_obmc_prob_thresh; } #endif if (use_actual_frame_probs) { prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] < cpi->sf.inter_sf.prune_obmc_prob_thresh; } if ((!cpi->oxcf.motion_mode_cfg.enable_obmc || prune_obmc) && mbmi->motion_mode == OBMC_CAUSAL) continue; if (mbmi->motion_mode == SIMPLE_TRANSLATION && !is_interintra_mode) { // SIMPLE_TRANSLATION mode: no need to recalculate. // The prediction is calculated before motion_mode_rd() is called in // handle_inter_mode() } else if (mbmi->motion_mode == OBMC_CAUSAL) { const uint32_t cur_mv = mbmi->mv[0].as_int; // OBMC_CAUSAL not allowed for compound prediction assert(!is_comp_pred); if (have_newmv_in_inter_mode(this_mode)) { av1_single_motion_search(cpi, x, bsize, 0, &tmp_rate_mv, INT_MAX, NULL, &mbmi->mv[0], NULL); tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; } if ((mbmi->mv[0].as_int != cur_mv) || eval_motion_mode) { // Build the predictor according to the current motion vector if it has // not already been built av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, 0, av1_num_planes(cm) - 1); } // Build the inter predictor by blending the predictor corresponding to // this MV, and the neighboring blocks using the OBMC model av1_build_obmc_inter_prediction( cm, xd, args->above_pred_buf, args->above_pred_stride, args->left_pred_buf, args->left_pred_stride); #if !CONFIG_REALTIME_ONLY } else if (mbmi->motion_mode == WARPED_CAUSAL) { int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; mbmi->motion_mode = WARPED_CAUSAL; mbmi->wm_params.wmtype = DEFAULT_WMTYPE; mbmi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); memcpy(pts, pts0, total_samples * 2 * sizeof(*pts0)); memcpy(pts_inref, pts_inref0, total_samples * 2 * sizeof(*pts_inref0)); // Select the samples according to motion vector difference if (mbmi->num_proj_ref > 1) { mbmi->num_proj_ref = av1_selectSamples( &mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize); } // Compute the warped motion parameters with a least squares fit // using the collected samples if (!av1_find_projection(mbmi->num_proj_ref, pts, pts_inref, bsize, mbmi->mv[0].as_mv.row, mbmi->mv[0].as_mv.col, &mbmi->wm_params, mi_row, mi_col)) { assert(!is_comp_pred); if (have_newmv_in_inter_mode(this_mode)) { // Refine MV for NEWMV mode const int_mv mv0 = mbmi->mv[0]; const WarpedMotionParams wm_params0 = mbmi->wm_params; const int num_proj_ref0 = mbmi->num_proj_ref; const int_mv ref_mv = av1_get_ref_mv(x, 0); SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, &ref_mv.as_mv, NULL); // Refine MV in a small range. av1_refine_warped_mv(xd, cm, &ms_params, bsize, pts0, pts_inref0, total_samples, cpi->sf.mv_sf.warp_search_method, cpi->sf.mv_sf.warp_search_iters); if (mv0.as_int != mbmi->mv[0].as_int) { // Keep the refined MV and WM parameters. tmp_rate_mv = av1_mv_bit_cost( &mbmi->mv[0].as_mv, &ref_mv.as_mv, x->mv_costs->nmv_joint_cost, x->mv_costs->mv_cost_stack, MV_COST_WEIGHT); tmp_rate2 = rate2_nocoeff - rate_mv0 + tmp_rate_mv; } else { // Restore the old MV and WM parameters. mbmi->mv[0] = mv0; mbmi->wm_params = wm_params0; mbmi->num_proj_ref = num_proj_ref0; } } // Build the warped predictor av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, av1_num_planes(cm) - 1); } else { continue; } #endif // !CONFIG_REALTIME_ONLY } else if (is_interintra_mode) { const int ret = av1_handle_inter_intra_mode(cpi, x, bsize, mbmi, args, ref_best_rd, &tmp_rate_mv, &tmp_rate2, orig_dst); if (ret < 0) continue; } // If we are searching newmv and the mv is the same as refmv, skip the // current mode if (!av1_check_newmv_joint_nonzero(cm, x)) continue; // Update rd_stats for the current motion mode txfm_info->skip_txfm = 0; rd_stats->dist = 0; rd_stats->sse = 0; rd_stats->skip_txfm = 1; rd_stats->rate = tmp_rate2; const ModeCosts *mode_costs = &x->mode_costs; if (mbmi->motion_mode != WARPED_CAUSAL) rd_stats->rate += switchable_rate; if (interintra_allowed) { rd_stats->rate += mode_costs->interintra_cost[size_group_lookup[bsize]] [mbmi->ref_frame[1] == INTRA_FRAME]; } if ((last_motion_mode_allowed > SIMPLE_TRANSLATION) && (mbmi->ref_frame[1] != INTRA_FRAME)) { if (last_motion_mode_allowed == WARPED_CAUSAL) { rd_stats->rate += mode_costs->motion_mode_cost[bsize][mbmi->motion_mode]; } else { rd_stats->rate += mode_costs->motion_mode_cost1[bsize][mbmi->motion_mode]; } } int64_t this_yrd = INT64_MAX; if (!do_tx_search) { // Avoid doing a transform search here to speed up the overall mode // search. It will be done later in the mode search if the current // motion mode seems promising. int64_t curr_sse = -1; int64_t sse_y = -1; int est_residue_cost = 0; int64_t est_dist = 0; int64_t est_rd = 0; if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { curr_sse = get_sse(cpi, x, &sse_y); const int has_est_rd = get_est_rate_dist(tile_data, bsize, curr_sse, &est_residue_cost, &est_dist); (void)has_est_rd; assert(has_est_rd); } else if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 2 || cpi->sf.rt_sf.use_nonrd_pick_mode) { model_rd_sb_fn[MODELRD_TYPE_MOTION_MODE_RD]( cpi, bsize, x, xd, 0, num_planes - 1, &est_residue_cost, &est_dist, NULL, &curr_sse, NULL, NULL, NULL); sse_y = x->pred_sse[xd->mi[0]->ref_frame[0]]; } est_rd = RDCOST(x->rdmult, rd_stats->rate + est_residue_cost, est_dist); if (est_rd * 0.80 > *best_est_rd) { mbmi->ref_frame[1] = ref_frame_1; continue; } const int mode_rate = rd_stats->rate; rd_stats->rate += est_residue_cost; rd_stats->dist = est_dist; rd_stats->rdcost = est_rd; if (rd_stats->rdcost < *best_est_rd) { *best_est_rd = rd_stats->rdcost; assert(sse_y >= 0); ref_skip_rd[1] = txfm_rd_gate_level ? RDCOST(x->rdmult, mode_rate, (sse_y << 4)) : INT64_MAX; } if (cm->current_frame.reference_mode == SINGLE_REFERENCE) { if (!is_comp_pred) { assert(curr_sse >= 0); inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, rd_stats->rdcost, rd_stats, rd_stats_y, rd_stats_uv, mbmi); } } else { assert(curr_sse >= 0); inter_modes_info_push(inter_modes_info, mode_rate, curr_sse, rd_stats->rdcost, rd_stats, rd_stats_y, rd_stats_uv, mbmi); } mbmi->skip_txfm = 0; } else { // Perform full transform search int64_t skip_rd = INT64_MAX; int64_t skip_rdy = INT64_MAX; if (txfm_rd_gate_level) { // Check if the mode is good enough based on skip RD int64_t sse_y = INT64_MAX; int64_t curr_sse = get_sse(cpi, x, &sse_y); skip_rd = RDCOST(x->rdmult, rd_stats->rate, curr_sse); skip_rdy = RDCOST(x->rdmult, rd_stats->rate, (sse_y << 4)); int eval_txfm = check_txfm_eval(x, bsize, ref_skip_rd[0], skip_rd, txfm_rd_gate_level, 0); if (!eval_txfm) continue; } // Do transform search const int mode_rate = rd_stats->rate; if (!av1_txfm_search(cpi, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, rd_stats->rate, ref_best_rd)) { if (rd_stats_y->rate == INT_MAX && mode_index == 0) { return INT64_MAX; } continue; } const int skip_ctx = av1_get_skip_txfm_context(xd); const int y_rate = rd_stats->skip_txfm ? x->mode_costs.skip_txfm_cost[skip_ctx][1] : (rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx][0]); this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y->dist); const int64_t curr_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); if (curr_rd < ref_best_rd) { ref_best_rd = curr_rd; ref_skip_rd[0] = skip_rd; ref_skip_rd[1] = skip_rdy; } if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { inter_mode_data_push( tile_data, mbmi->bsize, rd_stats->sse, rd_stats->dist, rd_stats_y->rate + rd_stats_uv->rate + mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]); } } if (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV) { if (is_nontrans_global_motion(xd, xd->mi[0])) { mbmi->interp_filters = av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); } } const int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); if (mode_index == 0) { args->simple_rd[this_mode][mbmi->ref_mv_idx][mbmi->ref_frame[0]] = tmp_rd; } if (mode_index == 0 || tmp_rd < best_rd) { // Update best_rd data if this is the best motion mode so far best_mbmi = *mbmi; best_rd = tmp_rd; best_rd_stats = *rd_stats; best_rd_stats_y = *rd_stats_y; best_rate_mv = tmp_rate_mv; *yrd = this_yrd; if (num_planes > 1) best_rd_stats_uv = *rd_stats_uv; memcpy(best_blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width); best_xskip_txfm = mbmi->skip_txfm; } } // Update RD and mbmi stats for selected motion mode mbmi->ref_frame[1] = ref_frame_1; *rate_mv = best_rate_mv; if (best_rd == INT64_MAX || !av1_check_newmv_joint_nonzero(cm, x)) { av1_invalid_rd_stats(rd_stats); restore_dst_buf(xd, *orig_dst, num_planes); return INT64_MAX; } *mbmi = best_mbmi; *rd_stats = best_rd_stats; *rd_stats_y = best_rd_stats_y; if (num_planes > 1) *rd_stats_uv = best_rd_stats_uv; memcpy(txfm_info->blk_skip, best_blk_skip, sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width); txfm_info->skip_txfm = best_xskip_txfm; restore_dst_buf(xd, *orig_dst, num_planes); return 0; } static int64_t skip_mode_rd(RD_STATS *rd_stats, const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, const BUFFER_SET *const orig_dst, int64_t best_rd) { assert(bsize < BLOCK_SIZES_ALL); const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int64_t total_sse = 0; int64_t this_rd = INT64_MAX; const int skip_mode_ctx = av1_get_skip_mode_context(xd); rd_stats->rate = x->mode_costs.skip_mode_cost[skip_mode_ctx][1]; for (int plane = 0; plane < num_planes; ++plane) { // Call av1_enc_build_inter_predictor() for one plane at a time. av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, plane, plane); const struct macroblockd_plane *const pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); av1_subtract_plane(x, plane_bsize, plane); int64_t sse = av1_pixel_diff_dist(x, plane, 0, 0, plane_bsize, plane_bsize, NULL); if (is_cur_buf_hbd(xd)) sse = ROUND_POWER_OF_TWO(sse, (xd->bd - 8) * 2); sse <<= 4; total_sse += sse; // When current rd cost is more than the best rd, skip evaluation of // remaining planes. this_rd = RDCOST(x->rdmult, rd_stats->rate, total_sse); if (this_rd > best_rd) break; } rd_stats->dist = rd_stats->sse = total_sse; rd_stats->rdcost = this_rd; restore_dst_buf(xd, *orig_dst, num_planes); return 0; } // Check NEARESTMV, NEARMV, GLOBALMV ref mvs for duplicate and skip the relevant // mode // Note(rachelbarker): This speed feature currently does not interact correctly // with global motion. The issue is that, when global motion is used, GLOBALMV // produces a different prediction to NEARESTMV/NEARMV even if the motion // vectors are the same. Thus GLOBALMV should not be pruned in this case. static INLINE int check_repeat_ref_mv(const MB_MODE_INFO_EXT *mbmi_ext, int ref_idx, const MV_REFERENCE_FRAME *ref_frame, PREDICTION_MODE single_mode) { const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; assert(single_mode != NEWMV); if (single_mode == NEARESTMV) { return 0; } else if (single_mode == NEARMV) { // when ref_mv_count = 0, NEARESTMV and NEARMV are same as GLOBALMV // when ref_mv_count = 1, NEARMV is same as GLOBALMV if (ref_mv_count < 2) return 1; } else if (single_mode == GLOBALMV) { // when ref_mv_count == 0, GLOBALMV is same as NEARESTMV if (ref_mv_count == 0) return 1; // when ref_mv_count == 1, NEARMV is same as GLOBALMV else if (ref_mv_count == 1) return 0; int stack_size = AOMMIN(USABLE_REF_MV_STACK_SIZE, ref_mv_count); // Check GLOBALMV is matching with any mv in ref_mv_stack for (int ref_mv_idx = 0; ref_mv_idx < stack_size; ref_mv_idx++) { int_mv this_mv; if (ref_idx == 0) this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].this_mv; else this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_idx].comp_mv; if (this_mv.as_int == mbmi_ext->global_mvs[ref_frame[ref_idx]].as_int) return 1; } } return 0; } static INLINE int get_this_mv(int_mv *this_mv, PREDICTION_MODE this_mode, int ref_idx, int ref_mv_idx, int skip_repeated_ref_mv, const MV_REFERENCE_FRAME *ref_frame, const MB_MODE_INFO_EXT *mbmi_ext) { const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx); assert(is_inter_singleref_mode(single_mode)); if (single_mode == NEWMV) { this_mv->as_int = INVALID_MV; } else if (single_mode == GLOBALMV) { if (skip_repeated_ref_mv && check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode)) return 0; *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; } else { assert(single_mode == NEARMV || single_mode == NEARESTMV); const uint8_t ref_frame_type = av1_ref_frame_type(ref_frame); const int ref_mv_offset = single_mode == NEARESTMV ? 0 : ref_mv_idx + 1; if (ref_mv_offset < mbmi_ext->ref_mv_count[ref_frame_type]) { assert(ref_mv_offset >= 0); if (ref_idx == 0) { *this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].this_mv; } else { *this_mv = mbmi_ext->ref_mv_stack[ref_frame_type][ref_mv_offset].comp_mv; } } else { if (skip_repeated_ref_mv && check_repeat_ref_mv(mbmi_ext, ref_idx, ref_frame, single_mode)) return 0; *this_mv = mbmi_ext->global_mvs[ref_frame[ref_idx]]; } } return 1; } // Skip NEARESTMV and NEARMV modes based on refmv weight computed in ref mv list // population static INLINE int skip_nearest_near_mv_using_refmv_weight( const MACROBLOCK *const x, const PREDICTION_MODE this_mode, const int8_t ref_frame_type, PREDICTION_MODE best_mode) { if (this_mode != NEARESTMV && this_mode != NEARMV) return 0; // Do not skip the mode if the current block has not yet obtained a valid // inter mode. if (!is_inter_mode(best_mode)) return 0; const MACROBLOCKD *xd = &x->e_mbd; // Do not skip the mode if both the top and left neighboring blocks are not // available. if (!xd->left_available || !xd->up_available) return 0; const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const uint16_t *const ref_mv_weight = mbmi_ext->weight[ref_frame_type]; const int ref_mv_count = AOMMIN(MAX_REF_MV_SEARCH, mbmi_ext->ref_mv_count[ref_frame_type]); if (ref_mv_count == 0) return 0; // If ref mv list has at least one nearest candidate do not prune NEARESTMV if (this_mode == NEARESTMV && ref_mv_weight[0] >= REF_CAT_LEVEL) return 0; // Count number of ref mvs populated from nearest candidates int nearest_refmv_count = 0; for (int ref_mv_idx = 0; ref_mv_idx < ref_mv_count; ref_mv_idx++) { if (ref_mv_weight[ref_mv_idx] >= REF_CAT_LEVEL) nearest_refmv_count++; } // nearest_refmv_count indicates the closeness of block motion characteristics // with respect to its spatial neighbor. Smaller value of nearest_refmv_count // w.r.t to ref_mv_count means less correlation with its spatial neighbors. // Hence less possibility for NEARESTMV and NEARMV modes becoming the best // mode since these modes work well for blocks that shares similar motion // characteristics with its neighbor. Thus, NEARMV mode is pruned when // nearest_refmv_count is relatively smaller than ref_mv_count and NEARESTMV // mode is pruned if none of the ref mvs are populated from nearest candidate. const int prune_thresh = 1 + (ref_mv_count >= 2); if (nearest_refmv_count < prune_thresh) return 1; return 0; } // This function update the non-new mv for the current prediction mode static INLINE int build_cur_mv(int_mv *cur_mv, PREDICTION_MODE this_mode, const AV1_COMMON *cm, const MACROBLOCK *x, int skip_repeated_ref_mv) { const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; const int is_comp_pred = has_second_ref(mbmi); int ret = 1; for (int i = 0; i < is_comp_pred + 1; ++i) { int_mv this_mv; this_mv.as_int = INVALID_MV; ret = get_this_mv(&this_mv, this_mode, i, mbmi->ref_mv_idx, skip_repeated_ref_mv, mbmi->ref_frame, &x->mbmi_ext); if (!ret) return 0; const PREDICTION_MODE single_mode = get_single_mode(this_mode, i); if (single_mode == NEWMV) { const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); cur_mv[i] = (i == 0) ? x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] .this_mv : x->mbmi_ext.ref_mv_stack[ref_frame_type][mbmi->ref_mv_idx] .comp_mv; } else { ret &= clamp_and_check_mv(cur_mv + i, this_mv, cm, x); } } return ret; } static INLINE int get_drl_cost(const MB_MODE_INFO *mbmi, const MB_MODE_INFO_EXT *mbmi_ext, const int (*const drl_mode_cost0)[2], int8_t ref_frame_type) { int cost = 0; if (mbmi->mode == NEWMV || mbmi->mode == NEW_NEWMV) { for (int idx = 0; idx < 2; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != idx]; if (mbmi->ref_mv_idx == idx) return cost; } } return cost; } if (have_nearmv_in_inter_mode(mbmi->mode)) { for (int idx = 1; idx < 3; ++idx) { if (mbmi_ext->ref_mv_count[ref_frame_type] > idx + 1) { uint8_t drl_ctx = av1_drl_ctx(mbmi_ext->weight[ref_frame_type], idx); cost += drl_mode_cost0[drl_ctx][mbmi->ref_mv_idx != (idx - 1)]; if (mbmi->ref_mv_idx == (idx - 1)) return cost; } } return cost; } return cost; } static INLINE int is_single_newmv_valid(const HandleInterModeArgs *const args, const MB_MODE_INFO *const mbmi, PREDICTION_MODE this_mode) { for (int ref_idx = 0; ref_idx < 2; ++ref_idx) { const PREDICTION_MODE single_mode = get_single_mode(this_mode, ref_idx); const MV_REFERENCE_FRAME ref = mbmi->ref_frame[ref_idx]; if (single_mode == NEWMV && args->single_newmv_valid[mbmi->ref_mv_idx][ref] == 0) { return 0; } } return 1; } static int get_drl_refmv_count(const MACROBLOCK *const x, const MV_REFERENCE_FRAME *ref_frame, PREDICTION_MODE mode) { const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const int8_t ref_frame_type = av1_ref_frame_type(ref_frame); const int has_nearmv = have_nearmv_in_inter_mode(mode) ? 1 : 0; const int ref_mv_count = mbmi_ext->ref_mv_count[ref_frame_type]; const int only_newmv = (mode == NEWMV || mode == NEW_NEWMV); const int has_drl = (has_nearmv && ref_mv_count > 2) || (only_newmv && ref_mv_count > 1); const int ref_set = has_drl ? AOMMIN(MAX_REF_MV_SEARCH, ref_mv_count - has_nearmv) : 1; return ref_set; } // Checks if particular ref_mv_idx should be pruned. static int prune_ref_mv_idx_using_qindex(const int reduce_inter_modes, const int qindex, const int ref_mv_idx) { if (reduce_inter_modes >= 3) return 1; // Q-index logic based pruning is enabled only for // reduce_inter_modes = 2. assert(reduce_inter_modes == 2); // When reduce_inter_modes=2, pruning happens as below based on q index. // For q index range between 0 and 85: prune if ref_mv_idx >= 1. // For q index range between 86 and 170: prune if ref_mv_idx == 2. // For q index range between 171 and 255: no pruning. const int min_prune_ref_mv_idx = (qindex * 3 / QINDEX_RANGE) + 1; return (ref_mv_idx >= min_prune_ref_mv_idx); } // Whether this reference motion vector can be skipped, based on initial // heuristics. static bool ref_mv_idx_early_breakout( const SPEED_FEATURES *const sf, const RefFrameDistanceInfo *const ref_frame_dist_info, MACROBLOCK *x, const HandleInterModeArgs *const args, int64_t ref_best_rd, int ref_mv_idx) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; const MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); const int is_comp_pred = has_second_ref(mbmi); if (sf->inter_sf.reduce_inter_modes && ref_mv_idx > 0) { if (mbmi->ref_frame[0] == LAST2_FRAME || mbmi->ref_frame[0] == LAST3_FRAME || mbmi->ref_frame[1] == LAST2_FRAME || mbmi->ref_frame[1] == LAST3_FRAME) { const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; if (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] < REF_CAT_LEVEL) { return true; } } // TODO(any): Experiment with reduce_inter_modes for compound prediction if (sf->inter_sf.reduce_inter_modes >= 2 && !is_comp_pred && have_newmv_in_inter_mode(mbmi->mode)) { if (mbmi->ref_frame[0] != ref_frame_dist_info->nearest_past_ref && mbmi->ref_frame[0] != ref_frame_dist_info->nearest_future_ref) { const int has_nearmv = have_nearmv_in_inter_mode(mbmi->mode) ? 1 : 0; const int do_prune = prune_ref_mv_idx_using_qindex( sf->inter_sf.reduce_inter_modes, x->qindex, ref_mv_idx); if (do_prune && (mbmi_ext->weight[ref_frame_type][ref_mv_idx + has_nearmv] < REF_CAT_LEVEL)) { return true; } } } } mbmi->ref_mv_idx = ref_mv_idx; if (is_comp_pred && (!is_single_newmv_valid(args, mbmi, mbmi->mode))) { return true; } size_t est_rd_rate = args->ref_frame_cost + args->single_comp_cost; const int drl_cost = get_drl_cost( mbmi, mbmi_ext, x->mode_costs.drl_mode_cost0, ref_frame_type); est_rd_rate += drl_cost; if (RDCOST(x->rdmult, est_rd_rate, 0) > ref_best_rd && mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { return true; } return false; } // Compute the estimated RD cost for the motion vector with simple translation. static int64_t simple_translation_pred_rd(AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats, HandleInterModeArgs *args, int ref_mv_idx, int64_t ref_best_rd, BLOCK_SIZE bsize) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); const AV1_COMMON *cm = &cpi->common; const int is_comp_pred = has_second_ref(mbmi); const ModeCosts *mode_costs = &x->mode_costs; struct macroblockd_plane *p = xd->plane; const BUFFER_SET orig_dst = { { p[0].dst.buf, p[1].dst.buf, p[2].dst.buf }, { p[0].dst.stride, p[1].dst.stride, p[2].dst.stride }, }; av1_init_rd_stats(rd_stats); mbmi->interinter_comp.type = COMPOUND_AVERAGE; mbmi->comp_group_idx = 0; mbmi->compound_idx = 1; if (mbmi->ref_frame[1] == INTRA_FRAME) { mbmi->ref_frame[1] = NONE_FRAME; } int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); mbmi->num_proj_ref = 0; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->ref_mv_idx = ref_mv_idx; rd_stats->rate += args->ref_frame_cost + args->single_comp_cost; const int drl_cost = get_drl_cost(mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type); rd_stats->rate += drl_cost; int_mv cur_mv[2]; if (!build_cur_mv(cur_mv, mbmi->mode, cm, x, 0)) { return INT64_MAX; } assert(have_nearmv_in_inter_mode(mbmi->mode)); for (int i = 0; i < is_comp_pred + 1; ++i) { mbmi->mv[i].as_int = cur_mv[i].as_int; } const int ref_mv_cost = cost_mv_ref(mode_costs, mbmi->mode, mode_ctx); rd_stats->rate += ref_mv_cost; if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd) { return INT64_MAX; } mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->num_proj_ref = 0; if (is_comp_pred) { // Only compound_average mbmi->interinter_comp.type = COMPOUND_AVERAGE; mbmi->comp_group_idx = 0; mbmi->compound_idx = 1; } set_default_interp_filters(mbmi, cm->features.interp_filter); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, AOM_PLANE_Y, AOM_PLANE_Y); int est_rate; int64_t est_dist; model_rd_sb_fn[MODELRD_CURVFIT](cpi, bsize, x, xd, 0, 0, &est_rate, &est_dist, NULL, NULL, NULL, NULL, NULL); return RDCOST(x->rdmult, rd_stats->rate + est_rate, est_dist); } // Represents a set of integers, from 0 to sizeof(int) * 8, as bits in // an integer. 