/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_RDOPT_UTILS_H_ #define AOM_AV1_ENCODER_RDOPT_UTILS_H_ #include "aom/aom_integer.h" #include "av1/encoder/block.h" #include "av1/common/cfl.h" #include "av1/common/pred_common.h" #include "av1/encoder/rdopt_data_defs.h" #ifdef __cplusplus extern "C" { #endif #define MAX_REF_MV_SEARCH 3 #define MAX_TX_RD_GATE_LEVEL 5 #define INTER_INTRA_RD_THRESH_SCALE 9 #define INTER_INTRA_RD_THRESH_SHIFT 4 typedef struct { PREDICTION_MODE mode; MV_REFERENCE_FRAME ref_frame[2]; } MODE_DEFINITION; // This array defines the mapping from the enums in THR_MODES to the actual // prediction modes and refrence frames static const MODE_DEFINITION av1_mode_defs[MAX_MODES] = { { NEARESTMV, { LAST_FRAME, NONE_FRAME } }, { NEARESTMV, { LAST2_FRAME, NONE_FRAME } }, { NEARESTMV, { LAST3_FRAME, NONE_FRAME } }, { NEARESTMV, { BWDREF_FRAME, NONE_FRAME } }, { NEARESTMV, { ALTREF2_FRAME, NONE_FRAME } }, { NEARESTMV, { ALTREF_FRAME, NONE_FRAME } }, { NEARESTMV, { GOLDEN_FRAME, NONE_FRAME } }, { NEWMV, { LAST_FRAME, NONE_FRAME } }, { NEWMV, { LAST2_FRAME, NONE_FRAME } }, { NEWMV, { LAST3_FRAME, NONE_FRAME } }, { NEWMV, { BWDREF_FRAME, NONE_FRAME } }, { NEWMV, { ALTREF2_FRAME, NONE_FRAME } }, { NEWMV, { ALTREF_FRAME, NONE_FRAME } }, { NEWMV, { GOLDEN_FRAME, NONE_FRAME } }, { NEARMV, { LAST_FRAME, NONE_FRAME } }, { NEARMV, { LAST2_FRAME, NONE_FRAME } }, { NEARMV, { LAST3_FRAME, NONE_FRAME } }, { NEARMV, { BWDREF_FRAME, NONE_FRAME } }, { NEARMV, { ALTREF2_FRAME, NONE_FRAME } }, { NEARMV, { ALTREF_FRAME, NONE_FRAME } }, { NEARMV, { GOLDEN_FRAME, NONE_FRAME } }, { GLOBALMV, { LAST_FRAME, NONE_FRAME } }, { GLOBALMV, { LAST2_FRAME, NONE_FRAME } }, { GLOBALMV, { LAST3_FRAME, NONE_FRAME } }, { GLOBALMV, { BWDREF_FRAME, NONE_FRAME } }, { GLOBALMV, { ALTREF2_FRAME, NONE_FRAME } }, { GLOBALMV, { ALTREF_FRAME, NONE_FRAME } }, { GLOBALMV, { GOLDEN_FRAME, NONE_FRAME } }, // TODO(zoeliu): May need to reconsider the order on the modes to check { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAREST_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAREST_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEAREST_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEAREST_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEAREST_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEAREST_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, { NEAREST_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, { NEAREST_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEAREST_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, BWDREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, ALTREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST2_FRAME, ALTREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { LAST3_FRAME, ALTREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF_FRAME } }, { NEAR_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST2_FRAME, BWDREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST2_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { LAST3_FRAME, BWDREF_FRAME } }, { GLOBAL_GLOBALMV, { LAST3_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEARESTMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAREST_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEW_NEARMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAR_NEWMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { GLOBAL_GLOBALMV, { GOLDEN_FRAME, BWDREF_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEW_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEW_NEARMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, ALTREF2_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, ALTREF2_FRAME } }, { NEAR_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEW_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEW_NEARESTMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEAREST_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEW_NEARMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEAR_NEWMV, { LAST2_FRAME, ALTREF2_FRAME } }, { GLOBAL_GLOBALMV, { LAST2_FRAME, ALTREF2_FRAME } }, { NEAR_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEW_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEW_NEARESTMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEAREST_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEW_NEARMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEAR_NEWMV, { LAST3_FRAME, ALTREF2_FRAME } }, { GLOBAL_GLOBALMV, { LAST3_FRAME, ALTREF2_FRAME } }, { NEAR_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEW_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEW_NEARESTMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEAREST_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEW_NEARMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEAR_NEWMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { GLOBAL_GLOBALMV, { GOLDEN_FRAME, ALTREF2_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, LAST2_FRAME } }, { NEW_NEWMV, { LAST_FRAME, LAST2_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, LAST2_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, LAST2_FRAME } }, { NEW_NEARMV, { LAST_FRAME, LAST2_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, LAST2_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, LAST2_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, LAST3_FRAME } }, { NEW_NEWMV, { LAST_FRAME, LAST3_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, LAST3_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, LAST3_FRAME } }, { NEW_NEARMV, { LAST_FRAME, LAST3_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, LAST3_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, LAST3_FRAME } }, { NEAR_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEW_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEW_NEARESTMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEAREST_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEW_NEARMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEAR_NEWMV, { LAST_FRAME, GOLDEN_FRAME } }, { GLOBAL_GLOBALMV, { LAST_FRAME, GOLDEN_FRAME } }, { NEAR_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEW_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEW_NEARESTMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEAREST_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEW_NEARMV, { BWDREF_FRAME, ALTREF_FRAME } }, { NEAR_NEWMV, { BWDREF_FRAME, ALTREF_FRAME } }, { GLOBAL_GLOBALMV, { BWDREF_FRAME, ALTREF_FRAME } }, // intra modes { DC_PRED, { INTRA_FRAME, NONE_FRAME } }, { PAETH_PRED, { INTRA_FRAME, NONE_FRAME } }, { SMOOTH_PRED, { INTRA_FRAME, NONE_FRAME } }, { SMOOTH_V_PRED, { INTRA_FRAME, NONE_FRAME } }, { SMOOTH_H_PRED, { INTRA_FRAME, NONE_FRAME } }, { H_PRED, { INTRA_FRAME, NONE_FRAME } }, { V_PRED, { INTRA_FRAME, NONE_FRAME } }, { D135_PRED, { INTRA_FRAME, NONE_FRAME } }, { D203_PRED, { INTRA_FRAME, NONE_FRAME } }, { D157_PRED, { INTRA_FRAME, NONE_FRAME } }, { D67_PRED, { INTRA_FRAME, NONE_FRAME } }, { D113_PRED, { INTRA_FRAME, NONE_FRAME } }, { D45_PRED, { INTRA_FRAME, NONE_FRAME } }, }; // Number of winner modes allowed for different values of the speed feature // multi_winner_mode_type. static const int winner_mode_count_allowed[MULTI_WINNER_MODE_LEVELS] = { 1, // MULTI_WINNER_MODE_OFF 2, // MULTI_WINNER_MODE_FAST 3 // MULTI_WINNER_MODE_DEFAULT }; static AOM_INLINE void restore_dst_buf(MACROBLOCKD *xd, const BUFFER_SET dst, const int num_planes) { for (int i = 0; i < num_planes; i++) { xd->plane[i].dst.buf = dst.plane[i]; xd->plane[i].dst.stride = dst.stride[i]; } } static AOM_INLINE void swap_dst_buf(MACROBLOCKD *xd, const BUFFER_SET *dst_bufs[2], int num_planes) { const BUFFER_SET *buf0 = dst_bufs[0]; dst_bufs[0] = dst_bufs[1]; dst_bufs[1] = buf0; restore_dst_buf(xd, *dst_bufs[0], num_planes); } /* clang-format on */ // Calculate rd threshold based on ref best rd and relevant scaling factors static AOM_INLINE int64_t get_rd_thresh_from_best_rd(int64_t ref_best_rd, int mul_factor, int div_factor) { int64_t rd_thresh = ref_best_rd; if (div_factor != 0) { rd_thresh = ref_best_rd < (div_factor * (INT64_MAX / mul_factor)) ? ((ref_best_rd / div_factor) * mul_factor) : INT64_MAX; } return rd_thresh; } static AOM_INLINE THR_MODES get_prediction_mode_idx(PREDICTION_MODE this_mode, MV_REFERENCE_FRAME ref_frame, MV_REFERENCE_FRAME second_ref_frame) { if (this_mode < INTRA_MODE_END) { assert(ref_frame == INTRA_FRAME); assert(second_ref_frame == NONE_FRAME); return intra_to_mode_idx[this_mode - INTRA_MODE_START]; } if (this_mode >= SINGLE_INTER_MODE_START && this_mode < SINGLE_INTER_MODE_END) { assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); return single_inter_to_mode_idx[this_mode - SINGLE_INTER_MODE_START] [ref_frame]; } if (this_mode >= COMP_INTER_MODE_START && this_mode < COMP_INTER_MODE_END && second_ref_frame != NONE_FRAME) { assert((ref_frame > INTRA_FRAME) && (ref_frame <= ALTREF_FRAME)); assert((second_ref_frame > INTRA_FRAME) && (second_ref_frame <= ALTREF_FRAME)); return comp_inter_to_mode_idx[this_mode - COMP_INTER_MODE_START][ref_frame] [second_ref_frame]; } assert(0); return THR_INVALID; } static AOM_INLINE int inter_mode_data_block_idx(BLOCK_SIZE bsize) { if (bsize == BLOCK_4X4 || bsize == BLOCK_4X8 || bsize == BLOCK_8X4 || bsize == BLOCK_4X16 || bsize == BLOCK_16X4) { return -1; } return 1; } // Get transform block visible dimensions cropped to the MI units. static AOM_INLINE void get_txb_dimensions(const MACROBLOCKD *xd, int plane, BLOCK_SIZE plane_bsize, int blk_row, int blk_col, BLOCK_SIZE tx_bsize, int *width, int *height, int *visible_width, int *visible_height) { assert(tx_bsize <= plane_bsize); const int txb_height = block_size_high[tx_bsize]; const int txb_width = block_size_wide[tx_bsize]; const struct macroblockd_plane *const pd = &xd->plane[plane]; // TODO(aconverse@google.com): Investigate using crop_width/height here rather // than the MI size if (xd->mb_to_bottom_edge >= 0) { *visible_height = txb_height; } else { const int block_height = block_size_high[plane_bsize]; const int block_rows = (xd->mb_to_bottom_edge >> (3 + pd->subsampling_y)) + block_height; *visible_height = clamp(block_rows - (blk_row << MI_SIZE_LOG2), 0, txb_height); } if (height) *height = txb_height; if (xd->mb_to_right_edge >= 0) { *visible_width = txb_width; } else { const int block_width = block_size_wide[plane_bsize]; const int block_cols = (xd->mb_to_right_edge >> (3 + pd->subsampling_x)) + block_width; *visible_width = clamp(block_cols - (blk_col << MI_SIZE_LOG2), 0, txb_width); } if (width) *width = txb_width; } static AOM_INLINE int bsize_to_num_blk(BLOCK_SIZE bsize) { int num_blk = 1 << (num_pels_log2_lookup[bsize] - 2 * MI_SIZE_LOG2); return num_blk; } static INLINE int check_txfm_eval(MACROBLOCK *const x, BLOCK_SIZE bsize, int64_t best_skip_rd, int64_t skip_rd, int level, int is_luma_only) { int eval_txfm = 1; // Derive aggressiveness factor for gating the transform search // Lower value indicates more aggressiveness. Be more conservative (high // value) for (i) low quantizers (ii) regions where prediction is poor const int scale[MAX_TX_RD_GATE_LEVEL + 1] = { INT_MAX, 4, 3, 2, 2, 1 }; const int qslope = 2 * (!is_luma_only); const int level_to_qindex_map[MAX_TX_RD_GATE_LEVEL + 1] = { 0, 0, 0, 80, 100, 140 }; int aggr_factor = 4; assert(level <= MAX_TX_RD_GATE_LEVEL); const int pred_qindex_thresh = level_to_qindex_map[level]; if (!is_luma_only && level <= 2) { aggr_factor = 4 * AOMMAX(1, ROUND_POWER_OF_TWO((MAXQ - x->qindex) * qslope, QINDEX_BITS)); } if ((best_skip_rd > (x->source_variance << (num_pels_log2_lookup[bsize] + RDDIV_BITS))) && (x->qindex >= pred_qindex_thresh)) aggr_factor *= scale[level]; // For level setting 1, be more conservative for non-luma-only case even when // prediction is good. else if ((level <= 1) && !is_luma_only) aggr_factor = (aggr_factor >> 2) * 6; // Be more conservative for luma only cases (called from compound type rd) // since best_skip_rd is computed after and skip_rd is computed (with 8-bit // prediction signals blended for WEDGE/DIFFWTD rather than 16-bit) before // interpolation filter search const int luma_mul[MAX_TX_RD_GATE_LEVEL + 1] = { INT_MAX, 32, 29, 17, 17, 17 }; int mul_factor = is_luma_only ? luma_mul[level] : 16; int64_t rd_thresh = (best_skip_rd == INT64_MAX) ? best_skip_rd : (int64_t)(best_skip_rd * aggr_factor * mul_factor >> 6); if (skip_rd > rd_thresh) eval_txfm = 0; return eval_txfm; } static TX_MODE select_tx_mode( const AV1_COMMON *cm, const TX_SIZE_SEARCH_METHOD tx_size_search_method) { if (cm->features.coded_lossless) return ONLY_4X4; if (tx_size_search_method == USE_LARGESTALL) { return TX_MODE_LARGEST; } else { assert(tx_size_search_method == USE_FULL_RD || tx_size_search_method == USE_FAST_RD); return TX_MODE_SELECT; } } // Checks the conditions to disable winner mode processing static INLINE int bypass_winner_mode_processing(const MACROBLOCK *const