0 for the i-th bit means that integer is excluded, 1 means // it is included. static INLINE void mask_set_bit(int *mask, int index) { *mask |= (1 << index); } static INLINE bool mask_check_bit(int mask, int index) { return (mask >> index) & 0x1; } // Before performing the full MV search in handle_inter_mode, do a simple // translation search and see if we can eliminate any motion vectors. // Returns an integer where, if the i-th bit is set, it means that the i-th // motion vector should be searched. This is only set for NEAR_MV. static int ref_mv_idx_to_search(AV1_COMP *const cpi, MACROBLOCK *x, RD_STATS *rd_stats, HandleInterModeArgs *const args, int64_t ref_best_rd, BLOCK_SIZE bsize, const int ref_set) { // If the number of ref mv count is equal to 1, do not prune the same. It // is better to evaluate the same than to prune it. if (ref_set == 1) return 1; AV1_COMMON *const cm = &cpi->common; const MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; const PREDICTION_MODE this_mode = mbmi->mode; // Only search indices if they have some chance of being good. int good_indices = 0; for (int i = 0; i < ref_set; ++i) { if (ref_mv_idx_early_breakout(&cpi->sf, &cpi->ref_frame_dist_info, x, args, ref_best_rd, i)) { continue; } mask_set_bit(&good_indices, i); } // Only prune in NEARMV mode, if the speed feature is set, and the block size // is large enough. If these conditions are not met, return all good indices // found so far. if (!cpi->sf.inter_sf.prune_mode_search_simple_translation) return good_indices; if (!have_nearmv_in_inter_mode(this_mode)) return good_indices; if (num_pels_log2_lookup[bsize] <= 6) return good_indices; // Do not prune when there is internal resizing. TODO(elliottk) fix this // so b/2384 can be resolved. if (av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[0])) || (mbmi->ref_frame[1] > 0 && av1_is_scaled(get_ref_scale_factors(cm, mbmi->ref_frame[1])))) { return good_indices; } // Calculate the RD cost for the motion vectors using simple translation. int64_t idx_rdcost[] = { INT64_MAX, INT64_MAX, INT64_MAX }; for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { // If this index is bad, ignore it. if (!mask_check_bit(good_indices, ref_mv_idx)) { continue; } idx_rdcost[ref_mv_idx] = simple_translation_pred_rd( cpi, x, rd_stats, args, ref_mv_idx, ref_best_rd, bsize); } // Find the index with the best RD cost. int best_idx = 0; for (int i = 1; i < MAX_REF_MV_SEARCH; ++i) { if (idx_rdcost[i] < idx_rdcost[best_idx]) { best_idx = i; } } // Only include indices that are good and within a % of the best. const double dth = has_second_ref(mbmi) ? 1.05 : 1.001; // If the simple translation cost is not within this multiple of the // best RD, skip it. Note that the cutoff is derived experimentally. const double ref_dth = 5; int result = 0; for (int i = 0; i < ref_set; ++i) { if (mask_check_bit(good_indices, i) && (1.0 * idx_rdcost[i]) / idx_rdcost[best_idx] < dth && (1.0 * idx_rdcost[i]) / ref_best_rd < ref_dth) { mask_set_bit(&result, i); } } return result; } /*!\brief Motion mode information for inter mode search speedup. * * Used in a speed feature to search motion modes other than * SIMPLE_TRANSLATION only on winning candidates. */ typedef struct motion_mode_candidate { /*! * Mode info for the motion mode candidate. */ MB_MODE_INFO mbmi; /*! * Rate describing the cost of the motion vectors for this candidate. */ int rate_mv; /*! * Rate before motion mode search and transform coding is applied. */ int rate2_nocoeff; /*! * An integer value 0 or 1 which indicates whether or not to skip the motion * mode search and default to SIMPLE_TRANSLATION as a speed feature for this * candidate. */ int skip_motion_mode; /*! * Total RD cost for this candidate. */ int64_t rd_cost; } motion_mode_candidate; /*!\cond */ typedef struct motion_mode_best_st_candidate { motion_mode_candidate motion_mode_cand[MAX_WINNER_MOTION_MODES]; int num_motion_mode_cand; } motion_mode_best_st_candidate; // Checks if the current reference frame matches with neighbouring block's // (top/left) reference frames static AOM_INLINE int ref_match_found_in_nb_blocks(MB_MODE_INFO *cur_mbmi, MB_MODE_INFO *nb_mbmi) { MV_REFERENCE_FRAME nb_ref_frames[2] = { nb_mbmi->ref_frame[0], nb_mbmi->ref_frame[1] }; MV_REFERENCE_FRAME cur_ref_frames[2] = { cur_mbmi->ref_frame[0], cur_mbmi->ref_frame[1] }; const int is_cur_comp_pred = has_second_ref(cur_mbmi); int match_found = 0; for (int i = 0; i < (is_cur_comp_pred + 1); i++) { if ((cur_ref_frames[i] == nb_ref_frames[0]) || (cur_ref_frames[i] == nb_ref_frames[1])) match_found = 1; } return match_found; } static AOM_INLINE int find_ref_match_in_above_nbs(const int total_mi_cols, MACROBLOCKD *xd) { if (!xd->up_available) return 1; const int mi_col = xd->mi_col; MB_MODE_INFO **cur_mbmi = xd->mi; // prev_row_mi points into the mi array, starting at the beginning of the // previous row. MB_MODE_INFO **prev_row_mi = xd->mi - mi_col - 1 * xd->mi_stride; const int end_col = AOMMIN(mi_col + xd->width, total_mi_cols); uint8_t mi_step; for (int above_mi_col = mi_col; above_mi_col < end_col; above_mi_col += mi_step) { MB_MODE_INFO **above_mi = prev_row_mi + above_mi_col; mi_step = mi_size_wide[above_mi[0]->bsize]; int match_found = 0; if (is_inter_block(*above_mi)) match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *above_mi); if (match_found) return 1; } return 0; } static AOM_INLINE int find_ref_match_in_left_nbs(const int total_mi_rows, MACROBLOCKD *xd) { if (!xd->left_available) return 1; const int mi_row = xd->mi_row; MB_MODE_INFO **cur_mbmi = xd->mi; // prev_col_mi points into the mi array, starting at the top of the // previous column MB_MODE_INFO **prev_col_mi = xd->mi - 1 - mi_row * xd->mi_stride; const int end_row = AOMMIN(mi_row + xd->height, total_mi_rows); uint8_t mi_step; for (int left_mi_row = mi_row; left_mi_row < end_row; left_mi_row += mi_step) { MB_MODE_INFO **left_mi = prev_col_mi + left_mi_row * xd->mi_stride; mi_step = mi_size_high[left_mi[0]->bsize]; int match_found = 0; if (is_inter_block(*left_mi)) match_found = ref_match_found_in_nb_blocks(*cur_mbmi, *left_mi); if (match_found) return 1; } return 0; } /*!\endcond */ /*! \brief Struct used to hold TPL data to * narrow down parts of the inter mode search. */ typedef struct { /*! * The best inter cost out of all of the reference frames. */ int64_t best_inter_cost; /*! * The inter cost for each reference frame. */ int64_t ref_inter_cost[INTER_REFS_PER_FRAME]; } PruneInfoFromTpl; #if !CONFIG_REALTIME_ONLY // TODO(Remya): Check if get_tpl_stats_b() can be reused static AOM_INLINE void get_block_level_tpl_stats( AV1_COMP *cpi, BLOCK_SIZE bsize, int mi_row, int mi_col, int *valid_refs, PruneInfoFromTpl *inter_cost_info_from_tpl) { AV1_COMMON *const cm = &cpi->common; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; TplParams *const tpl_data = &cpi->ppi->tpl_data; if (!av1_tpl_stats_ready(tpl_data, tpl_idx)) return; const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_idx]; const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; const int mi_wide = mi_size_wide[bsize]; const int mi_high = mi_size_high[bsize]; const int tpl_stride = tpl_frame->stride; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_col_end_sr = coded_to_superres_mi(mi_col + mi_wide, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int row_step = step; const int col_step_sr = coded_to_superres_mi(step, cm->superres_scale_denominator); for (int row = mi_row; row < AOMMIN(mi_row + mi_high, cm->mi_params.mi_rows); row += row_step) { for (int col = mi_col_sr; col < AOMMIN(mi_col_end_sr, mi_cols_sr); col += col_step_sr) { const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; // Sums up the inter cost of corresponding ref frames for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) { inter_cost_info_from_tpl->ref_inter_cost[ref_idx] += this_stats->pred_error[ref_idx]; } } } // Computes the best inter cost (minimum inter_cost) int64_t best_inter_cost = INT64_MAX; for (int ref_idx = 0; ref_idx < INTER_REFS_PER_FRAME; ref_idx++) { const int64_t cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[ref_idx]; // For invalid ref frames, cur_inter_cost = 0 and has to be handled while // calculating the minimum inter_cost if (cur_inter_cost != 0 && (cur_inter_cost < best_inter_cost) && valid_refs[ref_idx]) best_inter_cost = cur_inter_cost; } inter_cost_info_from_tpl->best_inter_cost = best_inter_cost; } #endif static AOM_INLINE int prune_modes_based_on_tpl_stats( PruneInfoFromTpl *inter_cost_info_from_tpl, const int *refs, int ref_mv_idx, const PREDICTION_MODE this_mode, int prune_mode_level) { const int have_newmv = have_newmv_in_inter_mode(this_mode); if ((prune_mode_level < 2) && have_newmv) return 0; const int64_t best_inter_cost = inter_cost_info_from_tpl->best_inter_cost; if (best_inter_cost == INT64_MAX) return 0; const int prune_level = prune_mode_level - 1; int64_t cur_inter_cost; const int is_globalmv = (this_mode == GLOBALMV) || (this_mode == GLOBAL_GLOBALMV); const int prune_index = is_globalmv ? MAX_REF_MV_SEARCH : ref_mv_idx; // Thresholds used for pruning: // Lower value indicates aggressive pruning and higher value indicates // conservative pruning which is set based on ref_mv_idx and speed feature. // 'prune_index' 0, 1, 2 corresponds to ref_mv indices 0, 1 and 2. prune_index // 3 corresponds to GLOBALMV/GLOBAL_GLOBALMV static const int tpl_inter_mode_prune_mul_factor[3][MAX_REF_MV_SEARCH + 1] = { { 6, 6, 6, 4 }, { 6, 4, 4, 4 }, { 5, 4, 4, 4 } }; const int is_comp_pred = (refs[1] > INTRA_FRAME); if (!is_comp_pred) { cur_inter_cost = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1]; } else { const int64_t inter_cost_ref0 = inter_cost_info_from_tpl->ref_inter_cost[refs[0] - 1]; const int64_t inter_cost_ref1 = inter_cost_info_from_tpl->ref_inter_cost[refs[1] - 1]; // Choose maximum inter_cost among inter_cost_ref0 and inter_cost_ref1 for // more aggressive pruning cur_inter_cost = AOMMAX(inter_cost_ref0, inter_cost_ref1); } // Prune the mode if cur_inter_cost is greater than threshold times // best_inter_cost if (cur_inter_cost > ((tpl_inter_mode_prune_mul_factor[prune_level][prune_index] * best_inter_cost) >> 2)) return 1; return 0; } /*!\brief High level function to select parameters for compound mode. * * \ingroup inter_mode_search * The main search functionality is done in the call to av1_compound_type_rd(). * * \param[in] cpi Top-level encoder structure. * \param[in] x Pointer to struct holding all the data for * the current macroblock. * \param[in] args HandleInterModeArgs struct holding * miscellaneous arguments for inter mode * search. See the documentation for this * struct for a description of each member. * \param[in] ref_best_rd Best RD found so far for this block. * It is used for early termination of this * search if the RD exceeds this value. * \param[in,out] cur_mv Current motion vector. * \param[in] bsize Current block size. * \param[in,out] compmode_interinter_cost RD of the selected interinter compound mode. * \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all * allocated buffers for the compound * predictors and masks in the compound type * search. * \param[in,out] orig_dst A prediction buffer to hold a computed * prediction. This will eventually hold the * final prediction, and the tmp_dst info will * be copied here. * \param[in] tmp_dst A temporary prediction buffer to hold a * computed prediction. * \param[in,out] rate_mv The rate associated with the motion vectors. * This will be modified if a motion search is * done in the motion mode search. * \param[in,out] rd_stats Struct to keep track of the overall RD * information. * \param[in,out] skip_rd An array of length 2 where skip_rd[0] is the * best total RD for a skip mode so far, and * skip_rd[1] is the best RD for a skip mode so * far in luma. This is used as a speed feature * to skip the transform search if the computed * skip RD for the current mode is not better * than the best skip_rd so far. * \param[in,out] skip_build_pred Indicates whether or not to build the inter * predictor. If this is 0, the inter predictor * has already been built and thus we can avoid * repeating computation. * \return Returns 1 if this mode is worse than one already seen and 0 if it is * a viable candidate. */ static int process_compound_inter_mode( AV1_COMP *const cpi, MACROBLOCK *x, HandleInterModeArgs *args, int64_t ref_best_rd, int_mv *cur_mv, BLOCK_SIZE bsize, int *compmode_interinter_cost, const CompoundTypeRdBuffers *rd_buffers, const BUFFER_SET *orig_dst, const BUFFER_SET *tmp_dst, int *rate_mv, RD_STATS *rd_stats, int64_t *skip_rd, int *skip_build_pred) { MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; const AV1_COMMON *cm = &cpi->common; const int masked_compound_used = is_any_masked_compound_used(bsize) && cm->seq_params->enable_masked_compound; int mode_search_mask = (1 << COMPOUND_AVERAGE) | (1 << COMPOUND_DISTWTD) | (1 << COMPOUND_WEDGE) | (1 << COMPOUND_DIFFWTD); const int num_planes = av1_num_planes(cm); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; int is_luma_interp_done = 0; set_default_interp_filters(mbmi, cm->features.interp_filter); int64_t best_rd_compound; int64_t rd_thresh; const int comp_type_rd_shift = COMP_TYPE_RD_THRESH_SHIFT; const int comp_type_rd_scale = COMP_TYPE_RD_THRESH_SCALE; rd_thresh = get_rd_thresh_from_best_rd(ref_best_rd, (1 << comp_type_rd_shift), comp_type_rd_scale); // Select compound type and any parameters related to that type // (for example, the mask parameters if it is a masked mode) and compute // the RD *compmode_interinter_cost = av1_compound_type_rd( cpi, x, args, bsize, cur_mv, mode_search_mask, masked_compound_used, orig_dst, tmp_dst, rd_buffers, rate_mv, &best_rd_compound, rd_stats, ref_best_rd, skip_rd[1], &is_luma_interp_done, rd_thresh); if (ref_best_rd < INT64_MAX && (best_rd_compound >> comp_type_rd_shift) * comp_type_rd_scale > ref_best_rd) { restore_dst_buf(xd, *orig_dst, num_planes); return 1; } // Build only uv predictor for COMPOUND_AVERAGE. // Note there is no need to call av1_enc_build_inter_predictor // for luma if COMPOUND_AVERAGE is selected because it is the first // candidate in av1_compound_type_rd, which means it used the dst_buf // rather than the tmp_buf. if (mbmi->interinter_comp.type == COMPOUND_AVERAGE && is_luma_interp_done) { if (num_planes > 1) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, orig_dst, bsize, AOM_PLANE_U, num_planes - 1); } *skip_build_pred = 1; } return 0; } // Speed feature to prune out MVs that are similar to previous MVs if they // don't achieve the best RD advantage. static int prune_ref_mv_idx_search(int ref_mv_idx, int best_ref_mv_idx, int_mv save_mv[MAX_REF_MV_SEARCH - 1][2], MB_MODE_INFO *mbmi, int pruning_factor) { int i; const int is_comp_pred = has_second_ref(mbmi); const int thr = (1 + is_comp_pred) << (pruning_factor + 1); // Skip the evaluation if an MV match is found. if (ref_mv_idx > 0) { for (int idx = 0; idx < ref_mv_idx; ++idx) { if (save_mv[idx][0].as_int == INVALID_MV) continue; int mv_diff = 0; for (i = 0; i < 1 + is_comp_pred; ++i) { mv_diff += abs(save_mv[idx][i].as_mv.row - mbmi->mv[i].as_mv.row) + abs(save_mv[idx][i].as_mv.col - mbmi->mv[i].as_mv.col); } // If this mode is not the best one, and current MV is similar to // previous stored MV, terminate this ref_mv_idx evaluation. if (best_ref_mv_idx == -1 && mv_diff <= thr) return 1; } } if (ref_mv_idx < MAX_REF_MV_SEARCH - 1) { for (i = 0; i < is_comp_pred + 1; ++i) save_mv[ref_mv_idx][i].as_int = mbmi->mv[i].as_int; } return 0; } /*!\brief Prunes ZeroMV Search Using Best NEWMV's SSE * * \ingroup inter_mode_search * * Compares the sse of zero mv and the best sse found in single new_mv. If the * sse of the zero_mv is higher, returns 1 to signal zero_mv can be skipped. * Else returns 0. * * Note that the sse of here comes from single_motion_search. So it is * interpolated with the filter in motion search, not the actual interpolation * filter used in encoding. * * \param[in] fn_ptr A table of function pointers to compute SSE. * \param[in] x Pointer to struct holding all the data for * the current macroblock. * \param[in] bsize The current block_size. * \param[in] args The args to handle_inter_mode, used to track * the best SSE. * \param[in] prune_zero_mv_with_sse The argument holds speed feature * prune_zero_mv_with_sse value * \return Returns 1 if zero_mv is pruned, 0 otherwise. */ static AOM_INLINE int prune_zero_mv_with_sse( const aom_variance_fn_ptr_t *fn_ptr, const MACROBLOCK *x, BLOCK_SIZE bsize, const HandleInterModeArgs *args, int prune_zero_mv_with_sse) { const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; const int is_comp_pred = has_second_ref(mbmi); const MV_REFERENCE_FRAME *refs = mbmi->ref_frame; for (int idx = 0; idx < 1 + is_comp_pred; idx++) { if (xd->global_motion[refs[idx]].wmtype != IDENTITY) { // Pruning logic only works for IDENTITY type models // Note: In theory we could apply similar logic for TRANSLATION // type models, but we do not code these due to a spec bug // (see comments in gm_get_motion_vector() in av1/common/mv.h) assert(xd->global_motion[refs[idx]].wmtype != TRANSLATION); return 0; } // Don't prune if we have invalid data assert(mbmi->mv[idx].as_int == 0); if (args->best_single_sse_in_refs[refs[idx]] == INT32_MAX) { return 0; } } // Sum up the sse of ZEROMV and best NEWMV unsigned int this_sse_sum = 0; unsigned int best_sse_sum = 0; for (int idx = 0; idx < 1 + is_comp_pred; idx++) { const struct macroblock_plane *const p = &x->plane[AOM_PLANE_Y]; const struct macroblockd_plane *pd = xd->plane; const struct buf_2d *src_buf = &p->src; const struct buf_2d *ref_buf = &pd->pre[idx]; const uint8_t *src = src_buf->buf; const uint8_t *ref = ref_buf->buf; const int src_stride = src_buf->stride; const int ref_stride = ref_buf->stride; unsigned int this_sse; fn_ptr[bsize].vf(ref, ref_stride, src, src_stride, &this_sse); this_sse_sum += this_sse; const unsigned int best_sse = args->best_single_sse_in_refs[refs[idx]]; best_sse_sum += best_sse; } const double mul = prune_zero_mv_with_sse > 1 ? 1.00 : 1.25; if ((double)this_sse_sum > (mul * (double)best_sse_sum)) { return 1; } return 0; } /*!\brief Searches for interpolation filter in realtime mode during winner eval * * \ingroup inter_mode_search * * Does a simple interpolation filter search during winner mode evaluation. This * is currently only used by realtime mode as \ref * av1_interpolation_filter_search is not called during realtime encoding. * * This function only searches over two possible filters. EIGHTTAP_REGULAR is * always search. For lowres clips (<= 240p), MULTITAP_SHARP is also search. For * higher res slips (>240p), EIGHTTAP_SMOOTH is also searched. * * * \param[in] cpi Pointer to the compressor. Used for feature * flags. * \param[in,out] x Pointer to macroblock. This is primarily * used to access the buffers. * \param[in] mi_row The current row in mi unit (4X4 pixels). * \param[in] mi_col The current col in mi unit (4X4 pixels). * \param[in] bsize The current block_size. * \return Returns true if a predictor is built in xd->dst, false otherwise. */ static AOM_INLINE bool fast_interp_search(const AV1_COMP *cpi, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize) { static const InterpFilters filters_ref_set[3] = { { EIGHTTAP_REGULAR, EIGHTTAP_REGULAR }, { EIGHTTAP_SMOOTH, EIGHTTAP_SMOOTH }, { MULTITAP_SHARP, MULTITAP_SHARP } }; const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mi = xd->mi[0]; int64_t best_cost = INT64_MAX; int best_filter_index = -1; // dst_bufs[0] sores the new predictor, and dist_bifs[1] stores the best const int num_planes = av1_num_planes(cm); const int is_240p_or_lesser = AOMMIN(cm->width, cm->height) <= 240; assert(is_inter_mode(mi->mode)); assert(mi->motion_mode == SIMPLE_TRANSLATION); assert(!is_inter_compound_mode(mi->mode)); if (!av1_is_interp_needed(xd)) { return false; } struct macroblockd_plane *pd = xd->plane; const BUFFER_SET orig_dst = { { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf }, { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride }, }; uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]); const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, tmp_buf + 2 * MAX_SB_SQUARE }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; const BUFFER_SET *dst_bufs[2] = { &orig_dst, &tmp_dst }; for (int i = 0; i < 3; ++i) { if (is_240p_or_lesser) { if (filters_ref_set[i].x_filter == EIGHTTAP_SMOOTH) { continue; } } else { if (filters_ref_set[i].x_filter == MULTITAP_SHARP) { continue; } } int64_t cost; RD_STATS tmp_rd = { 0 }; mi->interp_filters.as_filters = filters_ref_set[i]; av1_enc_build_inter_predictor_y(xd, mi_row, mi_col); model_rd_sb_fn[cpi->sf.rt_sf.use_simple_rd_model ? MODELRD_LEGACY : MODELRD_TYPE_INTERP_FILTER]( cpi, bsize, x, xd, AOM_PLANE_Y, AOM_PLANE_Y, &tmp_rd.rate, &tmp_rd.dist, &tmp_rd.skip_txfm, &tmp_rd.sse, NULL, NULL, NULL); tmp_rd.rate += av1_get_switchable_rate(x, xd, cm->features.interp_filter, cm->seq_params->enable_dual_filter); cost = RDCOST(x->rdmult, tmp_rd.rate, tmp_rd.dist); if (cost < best_cost) { best_filter_index = i; best_cost = cost; swap_dst_buf(xd, dst_bufs, num_planes); } } assert(best_filter_index >= 0); mi->interp_filters.as_filters = filters_ref_set[best_filter_index]; const bool is_best_pred_in_orig = &orig_dst == dst_bufs[1]; if (is_best_pred_in_orig) { swap_dst_buf(xd, dst_bufs, num_planes); } else { // Note that xd->pd's bufers are kept in sync with dst_bufs[0]. So if // is_best_pred_in_orig is false, that means the current buffer is the // original one. assert(&orig_dst == dst_bufs[0]); assert(xd->plane[AOM_PLANE_Y].dst.buf == orig_dst.plane[AOM_PLANE_Y]); const int width = block_size_wide[bsize]; const int height = block_size_high[bsize]; #if CONFIG_AV1_HIGHBITDEPTH const bool is_hbd = is_cur_buf_hbd(xd); if (is_hbd) { aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(tmp_dst.plane[AOM_PLANE_Y]), tmp_dst.stride[AOM_PLANE_Y], CONVERT_TO_SHORTPTR(orig_dst.plane[AOM_PLANE_Y]), orig_dst.stride[AOM_PLANE_Y], width, height); } else { aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y], orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y], width, height); } #else aom_convolve_copy(tmp_dst.plane[AOM_PLANE_Y], tmp_dst.stride[AOM_PLANE_Y], orig_dst.plane[AOM_PLANE_Y], orig_dst.stride[AOM_PLANE_Y], width, height); #endif } // Build the YUV predictor. if (num_planes > 1) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, AOM_PLANE_U, AOM_PLANE_V); } return true; } /*!\brief AV1 inter mode RD computation * * \ingroup inter_mode_search * Do the RD search for a given inter mode and compute all information relevant * to the input mode. It will compute the best MV, * compound parameters (if the mode is a compound mode) and interpolation filter * parameters. * * \param[in] cpi Top-level encoder structure. * \param[in] tile_data Pointer to struct holding adaptive * data/contexts/models for the tile during * encoding. * \param[in] x Pointer to structure holding all the data * for the current macroblock. * \param[in] bsize Current block size. * \param[in,out] rd_stats Struct to keep track of the overall RD * information. * \param[in,out] rd_stats_y Struct to keep track of the RD information * for only the Y plane. * \param[in,out] rd_stats_uv Struct to keep track of the RD information * for only the UV planes. * \param[in] args HandleInterModeArgs struct holding * miscellaneous arguments for inter mode * search. See the documentation for this * struct for a description of each member. * \param[in] ref_best_rd Best RD found so far for this block. * It is used for early termination of this * search if the RD exceeds this value. * \param[in] tmp_buf Temporary buffer used to hold predictors * built in this search. * \param[in,out] rd_buffers CompoundTypeRdBuffers struct to hold all * allocated buffers for the compound * predictors and masks in the compound type * search. * \param[in,out] best_est_rd Estimated RD for motion mode search if * do_tx_search (see below) is 0. * \param[in] do_tx_search Parameter to indicate whether or not to do * a full transform search. This will compute * an estimated RD for the modes without the * transform search and later perform the full * transform search on the best candidates. * \param[in,out] inter_modes_info InterModesInfo struct to hold inter mode * information to perform a full transform * search only on winning candidates searched * with an estimate for transform coding RD. * \param[in,out] motion_mode_cand A motion_mode_candidate struct to store * motion mode information used in a speed * feature to search motion modes other than * SIMPLE_TRANSLATION only on winning * candidates. * \param[in,out] skip_rd A length 2 array, where skip_rd[0] is the * best total RD for a skip mode so far, and * skip_rd[1] is the best RD for a skip mode so * far in luma. This is used as a speed feature * to skip the transform search if the computed * skip RD for the current mode is not better * than the best skip_rd so far. * \param[in] inter_cost_info_from_tpl A PruneInfoFromTpl struct used to * narrow down the search based on data * collected in the TPL model. * \param[out] yrd Stores the rdcost corresponding to encoding * the luma plane. * * \return The RD cost for the mode being searched. */ static int64_t handle_inter_mode( AV1_COMP *const cpi, TileDataEnc *tile_data, MACROBLOCK *x, BLOCK_SIZE bsize, RD_STATS *rd_stats, RD_STATS *rd_stats_y, RD_STATS *rd_stats_uv, HandleInterModeArgs *args, int64_t ref_best_rd, uint8_t *const tmp_buf, const CompoundTypeRdBuffers *rd_buffers, int64_t *best_est_rd, const int do_tx_search, InterModesInfo *inter_modes_info, motion_mode_candidate *motion_mode_cand, int64_t *skip_rd, PruneInfoFromTpl *inter_cost_info_from_tpl, int64_t *yrd) { const AV1_COMMON *cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *xd = &x->e_mbd; MB_MODE_INFO *mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; TxfmSearchInfo *txfm_info = &x->txfm_search_info; const int is_comp_pred = has_second_ref(mbmi); const PREDICTION_MODE this_mode = mbmi->mode; #if CONFIG_REALTIME_ONLY const int prune_modes_based_on_tpl = 0; #else // CONFIG_REALTIME_ONLY const TplParams *const tpl_data = &cpi->ppi->tpl_data; const int prune_modes_based_on_tpl = cpi->sf.inter_sf.prune_inter_modes_based_on_tpl && av1_tpl_stats_ready(tpl_data, cpi->gf_frame_index); #endif // CONFIG_REALTIME_ONLY int i; // Reference frames for this mode const int refs[2] = { mbmi->ref_frame[0], (mbmi->ref_frame[1] < 0 ? 0 : mbmi->ref_frame[1]) }; int rate_mv = 0; int64_t rd = INT64_MAX; // Do first prediction into the destination buffer. Do the next // prediction into a temporary buffer. Then keep track of which one // of these currently holds the best predictor, and use the other // one for future predictions. In the end, copy from tmp_buf to // dst if necessary. struct macroblockd_plane *pd = xd->plane; const BUFFER_SET orig_dst = { { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf }, { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride }, }; const BUFFER_SET tmp_dst = { { tmp_buf, tmp_buf + 1 * MAX_SB_SQUARE, tmp_buf + 2 * MAX_SB_SQUARE }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE } }; int64_t ret_val = INT64_MAX; const int8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); RD_STATS best_rd_stats, best_rd_stats_y, best_rd_stats_uv; int64_t best_rd = INT64_MAX; uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; int64_t best_yrd = INT64_MAX; MB_MODE_INFO best_mbmi = *mbmi; int best_xskip_txfm = 0; int64_t newmv_ret_val = INT64_MAX; inter_mode_info mode_info[MAX_REF_MV_SEARCH]; // Do not prune the mode based on inter cost from tpl if the current ref frame // is the winner ref in neighbouring blocks. int ref_match_found_in_above_nb = 0; int ref_match_found_in_left_nb = 0; if (prune_modes_based_on_tpl) { ref_match_found_in_above_nb = find_ref_match_in_above_nbs(cm->mi_params.mi_cols, xd); ref_match_found_in_left_nb = find_ref_match_in_left_nbs(cm->mi_params.mi_rows, xd); } // First, perform a simple translation search for each of the indices. If // an index performs well, it will be fully searched in the main loop // of this function. const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); // Save MV results from first 2 ref_mv_idx. int_mv save_mv[MAX_REF_MV_SEARCH - 1][2]; int best_ref_mv_idx = -1; const int idx_mask = ref_mv_idx_to_search(cpi, x, rd_stats, args, ref_best_rd, bsize, ref_set); const int16_t mode_ctx = av1_mode_context_analyzer(mbmi_ext->mode_context, mbmi->ref_frame); const ModeCosts *mode_costs = &x->mode_costs; const int ref_mv_cost = cost_mv_ref(mode_costs, this_mode, mode_ctx); const int base_rate = args->ref_frame_cost + args->single_comp_cost + ref_mv_cost; for (i = 0; i < MAX_REF_MV_SEARCH - 1; ++i) { save_mv[i][0].as_int = INVALID_MV; save_mv[i][1].as_int = INVALID_MV; } args->start_mv_cnt = 0; // Main loop of this function. This will iterate over all of the ref mvs // in the dynamic reference list and do the following: // 1.) Get the current MV. Create newmv MV if necessary // 2.) Search compound type and parameters if applicable // 3.) Do interpolation filter search // 4.) Build the inter predictor // 5.) Pick the motion mode (SIMPLE_TRANSLATION, OBMC_CAUSAL, // WARPED_CAUSAL) // 6.) Update stats if best so far for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ++ref_mv_idx) { mbmi->ref_mv_idx = ref_mv_idx; mode_info[ref_mv_idx].full_search_mv.as_int = INVALID_MV; mode_info[ref_mv_idx].full_mv_bestsme = INT_MAX; const int drl_cost = get_drl_cost( mbmi, mbmi_ext, mode_costs->drl_mode_cost0, ref_frame_type); mode_info[ref_mv_idx].drl_cost = drl_cost; mode_info[ref_mv_idx].skip = 0; if (!mask_check_bit(idx_mask, ref_mv_idx)) { // MV did not perform well in simple translation search. Skip it. continue; } if (prune_modes_based_on_tpl && !ref_match_found_in_above_nb && !ref_match_found_in_left_nb && (ref_best_rd != INT64_MAX)) { // Skip mode if TPL model indicates it will not be beneficial. if (prune_modes_based_on_tpl_stats( inter_cost_info_from_tpl, refs, ref_mv_idx, this_mode, cpi->sf.inter_sf.prune_inter_modes_based_on_tpl)) continue; } av1_init_rd_stats(rd_stats); // Initialize compound mode data mbmi->interinter_comp.type = COMPOUND_AVERAGE; mbmi->comp_group_idx = 0; mbmi->compound_idx = 1; if (mbmi->ref_frame[1] == INTRA_FRAME) mbmi->ref_frame[1] = NONE_FRAME; mbmi->num_proj_ref = 0; mbmi->motion_mode = SIMPLE_TRANSLATION; // Compute cost for signalling this DRL index rd_stats->rate = base_rate; rd_stats->rate += drl_cost; int rs = 0; int compmode_interinter_cost = 0; int_mv cur_mv[2]; // TODO(Cherma): Extend this speed feature to support compound mode int skip_repeated_ref_mv = is_comp_pred ? 0 : cpi->sf.inter_sf.skip_repeated_ref_mv; // Generate the current mv according to the prediction mode if (!build_cur_mv(cur_mv, this_mode, cm, x, skip_repeated_ref_mv)) { continue; } // The above call to build_cur_mv does not handle NEWMV modes. Build // the mv here if we have NEWMV for any predictors. if (have_newmv_in_inter_mode(this_mode)) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, handle_newmv_time); #endif newmv_ret_val = handle_newmv(cpi, x, bsize, cur_mv, &rate_mv, args, mode_info); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, handle_newmv_time); #endif if (newmv_ret_val != 0) continue; if (is_inter_singleref_mode(this_mode) && cur_mv[0].as_int != INVALID_MV) { const MV_REFERENCE_FRAME ref = refs[0]; const unsigned int this_sse = x->pred_sse[ref]; if (this_sse < args->best_single_sse_in_refs[ref]) { args->best_single_sse_in_refs[ref] = this_sse; } if (cpi->sf.rt_sf.skip_newmv_mode_based_on_sse) { const int th_idx = cpi->sf.rt_sf.skip_newmv_mode_based_on_sse - 1; const int pix_idx = num_pels_log2_lookup[bsize] - 4; const double scale_factor[3][11] = { { 0.7, 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9 }, { 0.7, 0.7, 0.7, 0.7, 0.8, 0.8, 1, 1, 1, 1, 1 }, { 0.7, 0.7, 0.7, 0.7, 1, 1, 1, 1, 1, 1, 1 } }; assert(pix_idx >= 0); assert(th_idx <= 2); if (args->best_pred_sse < scale_factor[th_idx][pix_idx] * this_sse) continue; } } rd_stats->rate += rate_mv; } // Copy the motion vector for this mode into mbmi struct for (i = 0; i < is_comp_pred + 1; ++i) { mbmi->mv[i].as_int = cur_mv[i].as_int; } if (RDCOST(x->rdmult, rd_stats->rate, 0) > ref_best_rd && mbmi->mode != NEARESTMV && mbmi->mode != NEAREST_NEARESTMV) { continue; } // Skip the rest of the search if prune_ref_mv_idx_search speed feature // is enabled, and the current MV is similar to a previous one. if (cpi->sf.inter_sf.prune_ref_mv_idx_search && is_comp_pred && prune_ref_mv_idx_search(ref_mv_idx, best_ref_mv_idx, save_mv, mbmi, cpi->sf.inter_sf.prune_ref_mv_idx_search)) continue; if (cpi->sf.gm_sf.prune_zero_mv_with_sse && (this_mode == GLOBALMV || this_mode == GLOBAL_GLOBALMV)) { if (prune_zero_mv_with_sse(cpi->ppi->fn_ptr, x, bsize, args, cpi->sf.gm_sf.prune_zero_mv_with_sse)) { continue; } } int skip_build_pred = 0; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // Handle a compound predictor, continue if it is determined this // cannot be the best compound mode if (is_comp_pred) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, compound_type_rd_time); #endif const int not_best_mode = process_compound_inter_mode( cpi, x, args, ref_best_rd, cur_mv, bsize, &compmode_interinter_cost, rd_buffers, &orig_dst, &tmp_dst, &rate_mv, rd_stats, skip_rd, &skip_build_pred); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, compound_type_rd_time); #endif if (not_best_mode) continue; } if (!args->skip_ifs) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, interpolation_filter_search_time); #endif // Determine the interpolation filter for this mode ret_val = av1_interpolation_filter_search( x, cpi, tile_data, bsize, &tmp_dst, &orig_dst, &rd, &rs, &skip_build_pred, args, ref_best_rd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, interpolation_filter_search_time); #endif if (args->modelled_rd != NULL && !is_comp_pred) { args->modelled_rd[this_mode][ref_mv_idx][refs[0]] = rd; } if (ret_val != 0) { restore_dst_buf(xd, orig_dst, num_planes); continue; } else if (cpi->sf.inter_sf.model_based_post_interp_filter_breakout && ref_best_rd != INT64_MAX && (rd >> 3) * 3 > ref_best_rd) { restore_dst_buf(xd, orig_dst, num_planes); continue; } // Compute modelled RD if enabled if (args->modelled_rd != NULL) { if (is_comp_pred) { const int mode0 = compound_ref0_mode(this_mode); const int mode1 = compound_ref1_mode(this_mode); const int64_t mrd = AOMMIN(args->modelled_rd[mode0][ref_mv_idx][refs[0]], args->modelled_rd[mode1][ref_mv_idx][refs[1]]); if ((rd >> 3) * 6 > mrd && ref_best_rd < INT64_MAX) { restore_dst_buf(xd, orig_dst, num_planes); continue; } } } } rd_stats->rate += compmode_interinter_cost; if (skip_build_pred != 1) { // Build this inter predictor if it has not been previously built av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, &orig_dst, bsize, 0, av1_num_planes(cm) - 1); } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, motion_mode_rd_time); #endif int rate2_nocoeff = rd_stats->rate; // Determine the motion mode. This will be one of SIMPLE_TRANSLATION, // OBMC_CAUSAL or WARPED_CAUSAL int64_t this_yrd; ret_val = motion_mode_rd(cpi, tile_data, x, bsize, rd_stats, rd_stats_y, rd_stats_uv, args, ref_best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd, do_tx_search, inter_modes_info, 0, &this_yrd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, motion_mode_rd_time); #endif assert( IMPLIES(!av1_check_newmv_joint_nonzero(cm, x), ret_val == INT64_MAX)); if (ret_val != INT64_MAX) { int64_t tmp_rd = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); const THR_MODES mode_enum = get_prediction_mode_idx( mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Collect mode stats for multiwinner mode processing store_winner_mode_stats(&cpi->common, x, mbmi, rd_stats, rd_stats_y, rd_stats_uv, mode_enum, NULL, bsize, tmp_rd, cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search); if (tmp_rd < best_rd) { best_yrd = this_yrd; // Update the best rd stats if we found the best mode so far best_rd_stats = *rd_stats; best_rd_stats_y = *rd_stats_y; best_rd_stats_uv = *rd_stats_uv; best_rd = tmp_rd; best_mbmi = *mbmi; best_xskip_txfm = txfm_info->skip_txfm; memcpy(best_blk_skip, txfm_info->blk_skip, sizeof(best_blk_skip[0]) * xd->height * xd->width); av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width); motion_mode_cand->rate_mv = rate_mv; motion_mode_cand->rate2_nocoeff = rate2_nocoeff; } if (tmp_rd < ref_best_rd) { ref_best_rd = tmp_rd; best_ref_mv_idx = ref_mv_idx; } } restore_dst_buf(xd, orig_dst, num_planes); } if (best_rd == INT64_MAX) return INT64_MAX; // re-instate status of the best choice *rd_stats = best_rd_stats; *rd_stats_y = best_rd_stats_y; *rd_stats_uv = best_rd_stats_uv; *yrd = best_yrd; *mbmi = best_mbmi; txfm_info->skip_txfm = best_xskip_txfm; assert(IMPLIES(mbmi->comp_group_idx == 1, mbmi->interinter_comp.type != COMPOUND_AVERAGE)); memcpy(txfm_info->blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * xd->height * xd->width); av1_copy_array(xd->tx_type_map, best_tx_type_map, xd->height * xd->width); rd_stats->rdcost = RDCOST(x->rdmult, rd_stats->rate, rd_stats->dist); return rd_stats->rdcost; } /*!\brief Search for the best intrabc predictor * * \ingroup intra_mode_search * \callergraph * This function performs a motion search to find the best intrabc predictor. * * \returns Returns the best overall rdcost (including the non-intrabc modes * search before this function). */ static int64_t rd_pick_intrabc_mode_sb(const AV1_COMP *cpi, MACROBLOCK *x, PICK_MODE_CONTEXT *ctx, RD_STATS *rd_stats, BLOCK_SIZE bsize, int64_t best_rd) { const AV1_COMMON *const cm = &cpi->common; if (!av1_allow_intrabc(cm) || !cpi->oxcf.kf_cfg.enable_intrabc || !cpi->sf.mv_sf.use_intrabc || cpi->sf.rt_sf.use_nonrd_pick_mode) return INT64_MAX; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; const TileInfo *tile = &xd->tile; MB_MODE_INFO *mbmi = xd->mi[0]; TxfmSearchInfo *txfm_info = &x->txfm_search_info; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int sb_row = mi_row >> cm->seq_params->mib_size_log2; const int sb_col = mi_col >> cm->seq_params->mib_size_log2; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; const MV_REFERENCE_FRAME ref_frame = INTRA_FRAME; av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); int_mv nearestmv, nearmv; av1_find_best_ref_mvs_from_stack(0, mbmi_ext, ref_frame, &nearestmv, &nearmv, 0); if (nearestmv.as_int == INVALID_MV) { nearestmv.as_int = 0; } if (nearmv.as_int == INVALID_MV) { nearmv.as_int = 0; } int_mv dv_ref = nearestmv.as_int == 0 ? nearmv : nearestmv; if (dv_ref.as_int == 0) { av1_find_ref_dv(&dv_ref, tile, cm->seq_params->mib_size, mi_row); } // Ref DV should not have sub-pel. assert((dv_ref.as_mv.col & 7) == 0); assert((dv_ref.as_mv.row & 7) == 0); mbmi_ext->ref_mv_stack[INTRA_FRAME][0].this_mv = dv_ref; struct buf_2d yv12_mb[MAX_MB_PLANE]; av1_setup_pred_block(xd, yv12_mb, xd->cur_buf, NULL, NULL, num_planes); for (int i = 0; i < num_planes; ++i) { xd->plane[i].pre[0] = yv12_mb[i]; } enum IntrabcMotionDirection { IBC_MOTION_ABOVE, IBC_MOTION_LEFT, IBC_MOTION_DIRECTIONS }; MB_MODE_INFO best_mbmi = *mbmi; RD_STATS best_rdstats = *rd_stats; uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE] = { 0 }; uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; av1_copy_array(best_tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); FULLPEL_MOTION_SEARCH_PARAMS fullms_params; const SEARCH_METHODS search_method = av1_get_default_mv_search_method(x, &cpi->sf.mv_sf, bsize); const search_site_config *lookahead_search_sites = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD]; const FULLPEL_MV start_mv = get_fullmv_from_mv(&dv_ref.as_mv); av1_make_default_fullpel_ms_params(&fullms_params, cpi, x, bsize, &dv_ref.as_mv, start_mv, lookahead_search_sites, search_method, /*fine_search_interval=*/0); const IntraBCMVCosts *const dv_costs = x->dv_costs; av1_set_ms_to_intra_mode(&fullms_params, dv_costs); for (enum IntrabcMotionDirection dir = IBC_MOTION_ABOVE; dir < IBC_MOTION_DIRECTIONS; ++dir) { switch (dir) { case IBC_MOTION_ABOVE: fullms_params.mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; fullms_params.mv_limits.col_max = (tile->mi_col_end - mi_col) * MI_SIZE - w; fullms_params.mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; fullms_params.mv_limits.row_max = (sb_row * cm->seq_params->mib_size - mi_row) * MI_SIZE - h; break; case IBC_MOTION_LEFT: fullms_params.mv_limits.col_min = (tile->mi_col_start - mi_col) * MI_SIZE; fullms_params.mv_limits.col_max = (sb_col * cm->seq_params->mib_size - mi_col) * MI_SIZE - w; // TODO(aconverse@google.com): Minimize the overlap between above and // left areas. fullms_params.mv_limits.row_min = (tile->mi_row_start - mi_row) * MI_SIZE; int bottom_coded_mi_edge = AOMMIN((sb_row + 1) * cm->seq_params->mib_size, tile->mi_row_end); fullms_params.mv_limits.row_max = (bottom_coded_mi_edge - mi_row) * MI_SIZE - h; break; default: assert(0); } assert(fullms_params.mv_limits.col_min >= fullms_params.mv_limits.col_min); assert(fullms_params.mv_limits.col_max <= fullms_params.mv_limits.col_max); assert(fullms_params.mv_limits.row_min >= fullms_params.mv_limits.row_min); assert(fullms_params.mv_limits.row_max <= fullms_params.mv_limits.row_max); av1_set_mv_search_range(&fullms_params.mv_limits, &dv_ref.as_mv); if (fullms_params.mv_limits.col_max < fullms_params.mv_limits.col_min || fullms_params.mv_limits.row_max < fullms_params.mv_limits.row_min) { continue; } const int step_param = cpi->mv_search_params.mv_step_param; IntraBCHashInfo *intrabc_hash_info = &x->intrabc_hash_info; int_mv best_mv, best_hash_mv; FULLPEL_MV_STATS best_mv_stats; int bestsme = av1_full_pixel_search(start_mv, &fullms_params, step_param, NULL, &best_mv.as_fullmv, &best_mv_stats, NULL); const int hashsme = av1_intrabc_hash_search( cpi, xd, &fullms_params, intrabc_hash_info, &best_hash_mv.as_fullmv); if (hashsme < bestsme) { best_mv = best_hash_mv; bestsme = hashsme; } if (bestsme == INT_MAX) continue; const MV dv = get_mv_from_fullmv(&best_mv.as_fullmv); if (!av1_is_fullmv_in_range(&fullms_params.mv_limits, get_fullmv_from_mv(&dv))) continue; if (!av1_is_dv_valid(dv, cm, xd, mi_row, mi_col, bsize, cm->seq_params->mib_size_log2)) continue; // DV should not have sub-pel. assert((dv.col & 7) == 0); assert((dv.row & 7) == 0); memset(&mbmi->palette_mode_info, 0, sizeof(mbmi->palette_mode_info)); mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->use_intrabc = 1; mbmi->mode = DC_PRED; mbmi->uv_mode = UV_DC_PRED; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->mv[0].as_mv = dv; mbmi->interp_filters = av1_broadcast_interp_filter(BILINEAR); mbmi->skip_txfm = 0; av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, av1_num_planes(cm) - 1); // TODO(aconverse@google.com): The full motion field defining discount // in MV_COST_WEIGHT is too large. Explore other values. const int rate_mv = av1_mv_bit_cost(&dv, &dv_ref.as_mv, dv_costs->joint_mv, dv_costs->dv_costs, MV_COST_WEIGHT_SUB); const int rate_mode = x->mode_costs.intrabc_cost[1]; RD_STATS rd_stats_yuv, rd_stats_y, rd_stats_uv; if (!av1_txfm_search(cpi, x, bsize, &rd_stats_yuv, &rd_stats_y, &rd_stats_uv, rate_mode + rate_mv, INT64_MAX)) continue; rd_stats_yuv.rdcost = RDCOST(x->rdmult, rd_stats_yuv.rate, rd_stats_yuv.dist); if (rd_stats_yuv.rdcost < best_rd) { best_rd = rd_stats_yuv.rdcost; best_mbmi = *mbmi; best_rdstats = rd_stats_yuv; memcpy(best_blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); av1_copy_array(best_tx_type_map, xd->tx_type_map, xd->height * xd->width); } } *mbmi = best_mbmi; *rd_stats = best_rdstats; memcpy(txfm_info->blk_skip, best_blk_skip, sizeof(txfm_info->blk_skip[0]) * xd->height * xd->width); av1_copy_array(xd->tx_type_map, best_tx_type_map, ctx->num_4x4_blk); #if CONFIG_RD_DEBUG mbmi->rd_stats = *rd_stats; #endif return best_rd; } // TODO(chiyotsai@google.com): We are using struct $struct_name instead of their // typedef here because Doxygen doesn't know about the typedefs yet. So using // the typedef will prevent doxygen from finding this function and generating // the callgraph. Once documents for AV1_COMP and MACROBLOCK are added to // doxygen, we can revert back to using the typedefs. void av1_rd_pick_intra_mode_sb(const struct AV1_COMP *cpi, struct macroblock *x, struct RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const int num_planes = av1_num_planes(cm); TxfmSearchInfo *txfm_info = &x->txfm_search_info; int rate_y = 0, rate_uv = 0, rate_y_tokenonly = 0, rate_uv_tokenonly = 0; uint8_t y_skip_txfm = 0, uv_skip_txfm = 0; int64_t dist_y = 0, dist_uv = 0; ctx->rd_stats.skip_txfm = 0; mbmi->ref_frame[0] = INTRA_FRAME; mbmi->ref_frame[1] = NONE_FRAME; mbmi->use_intrabc = 0; mbmi->mv[0].as_int = 0; mbmi->skip_mode = 0; const int64_t intra_yrd = av1_rd_pick_intra_sby_mode(cpi, x, &rate_y, &rate_y_tokenonly, &dist_y, &y_skip_txfm, bsize, best_rd, ctx); // Initialize default mode evaluation params set_mode_eval_params(cpi, x, DEFAULT_EVAL); if (intra_yrd < best_rd) { // Search intra modes for uv planes if needed if (num_planes > 1) { // Set up the tx variables for reproducing the y predictions in case we // need it for chroma-from-luma. if (xd->is_chroma_ref && store_cfl_required_rdo(cm, x)) { memcpy(txfm_info->blk_skip, ctx->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); av1_copy_array(xd->tx_type_map, ctx->tx_type_map, ctx->num_4x4_blk); } const TX_SIZE max_uv_tx_size = av1_get_tx_size(AOM_PLANE_U, xd); av1_rd_pick_intra_sbuv_mode(cpi, x, &rate_uv, &rate_uv_tokenonly, &dist_uv, &uv_skip_txfm, bsize, max_uv_tx_size); } // Intra block is always coded as non-skip rd_cost->rate = rate_y + rate_uv + x->mode_costs.skip_txfm_cost[av1_get_skip_txfm_context(xd)][0]; rd_cost->dist = dist_y + dist_uv; rd_cost->rdcost = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); rd_cost->skip_txfm = 0; } else { rd_cost->rate = INT_MAX; } if (rd_cost->rate != INT_MAX && rd_cost->rdcost < best_rd) best_rd = rd_cost->rdcost; if (rd_pick_intrabc_mode_sb(cpi, x, ctx, rd_cost, bsize, best_rd) < best_rd) { ctx->rd_stats.skip_txfm = mbmi->skip_txfm; memcpy(ctx->blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); assert(rd_cost->rate != INT_MAX); } if (rd_cost->rate == INT_MAX) return; ctx->mic = *xd->mi[0]; av1_copy_mbmi_ext_to_mbmi_ext_frame(&ctx->mbmi_ext_best, &x->mbmi_ext, av1_ref_frame_type(xd->mi[0]->ref_frame)); av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); } static AOM_INLINE void calc_target_weighted_pred( const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, const uint8_t *above, int above_stride, const uint8_t *left, int left_stride); static AOM_INLINE void rd_pick_skip_mode( RD_STATS *rd_cost, InterModeSearchState *search_state, const AV1_COMP *const cpi, MACROBLOCK *const x, BLOCK_SIZE bsize, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]) { const AV1_COMMON *const cm = &cpi->common; const SkipModeInfo *const skip_mode_info = &cm->current_frame.skip_mode_info; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; x->compound_idx = 1; // COMPOUND_AVERAGE RD_STATS skip_mode_rd_stats; av1_invalid_rd_stats(&skip_mode_rd_stats); if (skip_mode_info->ref_frame_idx_0 == INVALID_IDX || skip_mode_info->ref_frame_idx_1 == INVALID_IDX) { return; } const MV_REFERENCE_FRAME ref_frame = LAST_FRAME + skip_mode_info->ref_frame_idx_0; const MV_REFERENCE_FRAME second_ref_frame = LAST_FRAME + skip_mode_info->ref_frame_idx_1; const PREDICTION_MODE this_mode = NEAREST_NEARESTMV; const THR_MODES mode_index = get_prediction_mode_idx(this_mode, ref_frame, second_ref_frame); if (mode_index == THR_INVALID) { return; } if ((!cpi->oxcf.ref_frm_cfg.enable_onesided_comp || cpi->sf.inter_sf.disable_onesided_comp) && cpi->all_one_sided_refs) { return; } mbmi->mode = this_mode; mbmi->uv_mode = UV_DC_PRED; mbmi->ref_frame[0] = ref_frame; mbmi->ref_frame[1] = second_ref_frame; const uint8_t ref_frame_type = av1_ref_frame_type(mbmi->ref_frame); if (x->mbmi_ext.ref_mv_count[ref_frame_type] == UINT8_MAX) { MB_MODE_INFO_EXT *mbmi_ext = &x->mbmi_ext; if (mbmi_ext->ref_mv_count[ref_frame] == UINT8_MAX || mbmi_ext->ref_mv_count[second_ref_frame] == UINT8_MAX) { return; } av1_find_mv_refs(cm, xd, mbmi, ref_frame_type, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame_type); } assert(this_mode == NEAREST_NEARESTMV); if (!build_cur_mv(mbmi->mv, this_mode, cm, x, 0)) { return; } mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); mbmi->comp_group_idx = 0; mbmi->compound_idx = x->compound_idx; mbmi->interinter_comp.type = COMPOUND_AVERAGE; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->ref_mv_idx = 0; mbmi->skip_mode = mbmi->skip_txfm = 1; mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; set_default_interp_filters(mbmi, cm->features.interp_filter); set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; } BUFFER_SET orig_dst; for (int i = 0; i < num_planes; i++) { orig_dst.plane[i] = xd->plane[i].dst.buf; orig_dst.stride[i] = xd->plane[i].dst.stride; } // Compare the use of skip_mode with the best intra/inter mode obtained. const int skip_mode_ctx = av1_get_skip_mode_context(xd); int64_t best_intra_inter_mode_cost = INT64_MAX; if (rd_cost->dist < INT64_MAX && rd_cost->rate < INT32_MAX) { const ModeCosts *mode_costs = &x->mode_costs; best_intra_inter_mode_cost = RDCOST( x->rdmult, rd_cost->rate + mode_costs->skip_mode_cost[skip_mode_ctx][0], rd_cost->dist); // Account for non-skip mode rate in total rd stats rd_cost->rate += mode_costs->skip_mode_cost[skip_mode_ctx][0]; av1_rd_cost_update(x->rdmult, rd_cost); } // Obtain the rdcost for skip_mode. skip_mode_rd(&skip_mode_rd_stats, cpi, x, bsize, &orig_dst, best_intra_inter_mode_cost); if (skip_mode_rd_stats.rdcost <= best_intra_inter_mode_cost && (!xd->lossless[mbmi->segment_id] || skip_mode_rd_stats.dist == 0)) { assert(mode_index != THR_INVALID); search_state->best_mbmode.skip_mode = 1; search_state->best_mbmode = *mbmi; memset(search_state->best_mbmode.inter_tx_size, search_state->best_mbmode.tx_size, sizeof(search_state->best_mbmode.inter_tx_size)); set_txfm_ctxs(search_state->best_mbmode.tx_size, xd->width, xd->height, search_state->best_mbmode.skip_txfm && is_inter_block(mbmi), xd); search_state->best_mode_index = mode_index; // Update rd_cost rd_cost->rate = skip_mode_rd_stats.rate; rd_cost->dist = rd_cost->sse = skip_mode_rd_stats.dist; rd_cost->rdcost = skip_mode_rd_stats.rdcost; search_state->best_rd = rd_cost->rdcost; search_state->best_skip2 = 1; search_state->best_mode_skippable = 1; x->txfm_search_info.skip_txfm = 1; } } // Get winner mode stats of given mode index static AOM_INLINE MB_MODE_INFO *get_winner_mode_stats( MACROBLOCK *x, MB_MODE_INFO *best_mbmode, RD_STATS *best_rd_cost, int best_rate_y, int best_rate_uv, THR_MODES *best_mode_index, RD_STATS **winner_rd_cost, int *winner_rate_y, int *winner_rate_uv, THR_MODES *winner_mode_index, MULTI_WINNER_MODE_TYPE multi_winner_mode_type, int mode_idx) { MB_MODE_INFO *winner_mbmi; if (multi_winner_mode_type) { assert(mode_idx >= 0 && mode_idx < x->winner_mode_count); WinnerModeStats *winner_mode_stat = &x->winner_mode_stats[mode_idx]; winner_mbmi = &winner_mode_stat->mbmi; *winner_rd_cost = &winner_mode_stat->rd_cost; *winner_rate_y = winner_mode_stat->rate_y; *winner_rate_uv = winner_mode_stat->rate_uv; *winner_mode_index = winner_mode_stat->mode_index; } else { winner_mbmi = best_mbmode; *winner_rd_cost = best_rd_cost; *winner_rate_y = best_rate_y; *winner_rate_uv = best_rate_uv; *winner_mode_index = *best_mode_index; } return winner_mbmi; } // speed feature: fast intra/inter transform type search // Used for speed >= 2 // When this speed feature is on, in rd mode search, only DCT is used. // After the mode is determined, this function is called, to select // transform types and get accurate rdcost. static AOM_INLINE void refine_winner_mode_tx( const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, THR_MODES *best_mode_index, MB_MODE_INFO *best_mbmode, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int best_rate_y, int best_rate_uv, int *best_skip2, int winner_mode_count) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; TxfmSearchParams *txfm_params = &x->txfm_search_params; TxfmSearchInfo *txfm_info = &x->txfm_search_info; int64_t best_rd; const int num_planes = av1_num_planes(cm); if (!is_winner_mode_processing_enabled(cpi, x, best_mbmode, rd_cost->skip_txfm)) return; // Set params for winner mode evaluation set_mode_eval_params(cpi, x, WINNER_MODE_EVAL); // No best mode identified so far if (*best_mode_index == THR_INVALID) return; best_rd = RDCOST(x->rdmult, rd_cost->rate, rd_cost->dist); for (int mode_idx = 0; mode_idx < winner_mode_count; mode_idx++) { RD_STATS *winner_rd_stats = NULL; int winner_rate_y = 0, winner_rate_uv = 0; THR_MODES winner_mode_index = 0; // TODO(any): Combine best mode and multi-winner mode processing paths // Get winner mode stats for current mode index MB_MODE_INFO *winner_mbmi = get_winner_mode_stats( x, best_mbmode, rd_cost, best_rate_y, best_rate_uv, best_mode_index, &winner_rd_stats, &winner_rate_y, &winner_rate_uv, &winner_mode_index, cpi->sf.winner_mode_sf.multi_winner_mode_type, mode_idx); if (xd->lossless[winner_mbmi->segment_id] == 0 && winner_mode_index != THR_INVALID && is_winner_mode_processing_enabled(cpi, x, winner_mbmi, rd_cost->skip_txfm)) { RD_STATS rd_stats = *winner_rd_stats; int skip_blk = 0; RD_STATS rd_stats_y, rd_stats_uv; const int skip_ctx = av1_get_skip_txfm_context(xd); *mbmi = *winner_mbmi; set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Select prediction reference frames. for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; if (has_second_ref(mbmi)) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; } if (is_inter_mode(mbmi->mode)) { const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; bool is_predictor_built = false; const PREDICTION_MODE prediction_mode = mbmi->mode; // Do interpolation filter search for realtime mode if applicable. if (cpi->sf.winner_mode_sf.winner_mode_ifs && cpi->oxcf.mode == REALTIME && cm->current_frame.reference_mode == SINGLE_REFERENCE && is_inter_mode(prediction_mode) && mbmi->motion_mode == SIMPLE_TRANSLATION && !is_inter_compound_mode(prediction_mode)) { is_predictor_built = fast_interp_search(cpi, x, mi_row, mi_col, bsize); } if (!is_predictor_built) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, av1_num_planes(cm) - 1); } if (mbmi->motion_mode == OBMC_CAUSAL) av1_build_obmc_inter_predictors_sb(cm, xd); av1_subtract_plane(x, bsize, 0); if (txfm_params->tx_mode_search_type == TX_MODE_SELECT && !xd->lossless[mbmi->segment_id]) { av1_pick_recursive_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); assert(rd_stats_y.rate != INT_MAX); } else { av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); memset(mbmi->inter_tx_size, mbmi->tx_size, sizeof(mbmi->inter_tx_size)); for (int i = 0; i < xd->height * xd->width; ++i) set_blk_skip(txfm_info->blk_skip, 0, i, rd_stats_y.skip_txfm); } } else { av1_pick_uniform_tx_size_type_yrd(cpi, x, &rd_stats_y, bsize, INT64_MAX); } if (num_planes > 1) { av1_txfm_uvrd(cpi, x, &rd_stats_uv, bsize, INT64_MAX); } else { av1_init_rd_stats(&rd_stats_uv); } const ModeCosts *mode_costs = &x->mode_costs; if (is_inter_mode(mbmi->mode) && RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][0] + rd_stats_y.rate + rd_stats_uv.rate, (rd_stats_y.dist + rd_stats_uv.dist)) > RDCOST(x->rdmult, mode_costs->skip_txfm_cost[skip_ctx][1], (rd_stats_y.sse + rd_stats_uv.sse))) { skip_blk = 1; rd_stats_y.rate = mode_costs->skip_txfm_cost[skip_ctx][1]; rd_stats_uv.rate = 0; rd_stats_y.dist = rd_stats_y.sse; rd_stats_uv.dist = rd_stats_uv.sse; } else { skip_blk = 0; rd_stats_y.rate += mode_costs->skip_txfm_cost[skip_ctx][0]; } int this_rate = rd_stats.rate + rd_stats_y.rate + rd_stats_uv.rate - winner_rate_y - winner_rate_uv; int64_t this_rd = RDCOST(x->rdmult, this_rate, (rd_stats_y.dist + rd_stats_uv.dist)); if (best_rd > this_rd) { *best_mbmode = *mbmi; *best_mode_index = winner_mode_index; av1_copy_array(ctx->blk_skip, txfm_info->blk_skip, ctx->num_4x4_blk); av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); rd_cost->rate = this_rate; rd_cost->dist = rd_stats_y.dist + rd_stats_uv.dist; rd_cost->sse = rd_stats_y.sse + rd_stats_uv.sse; rd_cost->rdcost = this_rd; best_rd = this_rd; *best_skip2 = skip_blk; } } } } /*!\cond */ typedef struct { // Mask for each reference frame, specifying which prediction modes to NOT try // during search. uint32_t pred_modes[REF_FRAMES]; // If ref_combo[i][j + 1] is true, do NOT try prediction using combination of // reference frames (i, j). // Note: indexing with 'j + 1' is due to the fact that 2nd reference can be -1 // (NONE_FRAME). bool ref_combo[REF_FRAMES][REF_FRAMES + 1]; } mode_skip_mask_t; /*!\endcond */ // Update 'ref_combo' mask to disable given 'ref' in single and compound modes. static AOM_INLINE void disable_reference( MV_REFERENCE_FRAME ref, bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) { for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) { ref_combo[ref][ref2 + 1] = true; } } // Update 'ref_combo' mask to disable all inter references except ALTREF. static AOM_INLINE void disable_inter_references_except_altref( bool ref_combo[REF_FRAMES][REF_FRAMES + 1]) { disable_reference(LAST_FRAME, ref_combo); disable_reference(LAST2_FRAME, ref_combo); disable_reference(LAST3_FRAME, ref_combo); disable_reference(GOLDEN_FRAME, ref_combo); disable_reference(BWDREF_FRAME, ref_combo); disable_reference(ALTREF2_FRAME, ref_combo); } static const MV_REFERENCE_FRAME reduced_ref_combos[][2] = { { LAST_FRAME, NONE_FRAME }, { ALTREF_FRAME, NONE_FRAME }, { LAST_FRAME, ALTREF_FRAME }, { GOLDEN_FRAME, NONE_FRAME }, { INTRA_FRAME, NONE_FRAME }, { GOLDEN_FRAME, ALTREF_FRAME }, { LAST_FRAME, GOLDEN_FRAME }, { LAST_FRAME, INTRA_FRAME }, { LAST_FRAME, BWDREF_FRAME }, { LAST_FRAME, LAST3_FRAME }, { GOLDEN_FRAME, BWDREF_FRAME }, { GOLDEN_FRAME, INTRA_FRAME }, { BWDREF_FRAME, NONE_FRAME }, { BWDREF_FRAME, ALTREF_FRAME }, { ALTREF_FRAME, INTRA_FRAME }, { BWDREF_FRAME, INTRA_FRAME }, }; typedef enum { REF_SET_FULL, REF_SET_REDUCED, REF_SET_REALTIME } REF_SET; static AOM_INLINE void default_skip_mask(mode_skip_mask_t *mask, REF_SET ref_set) { if (ref_set == REF_SET_FULL) { // Everything available by default. memset(mask, 0, sizeof(*mask)); } else { // All modes available by default. memset(mask->pred_modes, 0, sizeof(mask->pred_modes)); // All references disabled first. for (MV_REFERENCE_FRAME ref1 = INTRA_FRAME; ref1 < REF_FRAMES; ++ref1) { for (MV_REFERENCE_FRAME ref2 = NONE_FRAME; ref2 < REF_FRAMES; ++ref2) { mask->ref_combo[ref1][ref2 + 1] = true; } } const MV_REFERENCE_FRAME(*ref_set_combos)[2]; int num_ref_combos; // Then enable reduced set of references explicitly. switch (ref_set) { case REF_SET_REDUCED: ref_set_combos = reduced_ref_combos; num_ref_combos = (int)sizeof(reduced_ref_combos) / sizeof(reduced_ref_combos[0]); break; case REF_SET_REALTIME: ref_set_combos = real_time_ref_combos; num_ref_combos = (int)sizeof(real_time_ref_combos) / sizeof(real_time_ref_combos[0]); break; default: assert(0); num_ref_combos = 0; } for (int i = 0; i < num_ref_combos; ++i) { const MV_REFERENCE_FRAME *const this_combo = ref_set_combos[i]; mask->ref_combo[this_combo[0]][this_combo[1] + 1] = false; } } } static AOM_INLINE void init_mode_skip_mask(mode_skip_mask_t *mask, const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const struct segmentation *const seg = &cm->seg; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; unsigned char segment_id = mbmi->segment_id; const SPEED_FEATURES *const sf = &cpi->sf; const INTER_MODE_SPEED_FEATURES *const inter_sf = &sf->inter_sf; REF_SET ref_set = REF_SET_FULL; if (sf->rt_sf.use_real_time_ref_set) ref_set = REF_SET_REALTIME; else if (cpi->oxcf.ref_frm_cfg.enable_reduced_reference_set) ref_set = REF_SET_REDUCED; default_skip_mask(mask, ref_set); int min_pred_mv_sad = INT_MAX; MV_REFERENCE_FRAME ref_frame; if (ref_set == REF_SET_REALTIME) { // For real-time encoding, we only look at a subset of ref frames. So the // threshold for pruning should be computed from this subset as well. const int num_rt_refs = sizeof(real_time_ref_combos) / sizeof(*real_time_ref_combos); for (int r_idx = 0; r_idx < num_rt_refs; r_idx++) { const MV_REFERENCE_FRAME ref = real_time_ref_combos[r_idx][0]; if (ref != INTRA_FRAME) { min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref]); } } } else { for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) min_pred_mv_sad = AOMMIN(min_pred_mv_sad, x->pred_mv_sad[ref_frame]); } for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame])) { // Skip checking missing reference in both single and compound reference // modes. disable_reference(ref_frame, mask->ref_combo); } else { // Skip fixed mv modes for poor references if ((x->pred_mv_sad[ref_frame] >> 2) > min_pred_mv_sad) { mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO; } } if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME) && get_segdata(seg, segment_id, SEG_LVL_REF_FRAME) != (int)ref_frame) { // Reference not used for the segment. disable_reference(ref_frame, mask->ref_combo); } } // Note: We use the following drop-out only if the SEG_LVL_REF_FRAME feature // is disabled for this segment. This is to prevent the possibility that we // end up unable to pick any mode. if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { // Only consider GLOBALMV/ALTREF_FRAME for alt ref frame, // unless ARNR filtering is enabled in which case we want // an unfiltered alternative. We allow near/nearest as well // because they may result in zero-zero MVs but be cheaper. if (cpi->rc.is_src_frame_alt_ref && (cpi->oxcf.algo_cfg.arnr_max_frames == 0)) { disable_inter_references_except_altref(mask->ref_combo); mask->pred_modes[ALTREF_FRAME] = ~INTER_NEAREST_NEAR_ZERO; const MV_REFERENCE_FRAME tmp_ref_frames[2] = { ALTREF_FRAME, NONE_FRAME }; int_mv near_mv, nearest_mv, global_mv; get_this_mv(&nearest_mv, NEARESTMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext); get_this_mv(&near_mv, NEARMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext); get_this_mv(&global_mv, GLOBALMV, 0, 0, 0, tmp_ref_frames, &x->mbmi_ext); if (near_mv.as_int != global_mv.as_int) mask->pred_modes[ALTREF_FRAME] |= (1 << NEARMV); if (nearest_mv.as_int != global_mv.as_int) mask->pred_modes[ALTREF_FRAME] |= (1 << NEARESTMV); } } if (cpi->rc.is_src_frame_alt_ref) { if (inter_sf->alt_ref_search_fp && (cpi->ref_frame_flags & av1_ref_frame_flag_list[ALTREF_FRAME])) { mask->pred_modes[ALTREF_FRAME] = 0; disable_inter_references_except_altref(mask->ref_combo); disable_reference(INTRA_FRAME, mask->ref_combo); } } if (inter_sf->alt_ref_search_fp) { if (!cm->show_frame && x->best_pred_mv_sad[0] < INT_MAX) { int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 3); // Conservatively skip the modes w.r.t. BWDREF, ALTREF2 and ALTREF, if // those are past frames MV_REFERENCE_FRAME start_frame = inter_sf->alt_ref_search_fp == 1 ? ALTREF2_FRAME : BWDREF_FRAME; for (ref_frame = start_frame; ref_frame <= ALTREF_FRAME; ref_frame++) { if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] < 0) { // Prune inter modes when relative dist of ALTREF2 and ALTREF is close // to the relative dist of LAST_FRAME. if (inter_sf->alt_ref_search_fp == 1 && (abs(cpi->ref_frame_dist_info .ref_relative_dist[ref_frame - LAST_FRAME]) > 1.5 * abs(cpi->ref_frame_dist_info .ref_relative_dist[LAST_FRAME - LAST_FRAME]))) { continue; } if (x->pred_mv_sad[ref_frame] > sad_thresh) mask->pred_modes[ref_frame] |= INTER_ALL; } } } } if (sf->rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) { if (x->best_pred_mv_sad[0] < INT_MAX) { int sad_thresh = x->best_pred_mv_sad[0] + (x->best_pred_mv_sad[0] >> 1); const int prune_ref_list[2] = { GOLDEN_FRAME, ALTREF_FRAME }; // Conservatively skip the modes w.r.t. GOLDEN and ALTREF references for (int ref_idx = 0; ref_idx < 2; ref_idx++) { ref_frame = prune_ref_list[ref_idx]; if (x->pred_mv_sad[ref_frame] > sad_thresh) mask->pred_modes[ref_frame] |= INTER_NEAREST_NEAR_ZERO; } } } if (bsize > sf->part_sf.max_intra_bsize) { disable_reference(INTRA_FRAME, mask->ref_combo); } if (!cpi->oxcf.tool_cfg.enable_global_motion) { for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { mask->pred_modes[ref_frame] |= (1 << GLOBALMV); mask->pred_modes[ref_frame] |= (1 << GLOBAL_GLOBALMV); } } mask->pred_modes[INTRA_FRAME] |= ~(uint32_t)sf->intra_sf.intra_y_mode_mask[max_txsize_lookup[bsize]]; // Prune reference frames which are not the closest to the current // frame and with large pred_mv_sad. if (inter_sf->prune_single_ref) { assert(inter_sf->prune_single_ref > 0 && inter_sf->prune_single_ref < 3); const double prune_threshes[2] = { 1.20, 1.05 }; for (ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { const RefFrameDistanceInfo *const ref_frame_dist_info = &cpi->ref_frame_dist_info; const int is_closest_ref = (ref_frame == ref_frame_dist_info->nearest_past_ref) || (ref_frame == ref_frame_dist_info->nearest_future_ref); if (!is_closest_ref) { const int dir = (ref_frame_dist_info->ref_relative_dist[ref_frame - LAST_FRAME] < 0) ? 0 : 1; if (x->best_pred_mv_sad[dir] < INT_MAX && x->pred_mv_sad[ref_frame] > prune_threshes[inter_sf->prune_single_ref - 1] * x->best_pred_mv_sad[dir]) mask->pred_modes[ref_frame] |= INTER_SINGLE_ALL; } } } } static AOM_INLINE void init_neighbor_pred_buf( const OBMCBuffer *const obmc_buffer, HandleInterModeArgs *const args, int is_hbd) { if (is_hbd) { const int len = sizeof(uint16_t); args->above_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred); args->above_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1) * len); args->above_pred_buf[2] = CONVERT_TO_BYTEPTR(obmc_buffer->above_pred + MAX_SB_SQUARE * len); args->left_pred_buf[0] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred); args->left_pred_buf[1] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1) * len); args->left_pred_buf[2] = CONVERT_TO_BYTEPTR(obmc_buffer->left_pred + MAX_SB_SQUARE * len); } else { args->above_pred_buf[0] = obmc_buffer->above_pred; args->above_pred_buf[1] = obmc_buffer->above_pred + (MAX_SB_SQUARE >> 1); args->above_pred_buf[2] = obmc_buffer->above_pred + MAX_SB_SQUARE; args->left_pred_buf[0] = obmc_buffer->left_pred; args->left_pred_buf[1] = obmc_buffer->left_pred + (MAX_SB_SQUARE >> 1); args->left_pred_buf[2] = obmc_buffer->left_pred + MAX_SB_SQUARE; } } static AOM_INLINE int prune_ref_frame(const AV1_COMP *cpi, const MACROBLOCK *x, MV_REFERENCE_FRAME ref_frame) { const AV1_COMMON *const cm = &cpi->common; MV_REFERENCE_FRAME rf[2]; av1_set_ref_frame(rf, ref_frame); if ((cpi->prune_ref_frame_mask >> ref_frame) & 1) return 1; if (prune_ref_by_selective_ref_frame(cpi, x, rf, cm->cur_frame->ref_display_order_hint)) { return 1; } return 0; } static AOM_INLINE int is_ref_frame_used_by_compound_ref( int ref_frame, int skip_ref_frame_mask) { for (int r = ALTREF_FRAME + 1; r < MODE_CTX_REF_FRAMES; ++r) { if (!(skip_ref_frame_mask & (1 << r))) { const MV_REFERENCE_FRAME *rf = ref_frame_map[r - REF_FRAMES]; if (rf[0] == ref_frame || rf[1] == ref_frame) { return 1; } } } return 0; } static AOM_INLINE int is_ref_frame_used_in_cache(MV_REFERENCE_FRAME ref_frame, const MB_MODE_INFO *mi_cache) { if (!mi_cache) { return 0; } if (ref_frame < REF_FRAMES) { return (ref_frame == mi_cache->ref_frame[0] || ref_frame == mi_cache->ref_frame[1]); } // if we are here, then the current mode is compound. MV_REFERENCE_FRAME cached_ref_type = av1_ref_frame_type(mi_cache->ref_frame); return ref_frame == cached_ref_type; } // Please add/modify parameter setting in this function, making it consistent // and easy to read and maintain. static AOM_INLINE void set_params_rd_pick_inter_mode( const AV1_COMP *cpi, MACROBLOCK *x, HandleInterModeArgs *args, BLOCK_SIZE bsize, mode_skip_mask_t *mode_skip_mask, int skip_ref_frame_mask, unsigned int *ref_costs_single, unsigned int (*ref_costs_comp)[REF_FRAMES], struct buf_2d (*yv12_mb)[MAX_MB_PLANE]) { const AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; MB_MODE_INFO_EXT *const mbmi_ext = &x->mbmi_ext; unsigned char segment_id = mbmi->segment_id; init_neighbor_pred_buf(&x->obmc_buffer, args, is_cur_buf_hbd(&x->e_mbd)); av1_collect_neighbors_ref_counts(xd); estimate_ref_frame_costs(cm, xd, &x->mode_costs, segment_id, ref_costs_single, ref_costs_comp); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; x->best_pred_mv_sad[0] = INT_MAX; x->best_pred_mv_sad[1] = INT_MAX; for (MV_REFERENCE_FRAME ref_frame = LAST_FRAME; ref_frame <= ALTREF_FRAME; ++ref_frame) { x->pred_mv_sad[ref_frame] = INT_MAX; mbmi_ext->mode_context[ref_frame] = 0; mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; if (cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frame]) { // Skip the ref frame if the mask says skip and the ref is not used by // compound ref. if (skip_ref_frame_mask & (1 << ref_frame) && !is_ref_frame_used_by_compound_ref(ref_frame, skip_ref_frame_mask) && !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) { continue; } assert(get_ref_frame_yv12_buf(cm, ref_frame) != NULL); setup_buffer_ref_mvs_inter(cpi, x, ref_frame, bsize, yv12_mb); } if (cpi->sf.inter_sf.alt_ref_search_fp || cpi->sf.inter_sf.prune_single_ref || cpi->sf.rt_sf.prune_inter_modes_wrt_gf_arf_based_on_sad) { // Store the best pred_mv_sad across all past frames if (cpi->ref_frame_dist_info.ref_relative_dist[ref_frame - LAST_FRAME] < 0) x->best_pred_mv_sad[0] = AOMMIN(x->best_pred_mv_sad[0], x->pred_mv_sad[ref_frame]); else // Store the best pred_mv_sad across all future frames x->best_pred_mv_sad[1] = AOMMIN(x->best_pred_mv_sad[1], x->pred_mv_sad[ref_frame]); } } if (!cpi->sf.rt_sf.use_real_time_ref_set && is_comp_ref_allowed(bsize)) { // No second reference on RT ref set, so no need to initialize for (MV_REFERENCE_FRAME ref_frame = EXTREF_FRAME; ref_frame < MODE_CTX_REF_FRAMES; ++ref_frame) { mbmi_ext->mode_context[ref_frame] = 0; mbmi_ext->ref_mv_count[ref_frame] = UINT8_MAX; const MV_REFERENCE_FRAME *rf = ref_frame_map[ref_frame - REF_FRAMES]; if (!((cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[0]]) && (cpi->ref_frame_flags & av1_ref_frame_flag_list[rf[1]]))) { continue; } if (skip_ref_frame_mask & (1 << ref_frame) && !is_ref_frame_used_in_cache(ref_frame, x->mb_mode_cache)) { continue; } // Ref mv list population is not required, when compound references are // pruned. if (prune_ref_frame(cpi, x, ref_frame)) continue; av1_find_mv_refs(cm, xd, mbmi, ref_frame, mbmi_ext->ref_mv_count, xd->ref_mv_stack, xd->weight, NULL, mbmi_ext->global_mvs, mbmi_ext->mode_context); // TODO(Ravi): Populate mbmi_ext->ref_mv_stack[ref_frame][4] and // mbmi_ext->weight[ref_frame][4] inside av1_find_mv_refs. av1_copy_usable_ref_mv_stack_and_weight(xd, mbmi_ext, ref_frame); } } av1_count_overlappable_neighbors(cm, xd); const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); int use_actual_frame_probs = 1; int prune_obmc; #if CONFIG_FPMT_TEST use_actual_frame_probs = (cpi->ppi->fpmt_unit_test_cfg == PARALLEL_SIMULATION_ENCODE) ? 0 : 1; if (!use_actual_frame_probs) { prune_obmc = cpi->ppi->temp_frame_probs.obmc_probs[update_type][bsize] < cpi->sf.inter_sf.prune_obmc_prob_thresh; } #endif if (use_actual_frame_probs) { prune_obmc = cpi->ppi->frame_probs.obmc_probs[update_type][bsize] < cpi->sf.inter_sf.prune_obmc_prob_thresh; } if (cpi->oxcf.motion_mode_cfg.enable_obmc && !prune_obmc) { if (check_num_overlappable_neighbors(mbmi) && is_motion_variation_allowed_bsize(bsize)) { int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; av1_build_prediction_by_above_preds(cm, xd, args->above_pred_buf, dst_width1, dst_height1, args->above_pred_stride); av1_build_prediction_by_left_preds(cm, xd, args->left_pred_buf, dst_width2, dst_height2, args->left_pred_stride); const int num_planes = av1_num_planes(cm); av1_setup_dst_planes(xd->plane, bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, num_planes); calc_target_weighted_pred( cm, x, xd, args->above_pred_buf[0], args->above_pred_stride[0], args->left_pred_buf[0], args->left_pred_stride[0]); } } init_mode_skip_mask(mode_skip_mask, cpi, x, bsize); // Set params for mode evaluation set_mode_eval_params(cpi, x, MODE_EVAL); x->comp_rd_stats_idx = 0; for (int idx = 0; idx < REF_FRAMES; idx++) { args->best_single_sse_in_refs[idx] = INT32_MAX; } } static AOM_INLINE void init_single_inter_mode_search_state( InterModeSearchState *search_state) { for (int dir = 0; dir < 2; ++dir) { for (int mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { for (int ref_frame = 0; ref_frame < FWD_REFS; ++ref_frame) { SingleInterModeState *state; state = &search_state->single_state[dir][mode][ref_frame]; state->ref_frame = NONE_FRAME; state->rd = INT64_MAX; state = &search_state->single_state_modelled[dir][mode][ref_frame]; state->ref_frame = NONE_FRAME; state->rd = INT64_MAX; search_state->single_rd_order[dir][mode][ref_frame] = NONE_FRAME; } } } for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { search_state->best_single_rd[ref_frame] = INT64_MAX; search_state->best_single_mode[ref_frame] = PRED_MODE_INVALID; } av1_zero(search_state->single_state_cnt); av1_zero(search_state->single_state_modelled_cnt); } static AOM_INLINE void init_inter_mode_search_state( InterModeSearchState *search_state, const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize, int64_t best_rd_so_far) { init_intra_mode_search_state(&search_state->intra_search_state); av1_invalid_rd_stats(&search_state->best_y_rdcost); search_state->best_rd = best_rd_so_far; search_state->best_skip_rd[0] = INT64_MAX; search_state->best_skip_rd[1] = INT64_MAX; av1_zero(search_state->best_mbmode); search_state->best_rate_y = INT_MAX; search_state->best_rate_uv = INT_MAX; search_state->best_mode_skippable = 0; search_state->best_skip2 = 0; search_state->best_mode_index = THR_INVALID; const MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; const unsigned char segment_id = mbmi->segment_id; search_state->num_available_refs = 0; memset(search_state->dist_refs, -1, sizeof(search_state->dist_refs)); memset(search_state->dist_order_refs, -1, sizeof(search_state->dist_order_refs)); for (int i = 0; i <= LAST_NEW_MV_INDEX; ++i) search_state->mode_threshold[i] = 0; const int *const rd_threshes = cpi->rd.threshes[segment_id][bsize]; for (int i = LAST_NEW_MV_INDEX + 1; i < SINGLE_REF_MODE_END; ++i) search_state->mode_threshold[i] = ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >> RD_THRESH_FAC_FRAC_BITS; search_state->best_intra_rd = INT64_MAX; search_state->best_pred_sse = UINT_MAX; av1_zero(search_state->single_newmv); av1_zero(search_state->single_newmv_rate); av1_zero(search_state->single_newmv_valid); for (int i = SINGLE_INTER_MODE_START; i < SINGLE_INTER_MODE_END; ++i) { for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) { for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { search_state->modelled_rd[i][j][ref_frame] = INT64_MAX; search_state->simple_rd[i][j][ref_frame] = INT64_MAX; } } } for (int i = 0; i < REFERENCE_MODES; ++i) { search_state->best_pred_rd[i] = INT64_MAX; } if (cpi->common.current_frame.reference_mode != SINGLE_REFERENCE) { for (int i = SINGLE_REF_MODE_END; i < THR_INTER_MODE_END; ++i) search_state->mode_threshold[i] = ((int64_t)rd_threshes[i] * x->thresh_freq_fact[bsize][i]) >> RD_THRESH_FAC_FRAC_BITS; for (int i = COMP_INTER_MODE_START; i < COMP_INTER_MODE_END; ++i) { for (int j = 0; j < MAX_REF_MV_SEARCH; ++j) { for (int ref_frame = 0; ref_frame < REF_FRAMES; ++ref_frame) { search_state->modelled_rd[i][j][ref_frame] = INT64_MAX; search_state->simple_rd[i][j][ref_frame] = INT64_MAX; } } } init_single_inter_mode_search_state(search_state); } } static bool mask_says_skip(const mode_skip_mask_t *mode_skip_mask, const MV_REFERENCE_FRAME *ref_frame, const PREDICTION_MODE this_mode) { if (mode_skip_mask->pred_modes[ref_frame[0]] & (1 << this_mode)) { return true; } return mode_skip_mask->ref_combo[ref_frame[0]][ref_frame[1] + 1]; } static int inter_mode_compatible_skip(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize, PREDICTION_MODE curr_mode, const MV_REFERENCE_FRAME *ref_frames) { const int comp_pred = ref_frames[1] > INTRA_FRAME; if (comp_pred) { if (!is_comp_ref_allowed(bsize)) return 1; if (!(cpi->ref_frame_flags & av1_ref_frame_flag_list[ref_frames[1]])) { return 1; } const AV1_COMMON *const cm = &cpi->common; if (frame_is_intra_only(cm)) return 1; const CurrentFrame *const current_frame = &cm->current_frame; if (current_frame->reference_mode == SINGLE_REFERENCE) return 1; const struct segmentation *const seg = &cm->seg; const unsigned char segment_id = x->e_mbd.mi[0]->segment_id; // Do not allow compound prediction if the segment level reference frame // feature is in use as in this case there can only be one reference. if (segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) return 1; } if (ref_frames[0] > INTRA_FRAME && ref_frames[1] == INTRA_FRAME) { // Mode must be compatible if (!is_interintra_allowed_bsize(bsize)) return 1; if (!is_interintra_allowed_mode(curr_mode)) return 1; } return 0; } static int fetch_picked_ref_frames_mask(const MACROBLOCK *const x, BLOCK_SIZE bsize, int mib_size) { const int sb_size_mask = mib_size - 1; const MACROBLOCKD *const xd = &x->e_mbd; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int mi_row_in_sb = mi_row & sb_size_mask; const int mi_col_in_sb = mi_col & sb_size_mask; const int mi_w = mi_size_wide[bsize]; const int mi_h = mi_size_high[bsize]; int picked_ref_frames_mask = 0; for (int i = mi_row_in_sb; i < mi_row_in_sb + mi_h; ++i) { for (int j = mi_col_in_sb; j < mi_col_in_sb + mi_w; ++j) { picked_ref_frames_mask |= x->picked_ref_frames_mask[i * 32 + j]; } } return picked_ref_frames_mask; } // Check if reference frame pair of the current block matches with the given // block. static INLINE int match_ref_frame_pair(const MB_MODE_INFO *mbmi, const MV_REFERENCE_FRAME *ref_frames) { return ((ref_frames[0] == mbmi->ref_frame[0]) && (ref_frames[1] == mbmi->ref_frame[1])); } // Case 1: return 0, means don't skip this mode // Case 2: return 1, means skip this mode completely // Case 3: return 2, means skip compound only, but still try single motion modes static int inter_mode_search_order_independent_skip( const AV1_COMP *cpi, const MACROBLOCK *x, mode_skip_mask_t *mode_skip_mask, InterModeSearchState *search_state, int skip_ref_frame_mask, PREDICTION_MODE mode, const MV_REFERENCE_FRAME *ref_frame) { if (mask_says_skip(mode_skip_mask, ref_frame, mode)) { return 1; } const int ref_type = av1_ref_frame_type(ref_frame); if (!cpi->sf.rt_sf.use_real_time_ref_set) if (prune_ref_frame(cpi, x, ref_type)) return 1; // This is only used in motion vector unit test. if (cpi->oxcf.unit_test_cfg.motion_vector_unit_test && ref_frame[0] == INTRA_FRAME) return 1; const AV1_COMMON *const cm = &cpi->common; if (skip_repeated_mv(cm, x, mode, ref_frame, search_state)) { return 1; } // Reuse the prediction mode in cache if (x->use_mb_mode_cache) { const MB_MODE_INFO *cached_mi = x->mb_mode_cache; const PREDICTION_MODE cached_mode = cached_mi->mode; const MV_REFERENCE_FRAME *cached_frame = cached_mi->ref_frame; const int cached_mode_is_single = cached_frame[1] <= INTRA_FRAME; // If the cached mode is intra, then we just need to match the mode. if (is_mode_intra(cached_mode) && mode != cached_mode) { return 1; } // If the cached mode is single inter mode, then we match the mode and // reference frame. if (cached_mode_is_single) { if (mode != cached_mode || ref_frame[0] != cached_frame[0]) { return 1; } } else { // If the cached mode is compound, then we need to consider several cases. const int mode_is_single = ref_frame[1] <= INTRA_FRAME; if (mode_is_single) { // If the mode is single, we know the modes can't match. But we might // still want to search it if compound mode depends on the current mode. int skip_motion_mode_only = 0; if (cached_mode == NEW_NEARMV || cached_mode == NEW_NEARESTMV) { skip_motion_mode_only = (ref_frame[0] == cached_frame[0]); } else if (cached_mode == NEAR_NEWMV || cached_mode == NEAREST_NEWMV) { skip_motion_mode_only = (ref_frame[0] == cached_frame[1]); } else if (cached_mode == NEW_NEWMV) { skip_motion_mode_only = (ref_frame[0] == cached_frame[0] || ref_frame[0] == cached_frame[1]); } return 1 + skip_motion_mode_only; } else { // If both modes are compound, then everything must match. if (mode != cached_mode || ref_frame[0] != cached_frame[0] || ref_frame[1] != cached_frame[1]) { return 1; } } } } const MB_MODE_INFO *const mbmi = x->e_mbd.mi[0]; // If no valid mode has been found so far in PARTITION_NONE when finding a // valid partition is required, do not skip mode. if (search_state->best_rd == INT64_MAX && mbmi->partition == PARTITION_NONE && x->must_find_valid_partition) return 0; const SPEED_FEATURES *const sf = &cpi->sf; // Prune NEARMV and NEAR_NEARMV based on q index and neighbor's reference // frames if (sf->inter_sf.prune_nearmv_using_neighbors && (mode == NEAR_NEARMV || mode == NEARMV)) { const MACROBLOCKD *const xd = &x->e_mbd; if (search_state->best_rd != INT64_MAX && xd->left_available && xd->up_available) { const int thresholds[PRUNE_NEARMV_MAX][3] = { { 1, 0, 0 }, { 1, 1, 0 }, { 2, 1, 0 } }; const int qindex_sub_range = x->qindex * 3 / QINDEX_RANGE; assert(sf->inter_sf.prune_nearmv_using_neighbors <= PRUNE_NEARMV_MAX && qindex_sub_range < 3); const int num_ref_frame_pair_match_thresh = thresholds[sf->inter_sf.prune_nearmv_using_neighbors - 1] [qindex_sub_range]; assert(num_ref_frame_pair_match_thresh <= 2 && num_ref_frame_pair_match_thresh >= 0); int num_ref_frame_pair_match = 0; num_ref_frame_pair_match = match_ref_frame_pair(xd->left_mbmi, ref_frame); num_ref_frame_pair_match += match_ref_frame_pair(xd->above_mbmi, ref_frame); // Pruning based on ref frame pair match with neighbors. if (num_ref_frame_pair_match < num_ref_frame_pair_match_thresh) return 1; } } int skip_motion_mode = 0; if (mbmi->partition != PARTITION_NONE) { int skip_ref = skip_ref_frame_mask & (1 << ref_type); if (ref_type <= ALTREF_FRAME && skip_ref) { // Since the compound ref modes depends on the motion estimation result of // two single ref modes (best mv of single ref modes as the start point), // if current single ref mode is marked skip, we need to check if it will // be used in compound ref modes. if (is_ref_frame_used_by_compound_ref(ref_type, skip_ref_frame_mask)) { // Found a not skipped compound ref mode which contains current // single ref. So this single ref can't be skipped completely // Just skip its motion mode search, still try its simple // transition mode. skip_motion_mode = 1; skip_ref = 0; } } // If we are reusing the prediction from cache, and the current frame is // required by the cache, then we cannot prune it. if (is_ref_frame_used_in_cache(ref_type, x->mb_mode_cache)) { skip_ref = 0; // If the cache only needs the current reference type for compound // prediction, then we can skip motion mode search. skip_motion_mode = (ref_type <= ALTREF_FRAME && x->mb_mode_cache->ref_frame[1] > INTRA_FRAME); } if (skip_ref) return 1; } if (ref_frame[0] == INTRA_FRAME) { if (mode != DC_PRED) { // Disable intra modes other than DC_PRED for blocks with low variance // Threshold for intra skipping based on source variance // TODO(debargha): Specialize the threshold for super block sizes const unsigned int skip_intra_var_thresh = 64; if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_LOWVAR) && x->source_variance < skip_intra_var_thresh) return 1; } } if (skip_motion_mode) return 2; return 0; } static INLINE void init_mbmi(MB_MODE_INFO *mbmi, PREDICTION_MODE curr_mode, const MV_REFERENCE_FRAME *ref_frames, const AV1_COMMON *cm) { PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; mbmi->ref_mv_idx = 0; mbmi->mode = curr_mode; mbmi->uv_mode = UV_DC_PRED; mbmi->ref_frame[0] = ref_frames[0]; mbmi->ref_frame[1] = ref_frames[1]; pmi->palette_size[0] = 0; pmi->palette_size[1] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->mv[0].as_int = mbmi->mv[1].as_int = 0; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->interintra_mode = (INTERINTRA_MODE)(II_DC_PRED - 1); set_default_interp_filters(mbmi, cm->features.interp_filter); } static AOM_INLINE void collect_single_states(MACROBLOCK *x, InterModeSearchState *search_state, const MB_MODE_INFO *const mbmi) { int i, j; const MV_REFERENCE_FRAME ref_frame = mbmi->ref_frame[0]; const PREDICTION_MODE this_mode = mbmi->mode; const int dir = ref_frame <= GOLDEN_FRAME ? 0 : 1; const int mode_offset = INTER_OFFSET(this_mode); const int ref_set = get_drl_refmv_count(x, mbmi->ref_frame, this_mode); // Simple rd int64_t simple_rd = search_state->simple_rd[this_mode][0][ref_frame]; for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { const int64_t rd = search_state->simple_rd[this_mode][ref_mv_idx][ref_frame]; if (rd < simple_rd) simple_rd = rd; } // Insertion sort of single_state const SingleInterModeState this_state_s = { simple_rd, ref_frame, 1 }; SingleInterModeState *state_s = search_state->single_state[dir][mode_offset]; i = search_state->single_state_cnt[dir][mode_offset]; for (j = i; j > 0 && state_s[j - 1].rd > this_state_s.rd; --j) state_s[j] = state_s[j - 1]; state_s[j] = this_state_s; search_state->single_state_cnt[dir][mode_offset]++; // Modelled rd int64_t modelled_rd = search_state->modelled_rd[this_mode][0][ref_frame]; for (int ref_mv_idx = 1; ref_mv_idx < ref_set; ++ref_mv_idx) { const int64_t rd = search_state->modelled_rd[this_mode][ref_mv_idx][ref_frame]; if (rd < modelled_rd) modelled_rd = rd; } // Insertion sort of single_state_modelled const SingleInterModeState this_state_m = { modelled_rd, ref_frame, 1 }; SingleInterModeState *state_m = search_state->single_state_modelled[dir][mode_offset]; i = search_state->single_state_modelled_cnt[dir][mode_offset]; for (j = i; j > 0 && state_m[j - 1].rd > this_state_m.rd; --j) state_m[j] = state_m[j - 1]; state_m[j] = this_state_m; search_state->single_state_modelled_cnt[dir][mode_offset]++; } static AOM_INLINE void analyze_single_states( const AV1_COMP *cpi, InterModeSearchState *search_state) { const int prune_level = cpi->sf.inter_sf.prune_comp_search_by_single_result; assert(prune_level >= 1); int i, j, dir, mode; for (dir = 0; dir < 2; ++dir) { int64_t best_rd; SingleInterModeState(*state)[FWD_REFS]; const int prune_factor = prune_level >= 2 ? 6 : 5; // Use the best rd of GLOBALMV or NEWMV to prune the unlikely // reference frames for all the modes (NEARESTMV and NEARMV may not // have same motion vectors). Always keep the best of each mode // because it might form the best possible combination with other mode. state = search_state->single_state[dir]; best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, state[INTER_OFFSET(GLOBALMV)][0].rd); for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { for (i = 1; i < search_state->single_state_cnt[dir][mode]; ++i) { if (state[mode][i].rd != INT64_MAX && (state[mode][i].rd >> 3) * prune_factor > best_rd) { state[mode][i].valid = 0; } } } state = search_state->single_state_modelled[dir]; best_rd = AOMMIN(state[INTER_OFFSET(NEWMV)][0].rd, state[INTER_OFFSET(GLOBALMV)][0].rd); for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { for (i = 1; i < search_state->single_state_modelled_cnt[dir][mode]; ++i) { if (state[mode][i].rd != INT64_MAX && (state[mode][i].rd >> 3) * prune_factor > best_rd) { state[mode][i].valid = 0; } } } } // Ordering by simple rd first, then by modelled rd for (dir = 0; dir < 2; ++dir) { for (mode = 0; mode < SINGLE_INTER_MODE_NUM; ++mode) { const int state_cnt_s = search_state->single_state_cnt[dir][mode]; const int state_cnt_m = search_state->single_state_modelled_cnt[dir][mode]; SingleInterModeState *state_s = search_state->single_state[dir][mode]; SingleInterModeState *state_m = search_state->single_state_modelled[dir][mode]; int count = 0; const int max_candidates = AOMMAX(state_cnt_s, state_cnt_m); for (i = 0; i < state_cnt_s; ++i) { if (state_s[i].rd == INT64_MAX) break; if (state_s[i].valid) { search_state->single_rd_order[dir][mode][count++] = state_s[i].ref_frame; } } if (count >= max_candidates) continue; for (i = 0; i < state_cnt_m && count < max_candidates; ++i) { if (state_m[i].rd == INT64_MAX) break; if (!state_m[i].valid) continue; const int ref_frame = state_m[i].ref_frame; int match = 0; // Check if existing already for (j = 0; j < count; ++j) { if (search_state->single_rd_order[dir][mode][j] == ref_frame) { match = 1; break; } } if (match) continue; // Check if this ref_frame is removed in simple rd int valid = 1; for (j = 0; j < state_cnt_s; ++j) { if (ref_frame == state_s[j].ref_frame) { valid = state_s[j].valid; break; } } if (valid) { search_state->single_rd_order[dir][mode][count++] = ref_frame; } } } } } static int compound_skip_get_candidates( const AV1_COMP *cpi, const InterModeSearchState *search_state, const int dir, const PREDICTION_MODE mode) { const int mode_offset = INTER_OFFSET(mode); const SingleInterModeState *state = search_state->single_state[dir][mode_offset]; const SingleInterModeState *state_modelled = search_state->single_state_modelled[dir][mode_offset]; int max_candidates = 0; for (int i = 0; i < FWD_REFS; ++i) { if (search_state->single_rd_order[dir][mode_offset][i] == NONE_FRAME) break; max_candidates++; } int candidates = max_candidates; if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 2) { candidates = AOMMIN(2, max_candidates); } if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 3) { if (state[0].rd != INT64_MAX && state_modelled[0].rd != INT64_MAX && state[0].ref_frame == state_modelled[0].ref_frame) candidates = 1; if (mode == NEARMV || mode == GLOBALMV) candidates = 1; } if (cpi->sf.inter_sf.prune_comp_search_by_single_result >= 4) { // Limit the number of candidates to 1 in each direction for compound // prediction candidates = AOMMIN(1, candidates); } return candidates; } static int compound_skip_by_single_states( const AV1_COMP *cpi, const InterModeSearchState *search_state, const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame, const MV_REFERENCE_FRAME second_ref_frame, const MACROBLOCK *x) { const MV_REFERENCE_FRAME refs[2] = { ref_frame, second_ref_frame }; const int mode[2] = { compound_ref0_mode(this_mode), compound_ref1_mode(this_mode) }; const int mode_offset[2] = { INTER_OFFSET(mode[0]), INTER_OFFSET(mode[1]) }; const int mode_dir[2] = { refs[0] <= GOLDEN_FRAME ? 0 : 1, refs[1] <= GOLDEN_FRAME ? 0 : 1 }; int ref_searched[2] = { 0, 0 }; int ref_mv_match[2] = { 1, 1 }; int i, j; for (i = 0; i < 2; ++i) { const SingleInterModeState *state = search_state->single_state[mode_dir[i]][mode_offset[i]]; const int state_cnt = search_state->single_state_cnt[mode_dir[i]][mode_offset[i]]; for (j = 0; j < state_cnt; ++j) { if (state[j].ref_frame == refs[i]) { ref_searched[i] = 1; break; } } } const int ref_set = get_drl_refmv_count(x, refs, this_mode); for (i = 0; i < 2; ++i) { if (!ref_searched[i] || (mode[i] != NEARESTMV && mode[i] != NEARMV)) { continue; } const MV_REFERENCE_FRAME single_refs[2] = { refs[i], NONE_FRAME }; for (int ref_mv_idx = 0; ref_mv_idx < ref_set; ref_mv_idx++) { int_mv single_mv; int_mv comp_mv; get_this_mv(&single_mv, mode[i], 0, ref_mv_idx, 0, single_refs, &x->mbmi_ext); get_this_mv(&comp_mv, this_mode, i, ref_mv_idx, 0, refs, &x->mbmi_ext); if (single_mv.as_int != comp_mv.as_int) { ref_mv_match[i] = 0; break; } } } for (i = 0; i < 2; ++i) { if (!ref_searched[i] || !ref_mv_match[i]) continue; const int candidates = compound_skip_get_candidates(cpi, search_state, mode_dir[i], mode[i]); const MV_REFERENCE_FRAME *ref_order = search_state->single_rd_order[mode_dir[i]][mode_offset[i]]; int match = 0; for (j = 0; j < candidates; ++j) { if (refs[i] == ref_order[j]) { match = 1; break; } } if (!match) return 1; } return 0; } // Check if ref frames of current block matches with given block. static INLINE void match_ref_frame(const MB_MODE_INFO *const mbmi, const MV_REFERENCE_FRAME *ref_frames, int *const is_ref_match) { if (is_inter_block(mbmi)) { is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[0]; is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[0]; if (has_second_ref(mbmi)) { is_ref_match[0] |= ref_frames[0] == mbmi->ref_frame[1]; is_ref_match[1] |= ref_frames[1] == mbmi->ref_frame[1]; } } } // Prune compound mode using ref frames of neighbor blocks. static INLINE int compound_skip_using_neighbor_refs( MACROBLOCKD *const xd, const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames, int prune_ext_comp_using_neighbors) { // Exclude non-extended compound modes from pruning if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV || this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV) return 0; if (prune_ext_comp_using_neighbors >= 3) return 1; int is_ref_match[2] = { 0 }; // 0 - match for forward refs // 1 - match for backward refs // Check if ref frames of this block matches with left neighbor. if (xd->left_available) match_ref_frame(xd->left_mbmi, ref_frames, is_ref_match); // Check if ref frames of this block matches with above neighbor. if (xd->up_available) match_ref_frame(xd->above_mbmi, ref_frames, is_ref_match); // Combine ref frame match with neighbors in forward and backward refs. const int track_ref_match = is_ref_match[0] + is_ref_match[1]; // Pruning based on ref frame match with neighbors. if (track_ref_match >= prune_ext_comp_using_neighbors) return 0; return 1; } // Update best single mode for the given reference frame based on simple rd. static INLINE void update_best_single_mode(InterModeSearchState *search_state, const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME ref_frame, int64_t this_rd) { if (this_rd < search_state->best_single_rd[ref_frame]) { search_state->best_single_rd[ref_frame] = this_rd; search_state->best_single_mode[ref_frame] = this_mode; } } // Prune compound mode using best single mode for the same reference. static INLINE int skip_compound_using_best_single_mode_ref( const PREDICTION_MODE this_mode, const MV_REFERENCE_FRAME *ref_frames, const PREDICTION_MODE *best_single_mode, int prune_comp_using_best_single_mode_ref) { // Exclude non-extended compound modes from pruning if (this_mode == NEAREST_NEARESTMV || this_mode == NEAR_NEARMV || this_mode == NEW_NEWMV || this_mode == GLOBAL_GLOBALMV) return 0; assert(this_mode >= NEAREST_NEWMV && this_mode <= NEW_NEARMV); const PREDICTION_MODE comp_mode_ref0 = compound_ref0_mode(this_mode); // Get ref frame direction corresponding to NEWMV // 0 - NEWMV corresponding to forward direction // 1 - NEWMV corresponding to backward direction const int newmv_dir = comp_mode_ref0 != NEWMV; // Avoid pruning the compound mode when ref frame corresponding to NEWMV // have NEWMV as single mode winner. // Example: For an extended-compound mode, // {mode, {fwd_frame, bwd_frame}} = {NEAR_NEWMV, {LAST_FRAME, ALTREF_FRAME}} // - Ref frame corresponding to NEWMV is ALTREF_FRAME // - Avoid pruning this mode, if best single mode corresponding to ref frame // ALTREF_FRAME is NEWMV const PREDICTION_MODE single_mode = best_single_mode[ref_frames[newmv_dir]]; if (single_mode == NEWMV) return 0; // Avoid pruning the compound mode when best single mode is not available if (prune_comp_using_best_single_mode_ref == 1) if (single_mode == MB_MODE_COUNT) return 0; return 1; } static int compare_int64(const void *a, const void *b) { int64_t a64 = *((int64_t *)a); int64_t b64 = *((int64_t *)b); if (a64 < b64) { return -1; } else if (a64 == b64) { return 0; } else { return 1; } } static INLINE void update_search_state( InterModeSearchState *search_state, RD_STATS *best_rd_stats_dst, PICK_MODE_CONTEXT *ctx, const RD_STATS *new_best_rd_stats, const RD_STATS *new_best_rd_stats_y, const RD_STATS *new_best_rd_stats_uv, THR_MODES new_best_mode, const MACROBLOCK *x, int txfm_search_done) { const MACROBLOCKD *xd = &x->e_mbd; const MB_MODE_INFO *mbmi = xd->mi[0]; const int skip_ctx = av1_get_skip_txfm_context(xd); const int skip_txfm = mbmi->skip_txfm && !is_mode_intra(av1_mode_defs[new_best_mode].mode); const TxfmSearchInfo *txfm_info = &x->txfm_search_info; search_state->best_rd = new_best_rd_stats->rdcost; search_state->best_mode_index = new_best_mode; *best_rd_stats_dst = *new_best_rd_stats; search_state->best_mbmode = *mbmi; search_state->best_skip2 = skip_txfm; search_state->best_mode_skippable = new_best_rd_stats->skip_txfm; // When !txfm_search_done, new_best_rd_stats won't provide correct rate_y and // rate_uv because av1_txfm_search process is replaced by rd estimation. // Therefore, we should avoid updating best_rate_y and best_rate_uv here. // These two values will be updated when av1_txfm_search is called. if (txfm_search_done) { search_state->best_rate_y = new_best_rd_stats_y->rate + x->mode_costs.skip_txfm_cost[skip_ctx] [new_best_rd_stats->skip_txfm || skip_txfm]; search_state->best_rate_uv = new_best_rd_stats_uv->rate; } search_state->best_y_rdcost = *new_best_rd_stats_y; memcpy(ctx->blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); } // Find the best RD for a reference frame (among single reference modes) // and store +10% of it in the 0-th element in ref_frame_rd. static AOM_INLINE void find_top_ref(int64_t ref_frame_rd[REF_FRAMES]) { assert(ref_frame_rd[0] == INT64_MAX); int64_t ref_copy[REF_FRAMES - 1]; memcpy(ref_copy, ref_frame_rd + 1, sizeof(ref_frame_rd[0]) * (REF_FRAMES - 1)); qsort(ref_copy, REF_FRAMES - 1, sizeof(int64_t), compare_int64); int64_t cutoff = ref_copy[0]; // The cut-off is within 10% of the best. if (cutoff != INT64_MAX) { assert(cutoff < INT64_MAX / 200); cutoff = (110 * cutoff) / 100; } ref_frame_rd[0] = cutoff; } // Check if either frame is within the cutoff. static INLINE bool in_single_ref_cutoff(int64_t ref_frame_rd[REF_FRAMES], MV_REFERENCE_FRAME frame1, MV_REFERENCE_FRAME frame2) { assert(frame2 > 0); return ref_frame_rd[frame1] <= ref_frame_rd[0] || ref_frame_rd[frame2] <= ref_frame_rd[0]; } static AOM_INLINE void evaluate_motion_mode_for_winner_candidates( const AV1_COMP *const cpi, MACROBLOCK *const x, RD_STATS *const rd_cost, HandleInterModeArgs *const args, TileDataEnc *const tile_data, PICK_MODE_CONTEXT *const ctx, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], const motion_mode_best_st_candidate *const best_motion_mode_cands, int do_tx_search, const BLOCK_SIZE bsize, int64_t *const best_est_rd, InterModeSearchState *const search_state, int64_t *yrd) { const AV1_COMMON *const cm = &cpi->common; const int num_planes = av1_num_planes(cm); MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; InterModesInfo *const inter_modes_info = x->inter_modes_info; const int num_best_cand = best_motion_mode_cands->num_motion_mode_cand; for (int cand = 0; cand < num_best_cand; cand++) { RD_STATS rd_stats; RD_STATS rd_stats_y; RD_STATS rd_stats_uv; av1_init_rd_stats(&rd_stats); av1_init_rd_stats(&rd_stats_y); av1_init_rd_stats(&rd_stats_uv); int rate_mv; rate_mv = best_motion_mode_cands->motion_mode_cand[cand].rate_mv; args->skip_motion_mode = best_motion_mode_cands->motion_mode_cand[cand].skip_motion_mode; *mbmi = best_motion_mode_cands->motion_mode_cand[cand].mbmi; rd_stats.rate = best_motion_mode_cands->motion_mode_cand[cand].rate2_nocoeff; // Continue if the best candidate is compound. if (!is_inter_singleref_mode(mbmi->mode)) continue; x->txfm_search_info.skip_txfm = 0; struct macroblockd_plane *pd = xd->plane; const BUFFER_SET orig_dst = { { pd[0].dst.buf, pd[1].dst.buf, pd[2].dst.buf }, { pd[0].dst.stride, pd[1].dst.stride, pd[2].dst.stride }, }; set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Initialize motion mode to simple translation // Calculation of switchable rate depends on it. mbmi->motion_mode = 0; const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; } int64_t skip_rd[2] = { search_state->best_skip_rd[0], search_state->best_skip_rd[1] }; int64_t this_yrd = INT64_MAX; int64_t ret_value = motion_mode_rd( cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, args, search_state->best_rd, skip_rd, &rate_mv, &orig_dst, best_est_rd, do_tx_search, inter_modes_info, 1, &this_yrd); if (ret_value != INT64_MAX) { rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); const THR_MODES mode_enum = get_prediction_mode_idx( mbmi->mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Collect mode stats for multiwinner mode processing store_winner_mode_stats( &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum, NULL, bsize, rd_stats.rdcost, cpi->sf.winner_mode_sf.multi_winner_mode_type, do_tx_search); if (rd_stats.rdcost < search_state->best_rd) { *yrd = this_yrd; update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum, x, do_tx_search); if (do_tx_search) search_state->best_skip_rd[0] = skip_rd[0]; } } } } /*!\cond */ // Arguments for speed feature pruning of inter mode search typedef struct { int *skip_motion_mode; mode_skip_mask_t *mode_skip_mask; InterModeSearchState *search_state; int skip_ref_frame_mask; int reach_first_comp_mode; int mode_thresh_mul_fact; int num_single_modes_processed; int prune_cpd_using_sr_stats_ready; } InterModeSFArgs; /*!\endcond */ static int skip_inter_mode(AV1_COMP *cpi, MACROBLOCK *x, const BLOCK_SIZE bsize, int64_t *ref_frame_rd, int midx, InterModeSFArgs *args, int is_low_temp_var) { const SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; // Get the actual prediction mode we are trying in this iteration const THR_MODES mode_enum = av1_default_mode_order[midx]; const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum]; const PREDICTION_MODE this_mode = mode_def->mode; const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame; const MV_REFERENCE_FRAME ref_frame = ref_frames[0]; const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1]; const int comp_pred = second_ref_frame > INTRA_FRAME; if (ref_frame == INTRA_FRAME) return 1; const FRAME_UPDATE_TYPE update_type = get_frame_update_type(&cpi->ppi->gf_group, cpi->gf_frame_index); if (sf->inter_sf.skip_arf_compound && update_type == ARF_UPDATE && comp_pred) { return 1; } // This is for real time encoding. if (is_low_temp_var && !comp_pred && ref_frame != LAST_FRAME && this_mode != NEARESTMV) return 1; // Check if this mode should be skipped because it is incompatible with the // current frame if (inter_mode_compatible_skip(cpi, x, bsize, this_mode, ref_frames)) return 1; const int ret = inter_mode_search_order_independent_skip( cpi, x, args->mode_skip_mask, args->search_state, args->skip_ref_frame_mask, this_mode, mode_def->ref_frame); if (ret == 1) return 1; *(args->skip_motion_mode) = (ret == 2); // We've reached the first compound prediction mode, get stats from the // single reference predictors to help with pruning. // Disable this pruning logic if interpolation filter search was skipped for // single prediction modes as it can result in aggressive pruning of compound // prediction modes due to the absence of modelled_rd populated by // av1_interpolation_filter_search(). // TODO(Remya): Check the impact of the sf // 'prune_comp_search_by_single_result' if compound prediction modes are // enabled in future for REALTIME encode. if (!sf->interp_sf.skip_interp_filter_search && sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred && args->reach_first_comp_mode == 0) { analyze_single_states(cpi, args->search_state); args->reach_first_comp_mode = 1; } // Prune aggressively when best mode is skippable. int mul_fact = args->search_state->best_mode_skippable ? args->mode_thresh_mul_fact : (1 << MODE_THRESH_QBITS); int64_t mode_threshold = (args->search_state->mode_threshold[mode_enum] * mul_fact) >> MODE_THRESH_QBITS; if (args->search_state->best_rd < mode_threshold) return 1; // Skip this compound mode based on the RD results from the single prediction // modes if (!sf->interp_sf.skip_interp_filter_search && sf->inter_sf.prune_comp_search_by_single_result > 0 && comp_pred) { if (compound_skip_by_single_states(cpi, args->search_state, this_mode, ref_frame, second_ref_frame, x)) return 1; } if (sf->inter_sf.prune_compound_using_single_ref && comp_pred) { // After we done with single reference modes, find the 2nd best RD // for a reference frame. Only search compound modes that have a reference // frame at least as good as the 2nd best. if (!args->prune_cpd_using_sr_stats_ready && args->num_single_modes_processed == NUM_SINGLE_REF_MODES) { find_top_ref(ref_frame_rd); args->prune_cpd_using_sr_stats_ready = 1; } if (args->prune_cpd_using_sr_stats_ready && !in_single_ref_cutoff(ref_frame_rd, ref_frame, second_ref_frame)) return 1; } // Skip NEW_NEARMV and NEAR_NEWMV extended compound modes if (sf->inter_sf.skip_ext_comp_nearmv_mode && (this_mode == NEW_NEARMV || this_mode == NEAR_NEWMV)) { return 1; } if (sf->inter_sf.prune_ext_comp_using_neighbors && comp_pred) { if (compound_skip_using_neighbor_refs( xd, this_mode, ref_frames, sf->inter_sf.prune_ext_comp_using_neighbors)) return 1; } if (sf->inter_sf.prune_comp_using_best_single_mode_ref && comp_pred) { if (skip_compound_using_best_single_mode_ref( this_mode, ref_frames, args->search_state->best_single_mode, sf->inter_sf.prune_comp_using_best_single_mode_ref)) return 1; } if (sf->inter_sf.prune_nearest_near_mv_using_refmv_weight && !comp_pred) { const int8_t ref_frame_type = av1_ref_frame_type(ref_frames); if (skip_nearest_near_mv_using_refmv_weight( x, this_mode, ref_frame_type, args->search_state->best_mbmode.mode)) { // Ensure the mode is pruned only when the current block has obtained a // valid inter mode. assert(is_inter_mode(args->search_state->best_mbmode.mode)); return 1; } } if (sf->rt_sf.prune_inter_modes_with_golden_ref && ref_frame == GOLDEN_FRAME && !comp_pred) { const int subgop_size = AOMMIN(cpi->ppi->gf_group.size, FIXED_GF_INTERVAL); if (cpi->rc.frames_since_golden > (subgop_size >> 2) && args->search_state->best_mbmode.ref_frame[0] != GOLDEN_FRAME) { if ((bsize > BLOCK_16X16 && this_mode == NEWMV) || this_mode == NEARMV) return 1; } } return 0; } static void record_best_compound(REFERENCE_MODE reference_mode, RD_STATS *rd_stats, int comp_pred, int rdmult, InterModeSearchState *search_state, int compmode_cost) { int64_t single_rd, hybrid_rd, single_rate, hybrid_rate; if (reference_mode == REFERENCE_MODE_SELECT) { single_rate = rd_stats->rate - compmode_cost; hybrid_rate = rd_stats->rate; } else { single_rate = rd_stats->rate; hybrid_rate = rd_stats->rate + compmode_cost; } single_rd = RDCOST(rdmult, single_rate, rd_stats->dist); hybrid_rd = RDCOST(rdmult, hybrid_rate, rd_stats->dist); if (!comp_pred) { if (single_rd < search_state->best_pred_rd[SINGLE_REFERENCE]) search_state->best_pred_rd[SINGLE_REFERENCE] = single_rd; } else { if (single_rd < search_state->best_pred_rd[COMPOUND_REFERENCE]) search_state->best_pred_rd[COMPOUND_REFERENCE] = single_rd; } if (hybrid_rd < search_state->best_pred_rd[REFERENCE_MODE_SELECT]) search_state->best_pred_rd[REFERENCE_MODE_SELECT] = hybrid_rd; } // Does a transform search over a list of the best inter mode candidates. // This is called if the original mode search computed an RD estimate // for the transform search rather than doing a full search. static void tx_search_best_inter_candidates( AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, int64_t best_rd_so_far, BLOCK_SIZE bsize, struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE], int mi_row, int mi_col, InterModeSearchState *search_state, RD_STATS *rd_cost, PICK_MODE_CONTEXT *ctx, int64_t *yrd) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TxfmSearchInfo *txfm_info = &x->txfm_search_info; const ModeCosts *mode_costs = &x->mode_costs; const int num_planes = av1_num_planes(cm); const int skip_ctx = av1_get_skip_txfm_context(xd); MB_MODE_INFO *const mbmi = xd->mi[0]; InterModesInfo *inter_modes_info = x->inter_modes_info; inter_modes_info_sort(inter_modes_info, inter_modes_info->rd_idx_pair_arr); search_state->best_rd = best_rd_so_far; search_state->best_mode_index = THR_INVALID; // Initialize best mode stats for winner mode processing x->winner_mode_count = 0; store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID, NULL, bsize, best_rd_so_far, cpi->sf.winner_mode_sf.multi_winner_mode_type, 0); inter_modes_info->num = inter_modes_info->num < cpi->sf.rt_sf.num_inter_modes_for_tx_search ? inter_modes_info->num : cpi->sf.rt_sf.num_inter_modes_for_tx_search; const int64_t top_est_rd = inter_modes_info->num > 0 ? inter_modes_info ->est_rd_arr[inter_modes_info->rd_idx_pair_arr[0].idx] : INT64_MAX; *yrd = INT64_MAX; int64_t best_rd_in_this_partition = INT64_MAX; int num_inter_mode_cands = inter_modes_info->num; int newmv_mode_evaled = 0; int max_allowed_cands = INT_MAX; if (cpi->sf.inter_sf.limit_inter_mode_cands) { // The bound on the no. of inter mode candidates, beyond which the // candidates are limited if a newmv mode got evaluated, is set as // max_allowed_cands + 1. const int num_allowed_cands[5] = { INT_MAX, 10, 9, 6, 2 }; assert(cpi->sf.inter_sf.limit_inter_mode_cands <= 4); max_allowed_cands = num_allowed_cands[cpi->sf.inter_sf.limit_inter_mode_cands]; } int num_mode_thresh = INT_MAX; if (cpi->sf.inter_sf.limit_txfm_eval_per_mode) { // Bound the no. of transform searches per prediction mode beyond a // threshold. const int num_mode_thresh_ary[4] = { INT_MAX, 4, 3, 0 }; assert(cpi->sf.inter_sf.limit_txfm_eval_per_mode <= 3); num_mode_thresh = num_mode_thresh_ary[cpi->sf.inter_sf.limit_txfm_eval_per_mode]; } int num_tx_cands = 0; int num_tx_search_modes[INTER_MODE_END - INTER_MODE_START] = { 0 }; // Iterate over best inter mode candidates and perform tx search for (int j = 0; j < num_inter_mode_cands; ++j) { const int data_idx = inter_modes_info->rd_idx_pair_arr[j].idx; *mbmi = inter_modes_info->mbmi_arr[data_idx]; const PREDICTION_MODE prediction_mode = mbmi->mode; int64_t curr_est_rd = inter_modes_info->est_rd_arr[data_idx]; if (curr_est_rd * 0.80 > top_est_rd) break; if (num_tx_cands > num_mode_thresh) { if ((prediction_mode != NEARESTMV && num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 1) || (prediction_mode == NEARESTMV && num_tx_search_modes[prediction_mode - INTER_MODE_START] >= 2)) continue; } txfm_info->skip_txfm = 0; set_ref_ptrs(cm, xd, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Select prediction reference frames. const int is_comp_pred = mbmi->ref_frame[1] > INTRA_FRAME; for (int i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = yv12_mb[mbmi->ref_frame[0]][i]; if (is_comp_pred) xd->plane[i].pre[1] = yv12_mb[mbmi->ref_frame[1]][i]; } bool is_predictor_built = false; // Initialize RD stats RD_STATS rd_stats; RD_STATS rd_stats_y; RD_STATS rd_stats_uv; const int mode_rate = inter_modes_info->mode_rate_arr[data_idx]; int64_t skip_rd = INT64_MAX; const int txfm_rd_gate_level = get_txfm_rd_gate_level( cm->seq_params->enable_masked_compound, cpi->sf.inter_sf.txfm_rd_gate_level, bsize, TX_SEARCH_DEFAULT, /*eval_motion_mode=*/0); if (txfm_rd_gate_level) { // Check if the mode is good enough based on skip RD int64_t curr_sse = inter_modes_info->sse_arr[data_idx]; skip_rd = RDCOST(x->rdmult, mode_rate, curr_sse); int eval_txfm = check_txfm_eval(x, bsize, search_state->best_skip_rd[0], skip_rd, txfm_rd_gate_level, 0); if (!eval_txfm) continue; } // Build the prediction for this mode if (!is_predictor_built) { av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, bsize, 0, av1_num_planes(cm) - 1); } if (mbmi->motion_mode == OBMC_CAUSAL) { av1_build_obmc_inter_predictors_sb(cm, xd); } num_tx_cands++; if (have_newmv_in_inter_mode(prediction_mode)) newmv_mode_evaled = 1; num_tx_search_modes[prediction_mode - INTER_MODE_START]++; int64_t this_yrd = INT64_MAX; // Do the transform search if (!av1_txfm_search(cpi, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_rate, search_state->best_rd)) { continue; } else { const int y_rate = rd_stats.skip_txfm ? mode_costs->skip_txfm_cost[skip_ctx][1] : (rd_stats_y.rate + mode_costs->skip_txfm_cost[skip_ctx][0]); this_yrd = RDCOST(x->rdmult, y_rate + mode_rate, rd_stats_y.dist); if (cpi->sf.inter_sf.inter_mode_rd_model_estimation == 1) { inter_mode_data_push( tile_data, mbmi->bsize, rd_stats.sse, rd_stats.dist, rd_stats_y.rate + rd_stats_uv.rate + mode_costs->skip_txfm_cost[skip_ctx][mbmi->skip_txfm]); } } rd_stats.rdcost = RDCOST(x->rdmult, rd_stats.rate, rd_stats.dist); if (rd_stats.rdcost < best_rd_in_this_partition) { best_rd_in_this_partition = rd_stats.rdcost; *yrd = this_yrd; } const THR_MODES mode_enum = get_prediction_mode_idx( prediction_mode, mbmi->ref_frame[0], mbmi->ref_frame[1]); // Collect mode stats for multiwinner mode processing const int txfm_search_done = 1; store_winner_mode_stats( &cpi->common, x, mbmi, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum, NULL, bsize, rd_stats.rdcost, cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); if (rd_stats.rdcost < search_state->best_rd) { update_search_state(search_state, rd_cost, ctx, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum, x, txfm_search_done); search_state->best_skip_rd[0] = skip_rd; // Limit the total number of modes to be evaluated if the first is valid // and transform skip or compound if (cpi->sf.inter_sf.inter_mode_txfm_breakout) { if (!j && (search_state->best_mbmode.skip_txfm || rd_stats.skip_txfm)) { // Evaluate more candidates at high quantizers where occurrence of // transform skip is high. const int max_cands_cap[5] = { 2, 3, 5, 7, 9 }; const int qindex_band = (5 * x->qindex) >> QINDEX_BITS; num_inter_mode_cands = AOMMIN(max_cands_cap[qindex_band], inter_modes_info->num); } else if (!j && has_second_ref(&search_state->best_mbmode)) { const int aggr = cpi->sf.inter_sf.inter_mode_txfm_breakout - 1; // Evaluate more candidates at low quantizers where occurrence of // single reference mode is high. const int max_cands_cap_cmp[2][4] = { { 10, 7, 5, 4 }, { 10, 7, 5, 3 } }; const int qindex_band_cmp = (4 * x->qindex) >> QINDEX_BITS; num_inter_mode_cands = AOMMIN( max_cands_cap_cmp[aggr][qindex_band_cmp], inter_modes_info->num); } } } // If the number of candidates evaluated exceeds max_allowed_cands, break if // a newmv mode was evaluated already. if ((num_tx_cands > max_allowed_cands) && newmv_mode_evaled) break; } } // Indicates number of winner simple translation modes to be used static const unsigned int num_winner_motion_modes[3] = { 0, 10, 3 }; // Adds a motion mode to the candidate list for motion_mode_for_winner_cand // speed feature. This list consists of modes that have only searched // SIMPLE_TRANSLATION. The final list will be used to search other motion // modes after the initial RD search. static void handle_winner_cand( MB_MODE_INFO *const mbmi, motion_mode_best_st_candidate *best_motion_mode_cands, int max_winner_motion_mode_cand, int64_t this_rd, motion_mode_candidate *motion_mode_cand, int skip_motion_mode) { // Number of current motion mode candidates in list const int num_motion_mode_cand = best_motion_mode_cands->num_motion_mode_cand; int valid_motion_mode_cand_loc = num_motion_mode_cand; // find the best location to insert new motion mode candidate for (int j = 0; j < num_motion_mode_cand; j++) { if (this_rd < best_motion_mode_cands->motion_mode_cand[j].rd_cost) { valid_motion_mode_cand_loc = j; break; } } // Insert motion mode if location is found if (valid_motion_mode_cand_loc < max_winner_motion_mode_cand) { if (num_motion_mode_cand > 0 && valid_motion_mode_cand_loc < max_winner_motion_mode_cand - 1) memmove( &best_motion_mode_cands ->motion_mode_cand[valid_motion_mode_cand_loc + 1], &best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc], (AOMMIN(num_motion_mode_cand, max_winner_motion_mode_cand - 1) - valid_motion_mode_cand_loc) * sizeof(best_motion_mode_cands->motion_mode_cand[0])); motion_mode_cand->mbmi = *mbmi; motion_mode_cand->rd_cost = this_rd; motion_mode_cand->skip_motion_mode = skip_motion_mode; best_motion_mode_cands->motion_mode_cand[valid_motion_mode_cand_loc] = *motion_mode_cand; best_motion_mode_cands->num_motion_mode_cand = AOMMIN(max_winner_motion_mode_cand, best_motion_mode_cands->num_motion_mode_cand + 1); } } /*!\brief Search intra modes in interframes * * \ingroup intra_mode_search * * This function searches for the best intra mode when the current frame is an * interframe. This function however does *not* handle luma palette mode. * Palette mode is currently handled by \ref av1_search_palette_mode. * * This function will first iterate through the luma mode candidates to find the * best luma intra mode. Once the best luma mode it's found, it will then search * for the best chroma mode. Because palette mode is currently not handled by * here, a cache of uv mode is stored in * InterModeSearchState::intra_search_state so it can be reused later by \ref * av1_search_palette_mode. * * \param[in,out] search_state Struct keep track of the prediction mode * search state in interframe. * * \param[in] cpi Top-level encoder structure. * \param[in,out] x Pointer to struct holding all the data for * the current prediction block. * \param[out] rd_cost Stores the best rd_cost among all the * prediction modes searched. * \param[in] bsize Current block size. * \param[in,out] ctx Structure to hold the number of 4x4 blks to * copy the tx_type and txfm_skip arrays. * for only the Y plane. * \param[in] sf_args Stores the list of intra mode candidates * to be searched. * \param[in] intra_ref_frame_cost The entropy cost for signaling that the * current ref frame is an intra frame. * \param[in] yrd_threshold The rdcost threshold for luma intra mode to * terminate chroma intra mode search. * * \remark If a new best mode is found, search_state and rd_costs are updated * correspondingly. While x is also modified, it is only used as a temporary * buffer, and the final decisions are stored in search_state. */ static AOM_INLINE void search_intra_modes_in_interframe( InterModeSearchState *search_state, const AV1_COMP *cpi, MACROBLOCK *x, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, const InterModeSFArgs *sf_args, unsigned int intra_ref_frame_cost, int64_t yrd_threshold) { const AV1_COMMON *const cm = &cpi->common; const SPEED_FEATURES *const sf = &cpi->sf; const IntraModeCfg *const intra_mode_cfg = &cpi->oxcf.intra_mode_cfg; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; IntraModeSearchState *intra_search_state = &search_state->intra_search_state; int is_best_y_mode_intra = 0; RD_STATS best_intra_rd_stats_y; int64_t best_rd_y = INT64_MAX; int best_mode_cost_y = -1; MB_MODE_INFO best_mbmi = *xd->mi[0]; THR_MODES best_mode_enum = THR_INVALID; uint8_t best_blk_skip[MAX_MIB_SIZE * MAX_MIB_SIZE]; uint8_t best_tx_type_map[MAX_MIB_SIZE * MAX_MIB_SIZE]; const int num_4x4 = bsize_to_num_blk(bsize); // Performs luma search int64_t best_model_rd = INT64_MAX; int64_t top_intra_model_rd[TOP_INTRA_MODEL_COUNT]; for (int i = 0; i < TOP_INTRA_MODEL_COUNT; i++) { top_intra_model_rd[i] = INT64_MAX; } for (int mode_idx = 0; mode_idx < LUMA_MODE_COUNT; ++mode_idx) { if (sf->intra_sf.skip_intra_in_interframe && search_state->intra_search_state.skip_intra_modes) break; set_y_mode_and_delta_angle( mode_idx, mbmi, sf->intra_sf.prune_luma_odd_delta_angles_in_intra); assert(mbmi->mode < INTRA_MODE_END); // Use intra_y_mode_mask speed feature to skip intra mode evaluation. if (sf_args->mode_skip_mask->pred_modes[INTRA_FRAME] & (1 << mbmi->mode)) continue; const THR_MODES mode_enum = get_prediction_mode_idx(mbmi->mode, INTRA_FRAME, NONE_FRAME); if ((!intra_mode_cfg->enable_smooth_intra || cpi->sf.intra_sf.disable_smooth_intra) && (mbmi->mode == SMOOTH_PRED || mbmi->mode == SMOOTH_H_PRED || mbmi->mode == SMOOTH_V_PRED)) continue; if (!intra_mode_cfg->enable_paeth_intra && mbmi->mode == PAETH_PRED) continue; if (av1_is_directional_mode(mbmi->mode) && !(av1_use_angle_delta(bsize) && intra_mode_cfg->enable_angle_delta) && mbmi->angle_delta[PLANE_TYPE_Y] != 0) continue; const PREDICTION_MODE this_mode = mbmi->mode; assert(av1_mode_defs[mode_enum].ref_frame[0] == INTRA_FRAME); assert(av1_mode_defs[mode_enum].ref_frame[1] == NONE_FRAME); init_mbmi(mbmi, this_mode, av1_mode_defs[mode_enum].ref_frame, cm); x->txfm_search_info.skip_txfm = 0; if (this_mode != DC_PRED) { // Only search the oblique modes if the best so far is // one of the neighboring directional modes if ((sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_BESTINTER) && (this_mode >= D45_PRED && this_mode <= PAETH_PRED)) { if (search_state->best_mode_index != THR_INVALID && search_state->best_mbmode.ref_frame[0] > INTRA_FRAME) continue; } if (sf->rt_sf.mode_search_skip_flags & FLAG_SKIP_INTRA_DIRMISMATCH) { if (conditional_skipintra( this_mode, search_state->intra_search_state.best_intra_mode)) continue; } } RD_STATS intra_rd_stats_y; int mode_cost_y; int64_t intra_rd_y = INT64_MAX; const int is_luma_result_valid = av1_handle_intra_y_mode( intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx, &intra_rd_stats_y, search_state->best_rd, &mode_cost_y, &intra_rd_y, &best_model_rd, top_intra_model_rd); if (is_luma_result_valid && intra_rd_y < yrd_threshold) { is_best_y_mode_intra = 1; if (intra_rd_y < best_rd_y) { best_intra_rd_stats_y = intra_rd_stats_y; best_mode_cost_y = mode_cost_y; best_rd_y = intra_rd_y; best_mbmi = *mbmi; best_mode_enum = mode_enum; memcpy(best_blk_skip, x->txfm_search_info.blk_skip, sizeof(best_blk_skip[0]) * num_4x4); av1_copy_array(best_tx_type_map, xd->tx_type_map, num_4x4); } } } if (!is_best_y_mode_intra) { return; } assert(best_rd_y < INT64_MAX); // Restores the best luma mode *mbmi = best_mbmi; memcpy(x->txfm_search_info.blk_skip, best_blk_skip, sizeof(best_blk_skip[0]) * num_4x4); av1_copy_array(xd->tx_type_map, best_tx_type_map, num_4x4); // Performs chroma search RD_STATS intra_rd_stats, intra_rd_stats_uv; av1_init_rd_stats(&intra_rd_stats); av1_init_rd_stats(&intra_rd_stats_uv); const int num_planes = av1_num_planes(cm); if (num_planes > 1) { const int intra_uv_mode_valid = av1_search_intra_uv_modes_in_interframe( intra_search_state, cpi, x, bsize, &intra_rd_stats, &best_intra_rd_stats_y, &intra_rd_stats_uv, search_state->best_rd); if (!intra_uv_mode_valid) { return; } } // Merge the luma and chroma rd stats assert(best_mode_cost_y >= 0); intra_rd_stats.rate = best_intra_rd_stats_y.rate + best_mode_cost_y; if (!xd->lossless[mbmi->segment_id] && block_signals_txsize(bsize)) { // av1_pick_uniform_tx_size_type_yrd above includes the cost of the tx_size // in the tokenonly rate, but for intra blocks, tx_size is always coded // (prediction granularity), so we account for it in the full rate, // not the tokenonly rate. best_intra_rd_stats_y.rate -= tx_size_cost(x, bsize, mbmi->tx_size); } const ModeCosts *mode_costs = &x->mode_costs; const PREDICTION_MODE mode = mbmi->mode; if (num_planes > 1 && xd->is_chroma_ref) { const int uv_mode_cost = mode_costs->intra_uv_mode_cost[is_cfl_allowed(xd)][mode][mbmi->uv_mode]; intra_rd_stats.rate += intra_rd_stats_uv.rate + intra_mode_info_cost_uv(cpi, x, mbmi, bsize, uv_mode_cost); } // Intra block is always coded as non-skip intra_rd_stats.skip_txfm = 0; intra_rd_stats.dist = best_intra_rd_stats_y.dist + intra_rd_stats_uv.dist; // Add in the cost of the no skip flag. const int skip_ctx = av1_get_skip_txfm_context(xd); intra_rd_stats.rate += mode_costs->skip_txfm_cost[skip_ctx][0]; // Calculate the final RD estimate for this mode. const int64_t this_rd = RDCOST(x->rdmult, intra_rd_stats.rate, intra_rd_stats.dist); // Keep record of best intra rd if (this_rd < search_state->best_intra_rd) { search_state->best_intra_rd = this_rd; intra_search_state->best_intra_mode = mode; } for (int i = 0; i < REFERENCE_MODES; ++i) { search_state->best_pred_rd[i] = AOMMIN(search_state->best_pred_rd[i], this_rd); } intra_rd_stats.rdcost = this_rd; // Collect mode stats for multiwinner mode processing const int txfm_search_done = 1; store_winner_mode_stats( &cpi->common, x, mbmi, &intra_rd_stats, &best_intra_rd_stats_y, &intra_rd_stats_uv, best_mode_enum, NULL, bsize, intra_rd_stats.rdcost, cpi->sf.winner_mode_sf.multi_winner_mode_type, txfm_search_done); if (intra_rd_stats.rdcost < search_state->best_rd) { update_search_state(search_state, rd_cost, ctx, &intra_rd_stats, &best_intra_rd_stats_y, &intra_rd_stats_uv, best_mode_enum, x, txfm_search_done); } } #if !CONFIG_REALTIME_ONLY // Prepare inter_cost and intra_cost from TPL stats, which are used as ML // features in intra mode pruning. static AOM_INLINE void calculate_cost_from_tpl_data( const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int64_t *inter_cost, int64_t *intra_cost) { const AV1_COMMON *const cm = &cpi->common; // Only consider full SB. const BLOCK_SIZE sb_size = cm->seq_params->sb_size; const int tpl_bsize_1d = cpi->ppi->tpl_data.tpl_bsize_1d; const int len = (block_size_wide[sb_size] / tpl_bsize_1d) * (block_size_high[sb_size] / tpl_bsize_1d); SuperBlockEnc *sb_enc = &x->sb_enc; if (sb_enc->tpl_data_count == len) { const BLOCK_SIZE tpl_bsize = convert_length_to_bsize(tpl_bsize_1d); const int tpl_stride = sb_enc->tpl_stride; const int tplw = mi_size_wide[tpl_bsize]; const int tplh = mi_size_high[tpl_bsize]; const int nw = mi_size_wide[bsize] / tplw; const int nh = mi_size_high[bsize] / tplh; if (nw >= 1 && nh >= 1) { const int of_h = mi_row % mi_size_high[sb_size]; const int of_w = mi_col % mi_size_wide[sb_size]; const int start = of_h / tplh * tpl_stride + of_w / tplw; for (int k = 0; k < nh; k++) { for (int l = 0; l < nw; l++) { *inter_cost += sb_enc->tpl_inter_cost[start + k * tpl_stride + l]; *intra_cost += sb_enc->tpl_intra_cost[start + k * tpl_stride + l]; } } *inter_cost /= nw * nh; *intra_cost /= nw * nh; } } } #endif // !CONFIG_REALTIME_ONLY // When the speed feature skip_intra_in_interframe > 0, enable ML model to prune // intra mode search. static AOM_INLINE void skip_intra_modes_in_interframe( AV1_COMMON *const cm, struct macroblock *x, BLOCK_SIZE bsize, InterModeSearchState *search_state, const SPEED_FEATURES *const sf, int64_t inter_cost, int64_t intra_cost) { MACROBLOCKD *const xd = &x->e_mbd; const int comp_pred = search_state->best_mbmode.ref_frame[1] > INTRA_FRAME; if (sf->rt_sf.prune_intra_mode_based_on_mv_range && bsize > sf->part_sf.max_intra_bsize && !comp_pred) { const MV best_mv = search_state->best_mbmode.mv[0].as_mv; const int mv_thresh = 16 << sf->rt_sf.prune_intra_mode_based_on_mv_range; if (abs(best_mv.row) < mv_thresh && abs(best_mv.col) < mv_thresh && x->source_variance > 128) { search_state->intra_search_state.skip_intra_modes = 1; return; } } const unsigned int src_var_thresh_intra_skip = 1; const int skip_intra_in_interframe = sf->intra_sf.skip_intra_in_interframe; if (!(skip_intra_in_interframe && (x->source_variance > src_var_thresh_intra_skip))) return; // Prune intra search based on best inter mode being transfrom skip. if ((skip_intra_in_interframe >= 2) && search_state->best_mbmode.skip_txfm) { const int qindex_thresh[2] = { 200, MAXQ }; const int ind = (skip_intra_in_interframe >= 3) ? 1 : 0; if (!have_newmv_in_inter_mode(search_state->best_mbmode.mode) && (x->qindex <= qindex_thresh[ind])) { search_state->intra_search_state.skip_intra_modes = 1; return; } else if ((skip_intra_in_interframe >= 4) && (inter_cost < 0 || intra_cost < 0)) { search_state->intra_search_state.skip_intra_modes = 1; return; } } // Use ML model to prune intra search. if (inter_cost >= 0 && intra_cost >= 0) { const NN_CONFIG *nn_config = (AOMMIN(cm->width, cm->height) <= 480) ? &av1_intrap_nn_config : &av1_intrap_hd_nn_config; float nn_features[6]; float scores[2] = { 0.0f }; nn_features[0] = (float)search_state->best_mbmode.skip_txfm; nn_features[1] = (float)mi_size_wide_log2[bsize]; nn_features[2] = (float)mi_size_high_log2[bsize]; nn_features[3] = (float)intra_cost; nn_features[4] = (float)inter_cost; const int ac_q = av1_ac_quant_QTX(x->qindex, 0, xd->bd); const int ac_q_max = av1_ac_quant_QTX(255, 0, xd->bd); nn_features[5] = (float)(ac_q_max / ac_q); av1_nn_predict(nn_features, nn_config, 1, scores); // For two parameters, the max prob returned from av1_nn_softmax equals // 1.0 / (1.0 + e^(-|diff_score|)). Here use scores directly to avoid the // calling of av1_nn_softmax. const float thresh[5] = { 1.4f, 1.4f, 1.4f, 1.4f, 1.4f }; assert(skip_intra_in_interframe <= 5); if (scores[1] > scores[0] + thresh[skip_intra_in_interframe - 1]) { search_state->intra_search_state.skip_intra_modes = 1; } } } static AOM_INLINE bool skip_interp_filter_search(const AV1_COMP *cpi, int is_single_pred) { const MODE encoding_mode = cpi->oxcf.mode; if (encoding_mode == REALTIME) { return (cpi->common.current_frame.reference_mode == SINGLE_REFERENCE && (cpi->sf.interp_sf.skip_interp_filter_search || cpi->sf.winner_mode_sf.winner_mode_ifs)); } else if (encoding_mode == GOOD) { // Skip interpolation filter search for single prediction modes. return (cpi->sf.interp_sf.skip_interp_filter_search && is_single_pred); } return false; } static AOM_INLINE int get_block_temp_var(const AV1_COMP *cpi, const MACROBLOCK *x, BLOCK_SIZE bsize) { const AV1_COMMON *const cm = &cpi->common; const SPEED_FEATURES *const sf = &cpi->sf; if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION || !sf->rt_sf.short_circuit_low_temp_var || !sf->rt_sf.prune_inter_modes_using_temp_var) { return 0; } const int mi_row = x->e_mbd.mi_row; const int mi_col = x->e_mbd.mi_col; int is_low_temp_var = 0; if (cm->seq_params->sb_size == BLOCK_64X64) is_low_temp_var = av1_get_force_skip_low_temp_var_small_sb( &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); else is_low_temp_var = av1_get_force_skip_low_temp_var( &x->part_search_info.variance_low[0], mi_row, mi_col, bsize); return is_low_temp_var; } // TODO(chiyotsai@google.com): See the todo for av1_rd_pick_intra_mode_sb. void av1_rd_pick_inter_mode(struct AV1_COMP *cpi, struct TileDataEnc *tile_data, struct macroblock *x, struct RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { AV1_COMMON *const cm = &cpi->common; const FeatureFlags *const features = &cm->features; const int num_planes = av1_num_planes(cm); const SPEED_FEATURES *const sf = &cpi->sf; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; TxfmSearchInfo *txfm_info = &x->txfm_search_info; int i; const ModeCosts *mode_costs = &x->mode_costs; const int *comp_inter_cost = mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)]; InterModeSearchState search_state; init_inter_mode_search_state(&search_state, cpi, x, bsize, best_rd_so_far); INTERINTRA_MODE interintra_modes[REF_FRAMES] = { INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES, INTERINTRA_MODES }; HandleInterModeArgs args = { { NULL }, { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }, { NULL }, { MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1, MAX_SB_SIZE >> 1 }, NULL, NULL, NULL, search_state.modelled_rd, INT_MAX, INT_MAX, search_state.simple_rd, 0, false, interintra_modes, { { { 0 }, { { 0 } }, { 0 }, 0, 0, 0, 0 } }, { { 0, 0 } }, { 0 }, 0, 0, -1, -1, -1, { 0 }, { 0 }, UINT_MAX }; // Currently, is_low_temp_var is used in real time encoding. const int is_low_temp_var = get_block_temp_var(cpi, x, bsize); for (i = 0; i < MODE_CTX_REF_FRAMES; ++i) args.cmp_mode[i] = -1; // Indicates the appropriate number of simple translation winner modes for // exhaustive motion mode evaluation const int max_winner_motion_mode_cand = num_winner_motion_modes[sf->winner_mode_sf.motion_mode_for_winner_cand]; assert(max_winner_motion_mode_cand <= MAX_WINNER_MOTION_MODES); motion_mode_candidate motion_mode_cand; motion_mode_best_st_candidate best_motion_mode_cands; // Initializing the number of motion mode candidates to zero. best_motion_mode_cands.num_motion_mode_cand = 0; for (i = 0; i < MAX_WINNER_MOTION_MODES; ++i) best_motion_mode_cands.motion_mode_cand[i].rd_cost = INT64_MAX; for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; av1_invalid_rd_stats(rd_cost); for (i = 0; i < REF_FRAMES; ++i) { x->warp_sample_info[i].num = -1; } // Ref frames that are selected by square partition blocks. int picked_ref_frames_mask = 0; if (sf->inter_sf.prune_ref_frame_for_rect_partitions && mbmi->partition != PARTITION_NONE) { // prune_ref_frame_for_rect_partitions = 1 implies prune only extended // partition blocks. prune_ref_frame_for_rect_partitions >=2 // implies prune for vert, horiz and extended partition blocks. if ((mbmi->partition != PARTITION_VERT && mbmi->partition != PARTITION_HORZ) || sf->inter_sf.prune_ref_frame_for_rect_partitions >= 2) { picked_ref_frames_mask = fetch_picked_ref_frames_mask(x, bsize, cm->seq_params->mib_size); } } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, set_params_rd_pick_inter_mode_time); #endif // Skip ref frames that never selected by square blocks. const int skip_ref_frame_mask = picked_ref_frames_mask ? ~picked_ref_frames_mask : 0; mode_skip_mask_t mode_skip_mask; unsigned int ref_costs_single[REF_FRAMES]; unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; struct buf_2d yv12_mb[REF_FRAMES][MAX_MB_PLANE]; // init params, set frame modes, speed features set_params_rd_pick_inter_mode(cpi, x, &args, bsize, &mode_skip_mask, skip_ref_frame_mask, ref_costs_single, ref_costs_comp, yv12_mb); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, set_params_rd_pick_inter_mode_time); #endif int64_t best_est_rd = INT64_MAX; const InterModeRdModel *md = &tile_data->inter_mode_rd_models[bsize]; // If do_tx_search is 0, only estimated RD should be computed. // If do_tx_search is 1, all modes have TX search performed. const int do_tx_search = !((sf->inter_sf.inter_mode_rd_model_estimation == 1 && md->ready) || (sf->inter_sf.inter_mode_rd_model_estimation == 2 && num_pels_log2_lookup[bsize] > 8)); InterModesInfo *inter_modes_info = x->inter_modes_info; inter_modes_info->num = 0; // Temporary buffers used by handle_inter_mode(). uint8_t *const tmp_buf = get_buf_by_bd(xd, x->tmp_pred_bufs[0]); // The best RD found for the reference frame, among single reference modes. // Note that the 0-th element will contain a cut-off that is later used // to determine if we should skip a compound mode. int64_t ref_frame_rd[REF_FRAMES] = { INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX, INT64_MAX }; // Prepared stats used later to check if we could skip intra mode eval. int64_t inter_cost = -1; int64_t intra_cost = -1; // Need to tweak the threshold for hdres speed 0 & 1. const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; // Obtain the relevant tpl stats for pruning inter modes PruneInfoFromTpl inter_cost_info_from_tpl; #if !CONFIG_REALTIME_ONLY if (sf->inter_sf.prune_inter_modes_based_on_tpl) { // x->tpl_keep_ref_frame[id] = 1 => no pruning in // prune_ref_by_selective_ref_frame() // x->tpl_keep_ref_frame[id] = 0 => ref frame can be pruned in // prune_ref_by_selective_ref_frame() // Populating valid_refs[idx] = 1 ensures that // 'inter_cost_info_from_tpl.best_inter_cost' does not correspond to a // pruned ref frame. int valid_refs[INTER_REFS_PER_FRAME]; for (MV_REFERENCE_FRAME frame = LAST_FRAME; frame < REF_FRAMES; frame++) { const MV_REFERENCE_FRAME refs[2] = { frame, NONE_FRAME }; valid_refs[frame - 1] = x->tpl_keep_ref_frame[frame] || !prune_ref_by_selective_ref_frame( cpi, x, refs, cm->cur_frame->ref_display_order_hint); } av1_zero(inter_cost_info_from_tpl); get_block_level_tpl_stats(cpi, bsize, mi_row, mi_col, valid_refs, &inter_cost_info_from_tpl); } const int do_pruning = (AOMMIN(cm->width, cm->height) > 480 && cpi->speed <= 1) ? 0 : 1; if (do_pruning && sf->intra_sf.skip_intra_in_interframe && cpi->oxcf.algo_cfg.enable_tpl_model) calculate_cost_from_tpl_data(cpi, x, bsize, mi_row, mi_col, &inter_cost, &intra_cost); #endif // !CONFIG_REALTIME_ONLY // Initialize best mode stats for winner mode processing. const int max_winner_mode_count = winner_mode_count_allowed[sf->winner_mode_sf.multi_winner_mode_type]; zero_winner_mode_stats(bsize, max_winner_mode_count, x->winner_mode_stats); x->winner_mode_count = 0; store_winner_mode_stats(&cpi->common, x, mbmi, NULL, NULL, NULL, THR_INVALID, NULL, bsize, best_rd_so_far, sf->winner_mode_sf.multi_winner_mode_type, 0); int mode_thresh_mul_fact = (1 << MODE_THRESH_QBITS); if (sf->inter_sf.prune_inter_modes_if_skippable) { // Higher multiplication factor values for lower quantizers. mode_thresh_mul_fact = mode_threshold_mul_factor[x->qindex]; } // Initialize arguments for mode loop speed features InterModeSFArgs sf_args = { &args.skip_motion_mode, &mode_skip_mask, &search_state, skip_ref_frame_mask, 0, mode_thresh_mul_fact, 0, 0 }; int64_t best_inter_yrd = INT64_MAX; // This is the main loop of this function. It loops over all possible inter // modes and calls handle_inter_mode() to compute the RD for each. // Here midx is just an iterator index that should not be used by itself // except to keep track of the number of modes searched. It should be used // with av1_default_mode_order to get the enum that defines the mode, which // can be used with av1_mode_defs to get the prediction mode and the ref // frames. // TODO(yunqing, any): Setting mode_start and mode_end outside for-loop brings // good speedup for real time case. If we decide to use compound mode in real // time, maybe we can modify av1_default_mode_order table. THR_MODES mode_start = THR_INTER_MODE_START; THR_MODES mode_end = THR_INTER_MODE_END; const CurrentFrame *const current_frame = &cm->current_frame; if (current_frame->reference_mode == SINGLE_REFERENCE) { mode_start = SINGLE_REF_MODE_START; mode_end = SINGLE_REF_MODE_END; } for (THR_MODES midx = mode_start; midx < mode_end; ++midx) { // Get the actual prediction mode we are trying in this iteration const THR_MODES mode_enum = av1_default_mode_order[midx]; const MODE_DEFINITION *mode_def = &av1_mode_defs[mode_enum]; const PREDICTION_MODE this_mode = mode_def->mode; const MV_REFERENCE_FRAME *ref_frames = mode_def->ref_frame; const MV_REFERENCE_FRAME ref_frame = ref_frames[0]; const MV_REFERENCE_FRAME second_ref_frame = ref_frames[1]; const int is_single_pred = ref_frame > INTRA_FRAME && second_ref_frame == NONE_FRAME; const int comp_pred = second_ref_frame > INTRA_FRAME; init_mbmi(mbmi, this_mode, ref_frames, cm); txfm_info->skip_txfm = 0; sf_args.num_single_modes_processed += is_single_pred; set_ref_ptrs(cm, xd, ref_frame, second_ref_frame); #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, skip_inter_mode_time); #endif // Apply speed features to decide if this inter mode can be skipped const int is_skip_inter_mode = skip_inter_mode( cpi, x, bsize, ref_frame_rd, midx, &sf_args, is_low_temp_var); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, skip_inter_mode_time); #endif if (is_skip_inter_mode) continue; // Select prediction reference frames. for (i = 0; i < num_planes; i++) { xd->plane[i].pre[0] = yv12_mb[ref_frame][i]; if (comp_pred) xd->plane[i].pre[1] = yv12_mb[second_ref_frame][i]; } mbmi->angle_delta[PLANE_TYPE_Y] = 0; mbmi->angle_delta[PLANE_TYPE_UV] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->ref_mv_idx = 0; const int64_t ref_best_rd = search_state.best_rd; RD_STATS rd_stats, rd_stats_y, rd_stats_uv; av1_init_rd_stats(&rd_stats); const int ref_frame_cost = comp_pred ? ref_costs_comp[ref_frame][second_ref_frame] : ref_costs_single[ref_frame]; const int compmode_cost = is_comp_ref_allowed(mbmi->bsize) ? comp_inter_cost[comp_pred] : 0; const int real_compmode_cost = cm->current_frame.reference_mode == REFERENCE_MODE_SELECT ? compmode_cost : 0; // Point to variables that are maintained between loop iterations args.single_newmv = search_state.single_newmv; args.single_newmv_rate = search_state.single_newmv_rate; args.single_newmv_valid = search_state.single_newmv_valid; args.single_comp_cost = real_compmode_cost; args.ref_frame_cost = ref_frame_cost; args.best_pred_sse = search_state.best_pred_sse; args.skip_ifs = skip_interp_filter_search(cpi, is_single_pred); int64_t skip_rd[2] = { search_state.best_skip_rd[0], search_state.best_skip_rd[1] }; int64_t this_yrd = INT64_MAX; #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, handle_inter_mode_time); #endif int64_t this_rd = handle_inter_mode( cpi, tile_data, x, bsize, &rd_stats, &rd_stats_y, &rd_stats_uv, &args, ref_best_rd, tmp_buf, &x->comp_rd_buffer, &best_est_rd, do_tx_search, inter_modes_info, &motion_mode_cand, skip_rd, &inter_cost_info_from_tpl, &this_yrd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, handle_inter_mode_time); #endif if (current_frame->reference_mode != SINGLE_REFERENCE) { if (!args.skip_ifs && sf->inter_sf.prune_comp_search_by_single_result > 0 && is_inter_singleref_mode(this_mode)) { collect_single_states(x, &search_state, mbmi); } if (sf->inter_sf.prune_comp_using_best_single_mode_ref > 0 && is_inter_singleref_mode(this_mode)) update_best_single_mode(&search_state, this_mode, ref_frame, this_rd); } if (this_rd == INT64_MAX) continue; if (mbmi->skip_txfm) { rd_stats_y.rate = 0; rd_stats_uv.rate = 0; } if (sf->inter_sf.prune_compound_using_single_ref && is_single_pred && this_rd < ref_frame_rd[ref_frame]) { ref_frame_rd[ref_frame] = this_rd; } // Did this mode help, i.e., is it the new best mode if (this_rd < search_state.best_rd) { assert(IMPLIES(comp_pred, cm->current_frame.reference_mode != SINGLE_REFERENCE)); search_state.best_pred_sse = x->pred_sse[ref_frame]; best_inter_yrd = this_yrd; update_search_state(&search_state, rd_cost, ctx, &rd_stats, &rd_stats_y, &rd_stats_uv, mode_enum, x, do_tx_search); if (do_tx_search) search_state.best_skip_rd[0] = skip_rd[0]; // skip_rd[0] is the best total rd for a skip mode so far. // skip_rd[1] is the best total rd for a skip mode so far in luma. // When do_tx_search = 1, both skip_rd[0] and skip_rd[1] are updated. // When do_tx_search = 0, skip_rd[1] is updated. search_state.best_skip_rd[1] = skip_rd[1]; } if (sf->winner_mode_sf.motion_mode_for_winner_cand) { // Add this mode to motion mode candidate list for motion mode search // if using motion_mode_for_winner_cand speed feature handle_winner_cand(mbmi, &best_motion_mode_cands, max_winner_motion_mode_cand, this_rd, &motion_mode_cand, args.skip_motion_mode); } /* keep record of best compound/single-only prediction */ record_best_compound(cm->current_frame.reference_mode, &rd_stats, comp_pred, x->rdmult, &search_state, compmode_cost); } #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, evaluate_motion_mode_for_winner_candidates_time); #endif if (sf->winner_mode_sf.motion_mode_for_winner_cand) { // For the single ref winner candidates, evaluate other motion modes (non // simple translation). evaluate_motion_mode_for_winner_candidates( cpi, x, rd_cost, &args, tile_data, ctx, yv12_mb, &best_motion_mode_cands, do_tx_search, bsize, &best_est_rd, &search_state, &best_inter_yrd); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, evaluate_motion_mode_for_winner_candidates_time); #endif #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, do_tx_search_time); #endif if (do_tx_search != 1) { // A full tx search has not yet been done, do tx search for // top mode candidates tx_search_best_inter_candidates(cpi, tile_data, x, best_rd_so_far, bsize, yv12_mb, mi_row, mi_col, &search_state, rd_cost, ctx, &best_inter_yrd); } #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, do_tx_search_time); #endif #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, handle_intra_mode_time); #endif // Gate intra mode evaluation if best of inter is skip except when source // variance is extremely low and also based on max intra bsize. skip_intra_modes_in_interframe(cm, x, bsize, &search_state, sf, inter_cost, intra_cost); const unsigned int intra_ref_frame_cost = ref_costs_single[INTRA_FRAME]; search_intra_modes_in_interframe(&search_state, cpi, x, rd_cost, bsize, ctx, &sf_args, intra_ref_frame_cost, best_inter_yrd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, handle_intra_mode_time); #endif #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, refine_winner_mode_tx_time); #endif int winner_mode_count = sf->winner_mode_sf.multi_winner_mode_type ? x->winner_mode_count : 1; // In effect only when fast tx search speed features are enabled. refine_winner_mode_tx( cpi, x, rd_cost, bsize, ctx, &search_state.best_mode_index, &search_state.best_mbmode, yv12_mb, search_state.best_rate_y, search_state.best_rate_uv, &search_state.best_skip2, winner_mode_count); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, refine_winner_mode_tx_time); #endif // Initialize default mode evaluation params set_mode_eval_params(cpi, x, DEFAULT_EVAL); // Only try palette mode when the best mode so far is an intra mode. const int try_palette = cpi->oxcf.tool_cfg.enable_palette && av1_allow_palette(features->allow_screen_content_tools, mbmi->bsize) && !is_inter_mode(search_state.best_mbmode.mode) && rd_cost->rate != INT_MAX; RD_STATS this_rd_cost; int this_skippable = 0; if (try_palette) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_search_palette_mode_time); #endif this_skippable = av1_search_palette_mode( &search_state.intra_search_state, cpi, x, bsize, intra_ref_frame_cost, ctx, &this_rd_cost, search_state.best_rd); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_search_palette_mode_time); #endif if (this_rd_cost.rdcost < search_state.best_rd) { search_state.best_mode_index = THR_DC; mbmi->mv[0].as_int = 0; rd_cost->rate = this_rd_cost.rate; rd_cost->dist = this_rd_cost.dist; rd_cost->rdcost = this_rd_cost.rdcost; search_state.best_rd = rd_cost->rdcost; search_state.best_mbmode = *mbmi; search_state.best_skip2 = 0; search_state.best_mode_skippable = this_skippable; memcpy(ctx->blk_skip, txfm_info->blk_skip, sizeof(txfm_info->blk_skip[0]) * ctx->num_4x4_blk); av1_copy_array(ctx->tx_type_map, xd->tx_type_map, ctx->num_4x4_blk); } } search_state.best_mbmode.skip_mode = 0; if (cm->current_frame.skip_mode_info.skip_mode_flag && is_comp_ref_allowed(bsize)) { const struct segmentation *const seg = &cm->seg; unsigned char segment_id = mbmi->segment_id; if (!segfeature_active(seg, segment_id, SEG_LVL_REF_FRAME)) { rd_pick_skip_mode(rd_cost, &search_state, cpi, x, bsize, yv12_mb); } } // Make sure that the ref_mv_idx is only nonzero when we're // using a mode which can support ref_mv_idx if (search_state.best_mbmode.ref_mv_idx != 0 && !(search_state.best_mbmode.mode == NEWMV || search_state.best_mbmode.mode == NEW_NEWMV || have_nearmv_in_inter_mode(search_state.best_mbmode.mode))) { search_state.best_mbmode.ref_mv_idx = 0; } if (search_state.best_mode_index == THR_INVALID || search_state.best_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } const InterpFilter interp_filter = features->interp_filter; assert((interp_filter == SWITCHABLE) || (interp_filter == search_state.best_mbmode.interp_filters.as_filters.y_filter) || !is_inter_block(&search_state.best_mbmode)); assert((interp_filter == SWITCHABLE) || (interp_filter == search_state.best_mbmode.interp_filters.as_filters.x_filter) || !is_inter_block(&search_state.best_mbmode)); if (!cpi->rc.is_src_frame_alt_ref && sf->inter_sf.adaptive_rd_thresh) { av1_update_rd_thresh_fact( cm, x->thresh_freq_fact, sf->inter_sf.adaptive_rd_thresh, bsize, search_state.best_mode_index, mode_start, mode_end, THR_DC, MAX_MODES); } // macroblock modes *mbmi = search_state.best_mbmode; txfm_info->skip_txfm |= search_state.best_skip2; // Note: this section is needed since the mode may have been forced to // GLOBALMV by the all-zero mode handling of ref-mv. if (mbmi->mode == GLOBALMV || mbmi->mode == GLOBAL_GLOBALMV) { // Correct the interp filters for GLOBALMV if (is_nontrans_global_motion(xd, xd->mi[0])) { int_interpfilters filters = av1_broadcast_interp_filter(av1_unswitchable_filter(interp_filter)); assert(mbmi->interp_filters.as_int == filters.as_int); (void)filters; } } txfm_info->skip_txfm |= search_state.best_mode_skippable; assert(search_state.best_mode_index != THR_INVALID); #if CONFIG_INTERNAL_STATS store_coding_context(x, ctx, search_state.best_mode_index, search_state.best_mode_skippable); #else store_coding_context(x, ctx, search_state.best_mode_skippable); #endif // CONFIG_INTERNAL_STATS if (mbmi->palette_mode_info.palette_size[1] > 0) { assert(try_palette); av1_restore_uv_color_map(cpi, x); } } void av1_rd_pick_inter_mode_sb_seg_skip(const AV1_COMP *cpi, TileDataEnc *tile_data, MACROBLOCK *x, int mi_row, int mi_col, RD_STATS *rd_cost, BLOCK_SIZE bsize, PICK_MODE_CONTEXT *ctx, int64_t best_rd_so_far) { const AV1_COMMON *const cm = &cpi->common; const FeatureFlags *const features = &cm->features; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; unsigned char segment_id = mbmi->segment_id; const int comp_pred = 0; int i; unsigned int ref_costs_single[REF_FRAMES]; unsigned int ref_costs_comp[REF_FRAMES][REF_FRAMES]; const ModeCosts *mode_costs = &x->mode_costs; const int *comp_inter_cost = mode_costs->comp_inter_cost[av1_get_reference_mode_context(xd)]; InterpFilter best_filter = SWITCHABLE; int64_t this_rd = INT64_MAX; int rate2 = 0; const int64_t distortion2 = 0; (void)mi_row; (void)mi_col; (void)tile_data; av1_collect_neighbors_ref_counts(xd); estimate_ref_frame_costs(cm, xd, mode_costs, segment_id, ref_costs_single, ref_costs_comp); for (i = 0; i < REF_FRAMES; ++i) x->pred_sse[i] = INT_MAX; for (i = LAST_FRAME; i < REF_FRAMES; ++i) x->pred_mv_sad[i] = INT_MAX; rd_cost->rate = INT_MAX; assert(segfeature_active(&cm->seg, segment_id, SEG_LVL_SKIP)); mbmi->palette_mode_info.palette_size[0] = 0; mbmi->palette_mode_info.palette_size[1] = 0; mbmi->filter_intra_mode_info.use_filter_intra = 0; mbmi->mode = GLOBALMV; mbmi->motion_mode = SIMPLE_TRANSLATION; mbmi->uv_mode = UV_DC_PRED; if (segfeature_active(&cm->seg, segment_id, SEG_LVL_REF_FRAME)) mbmi->ref_frame[0] = get_segdata(&cm->seg, segment_id, SEG_LVL_REF_FRAME); else mbmi->ref_frame[0] = LAST_FRAME; mbmi->ref_frame[1] = NONE_FRAME; mbmi->mv[0].as_int = gm_get_motion_vector(&cm->global_motion[mbmi->ref_frame[0]], features->allow_high_precision_mv, bsize, mi_col, mi_row, features->cur_frame_force_integer_mv) .as_int; mbmi->tx_size = max_txsize_lookup[bsize]; x->txfm_search_info.skip_txfm = 1; mbmi->ref_mv_idx = 0; mbmi->motion_mode = SIMPLE_TRANSLATION; av1_count_overlappable_neighbors(cm, xd); if (is_motion_variation_allowed_bsize(bsize) && !has_second_ref(mbmi)) { int pts[SAMPLES_ARRAY_SIZE], pts_inref[SAMPLES_ARRAY_SIZE]; mbmi->num_proj_ref = av1_findSamples(cm, xd, pts, pts_inref); // Select the samples according to motion vector difference if (mbmi->num_proj_ref > 1) { mbmi->num_proj_ref = av1_selectSamples(&mbmi->mv[0].as_mv, pts, pts_inref, mbmi->num_proj_ref, bsize); } } const InterpFilter interp_filter = features->interp_filter; set_default_interp_filters(mbmi, interp_filter); if (interp_filter != SWITCHABLE) { best_filter = interp_filter; } else { best_filter = EIGHTTAP_REGULAR; if (av1_is_interp_needed(xd)) { int rs; int best_rs = INT_MAX; for (i = 0; i < SWITCHABLE_FILTERS; ++i) { mbmi->interp_filters = av1_broadcast_interp_filter(i); rs = av1_get_switchable_rate(x, xd, interp_filter, cm->seq_params->enable_dual_filter); if (rs < best_rs) { best_rs = rs; best_filter = mbmi->interp_filters.as_filters.y_filter; } } } } // Set the appropriate filter mbmi->interp_filters = av1_broadcast_interp_filter(best_filter); rate2 += av1_get_switchable_rate(x, xd, interp_filter, cm->seq_params->enable_dual_filter); if (cm->current_frame.reference_mode == REFERENCE_MODE_SELECT) rate2 += comp_inter_cost[comp_pred]; // Estimate the reference frame signaling cost and add it // to the rolling cost variable. rate2 += ref_costs_single[LAST_FRAME]; this_rd = RDCOST(x->rdmult, rate2, distortion2); rd_cost->rate = rate2; rd_cost->dist = distortion2; rd_cost->rdcost = this_rd; if (this_rd >= best_rd_so_far) { rd_cost->rate = INT_MAX; rd_cost->rdcost = INT64_MAX; return; } assert((interp_filter == SWITCHABLE) || (interp_filter == mbmi->interp_filters.as_filters.y_filter)); if (cpi->sf.inter_sf.adaptive_rd_thresh) { av1_update_rd_thresh_fact(cm, x->thresh_freq_fact, cpi->sf.inter_sf.adaptive_rd_thresh, bsize, THR_GLOBALMV, THR_INTER_MODE_START, THR_INTER_MODE_END, THR_DC, MAX_MODES); } #if CONFIG_INTERNAL_STATS store_coding_context(x, ctx, THR_GLOBALMV, 0); #else store_coding_context(x, ctx, 0); #endif // CONFIG_INTERNAL_STATS } /*!\cond */ struct calc_target_weighted_pred_ctxt { const OBMCBuffer *obmc_buffer; const uint8_t *tmp; int tmp_stride; int overlap; }; /*!\endcond */ static INLINE void calc_target_weighted_pred_above( MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) { (void)nb_mi; (void)num_planes; (void)rel_mi_row; (void)dir; struct calc_target_weighted_pred_ctxt *ctxt = (struct calc_target_weighted_pred_ctxt *)fun_ctxt; const int bw = xd->width << MI_SIZE_LOG2; const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_col * MI_SIZE); int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_col * MI_SIZE); const uint8_t *tmp = ctxt->tmp + rel_mi_col * MI_SIZE; const int is_hbd = is_cur_buf_hbd(xd); if (!is_hbd) { for (int row = 0; row < ctxt->overlap; ++row) { const uint8_t m0 = mask1d[row]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; for (int col = 0; col < op_mi_size * MI_SIZE; ++col) { wsrc[col] = m1 * tmp[col]; mask[col] = m0; } wsrc += bw; mask += bw; tmp += ctxt->tmp_stride; } } else { const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (int row = 0; row < ctxt->overlap; ++row) { const uint8_t m0 = mask1d[row]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; for (int col = 0; col < op_mi_size * MI_SIZE; ++col) { wsrc[col] = m1 * tmp16[col]; mask[col] = m0; } wsrc += bw; mask += bw; tmp16 += ctxt->tmp_stride; } } } static INLINE void calc_target_weighted_pred_left( MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, int dir, MB_MODE_INFO *nb_mi, void *fun_ctxt, const int num_planes) { (void)nb_mi; (void)num_planes; (void)rel_mi_col; (void)dir; struct calc_target_weighted_pred_ctxt *ctxt = (struct calc_target_weighted_pred_ctxt *)fun_ctxt; const int bw = xd->width << MI_SIZE_LOG2; const uint8_t *const mask1d = av1_get_obmc_mask(ctxt->overlap); int32_t *wsrc = ctxt->obmc_buffer->wsrc + (rel_mi_row * MI_SIZE * bw); int32_t *mask = ctxt->obmc_buffer->mask + (rel_mi_row * MI_SIZE * bw); const uint8_t *tmp = ctxt->tmp + (rel_mi_row * MI_SIZE * ctxt->tmp_stride); const int is_hbd = is_cur_buf_hbd(xd); if (!is_hbd) { for (int row = 0; row < op_mi_size * MI_SIZE; ++row) { for (int col = 0; col < ctxt->overlap; ++col) { const uint8_t m0 = mask1d[col]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + (tmp[col] << AOM_BLEND_A64_ROUND_BITS) * m1; mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; } wsrc += bw; mask += bw; tmp += ctxt->tmp_stride; } } else { const uint16_t *tmp16 = CONVERT_TO_SHORTPTR(tmp); for (int row = 0; row < op_mi_size * MI_SIZE; ++row) { for (int col = 0; col < ctxt->overlap; ++col) { const uint8_t m0 = mask1d[col]; const uint8_t m1 = AOM_BLEND_A64_MAX_ALPHA - m0; wsrc[col] = (wsrc[col] >> AOM_BLEND_A64_ROUND_BITS) * m0 + (tmp16[col] << AOM_BLEND_A64_ROUND_BITS) * m1; mask[col] = (mask[col] >> AOM_BLEND_A64_ROUND_BITS) * m0; } wsrc += bw; mask += bw; tmp16 += ctxt->tmp_stride; } } } // This function has a structure similar to av1_build_obmc_inter_prediction // // The OBMC predictor is computed as: // // PObmc(x,y) = // AOM_BLEND_A64(Mh(x), // AOM_BLEND_A64(Mv(y), P(x,y), PAbove(x,y)), // PLeft(x, y)) // // Scaling up by AOM_BLEND_A64_MAX_ALPHA ** 2 and omitting the intermediate // rounding, this can be written as: // // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * Pobmc(x,y) = // Mh(x) * Mv(y) * P(x,y) + // Mh(x) * Cv(y) * Pabove(x,y) + // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) // // Where : // // Cv(y) = AOM_BLEND_A64_MAX_ALPHA - Mv(y) // Ch(y) = AOM_BLEND_A64_MAX_ALPHA - Mh(y) // // This function computes 'wsrc' and 'mask' as: // // wsrc(x, y) = // AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA * src(x, y) - // Mh(x) * Cv(y) * Pabove(x,y) + // AOM_BLEND_A64_MAX_ALPHA * Ch(x) * PLeft(x, y) // // mask(x, y) = Mh(x) * Mv(y) // // These can then be used to efficiently approximate the error for any // predictor P in the context of the provided neighbouring predictors by // computing: // // error(x, y) = // wsrc(x, y) - mask(x, y) * P(x, y) / (AOM_BLEND_A64_MAX_ALPHA ** 2) // static AOM_INLINE void calc_target_weighted_pred( const AV1_COMMON *cm, const MACROBLOCK *x, const MACROBLOCKD *xd, const uint8_t *above, int above_stride, const uint8_t *left, int left_stride) { const BLOCK_SIZE bsize = xd->mi[0]->bsize; const int bw = xd->width << MI_SIZE_LOG2; const int bh = xd->height << MI_SIZE_LOG2; const OBMCBuffer *obmc_buffer = &x->obmc_buffer; int32_t *mask_buf = obmc_buffer->mask; int32_t *wsrc_buf = obmc_buffer->wsrc; const int is_hbd = is_cur_buf_hbd(xd); const int src_scale = AOM_BLEND_A64_MAX_ALPHA * AOM_BLEND_A64_MAX_ALPHA; // plane 0 should not be sub-sampled assert(xd->plane[0].subsampling_x == 0); assert(xd->plane[0].subsampling_y == 0); av1_zero_array(wsrc_buf, bw * bh); for (int i = 0; i < bw * bh; ++i) mask_buf[i] = AOM_BLEND_A64_MAX_ALPHA; // handle above row if (xd->up_available) { const int overlap = AOMMIN(block_size_high[bsize], block_size_high[BLOCK_64X64]) >> 1; struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, above, above_stride, overlap }; foreach_overlappable_nb_above(cm, (MACROBLOCKD *)xd, max_neighbor_obmc[mi_size_wide_log2[bsize]], calc_target_weighted_pred_above, &ctxt); } for (int i = 0; i < bw * bh; ++i) { wsrc_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; mask_buf[i] *= AOM_BLEND_A64_MAX_ALPHA; } // handle left column if (xd->left_available) { const int overlap = AOMMIN(block_size_wide[bsize], block_size_wide[BLOCK_64X64]) >> 1; struct calc_target_weighted_pred_ctxt ctxt = { obmc_buffer, left, left_stride, overlap }; foreach_overlappable_nb_left(cm, (MACROBLOCKD *)xd, max_neighbor_obmc[mi_size_high_log2[bsize]], calc_target_weighted_pred_left, &ctxt); } if (!is_hbd) { const uint8_t *src = x->plane[0].src.buf; for (int row = 0; row < bh; ++row) { for (int col = 0; col < bw; ++col) { wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; } wsrc_buf += bw; src += x->plane[0].src.stride; } } else { const uint16_t *src = CONVERT_TO_SHORTPTR(x->plane[0].src.buf); for (int row = 0; row < bh; ++row) { for (int col = 0; col < bw; ++col) { wsrc_buf[col] = src[col] * src_scale - wsrc_buf[col]; } wsrc_buf += bw; src += x->plane[0].src.stride; } } }