x, const SPEED_FEATURES *sf, int use_txfm_skip, int actual_txfm_skip, PREDICTION_MODE best_mode) { const int prune_winner_mode_eval_level = sf->winner_mode_sf.prune_winner_mode_eval_level; // Disable winner mode processing for blocks with low source variance. // The aggressiveness of this pruning logic reduces as qindex increases. // The threshold decreases linearly from 64 as qindex varies from 0 to 255. if (prune_winner_mode_eval_level == 1) { const unsigned int src_var_thresh = 64 - 48 * x->qindex / (MAXQ + 1); if (x->source_variance < src_var_thresh) return 1; } else if (prune_winner_mode_eval_level == 2) { // Skip winner mode processing of blocks for which transform turns out to be // skip due to nature of eob alone except NEWMV mode. if (!have_newmv_in_inter_mode(best_mode) && actual_txfm_skip) return 1; } else if (prune_winner_mode_eval_level == 3) { // Skip winner mode processing of blocks for which transform turns out to be // skip except NEWMV mode and considered based on the quantizer. // At high quantizers: Take conservative approach by considering transform // skip based on eob alone. // At low quantizers: Consider transform skip based on eob nature or RD cost // evaluation. const int is_txfm_skip = x->qindex > 127 ? actual_txfm_skip : actual_txfm_skip || use_txfm_skip; if (!have_newmv_in_inter_mode(best_mode) && is_txfm_skip) return 1; } else if (prune_winner_mode_eval_level >= 4) { // Do not skip winner mode evaluation at low quantizers if normal mode's // transform search was too aggressive. if (sf->rd_sf.perform_coeff_opt >= 5 && x->qindex <= 70) return 0; if (use_txfm_skip || actual_txfm_skip) return 1; } return 0; } // Checks the conditions to enable winner mode processing static INLINE int is_winner_mode_processing_enabled(const struct AV1_COMP *cpi, const MACROBLOCK *const x, MB_MODE_INFO *const mbmi, int actual_txfm_skip) { const SPEED_FEATURES *sf = &cpi->sf; const PREDICTION_MODE best_mode = mbmi->mode; if (bypass_winner_mode_processing(x, sf, mbmi->skip_txfm, actual_txfm_skip, best_mode)) return 0; // TODO(any): Move block independent condition checks to frame level if (is_inter_block(mbmi)) { if (is_inter_mode(best_mode) && (sf->tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh != INT_MAX) && !cpi->oxcf.txfm_cfg.use_inter_dct_only) return 1; } else { if (sf->tx_sf.tx_type_search.fast_intra_tx_type_search && !cpi->oxcf.txfm_cfg.use_intra_default_tx_only && !cpi->oxcf.txfm_cfg.use_intra_dct_only) return 1; } // Check speed feature related to winner mode processing if (sf->winner_mode_sf.enable_winner_mode_for_coeff_opt && cpi->optimize_seg_arr[mbmi->segment_id] != NO_TRELLIS_OPT && cpi->optimize_seg_arr[mbmi->segment_id] != FINAL_PASS_TRELLIS_OPT) return 1; if (sf->winner_mode_sf.enable_winner_mode_for_tx_size_srch) return 1; return 0; } static INLINE void set_tx_size_search_method( const AV1_COMMON *cm, const WinnerModeParams *winner_mode_params, TxfmSearchParams *txfm_params, int enable_winner_mode_for_tx_size_srch, int is_winner_mode) { // Populate transform size search method/transform mode appropriately txfm_params->tx_size_search_method = winner_mode_params->tx_size_search_methods[DEFAULT_EVAL]; if (enable_winner_mode_for_tx_size_srch) { if (is_winner_mode) txfm_params->tx_size_search_method = winner_mode_params->tx_size_search_methods[WINNER_MODE_EVAL]; else txfm_params->tx_size_search_method = winner_mode_params->tx_size_search_methods[MODE_EVAL]; } txfm_params->tx_mode_search_type = select_tx_mode(cm, txfm_params->tx_size_search_method); } static INLINE void set_tx_type_prune(const SPEED_FEATURES *sf, TxfmSearchParams *txfm_params, int winner_mode_tx_type_pruning, int is_winner_mode) { // Populate prune transform mode appropriately txfm_params->prune_2d_txfm_mode = sf->tx_sf.tx_type_search.prune_2d_txfm_mode; if (!winner_mode_tx_type_pruning) return; const int prune_mode[4][2] = { { TX_TYPE_PRUNE_3, TX_TYPE_PRUNE_0 }, { TX_TYPE_PRUNE_4, TX_TYPE_PRUNE_0 }, { TX_TYPE_PRUNE_5, TX_TYPE_PRUNE_2 }, { TX_TYPE_PRUNE_5, TX_TYPE_PRUNE_3 } }; txfm_params->prune_2d_txfm_mode = prune_mode[winner_mode_tx_type_pruning - 1][is_winner_mode]; } static INLINE void set_tx_domain_dist_params( const WinnerModeParams *winner_mode_params, TxfmSearchParams *txfm_params, int enable_winner_mode_for_tx_domain_dist, int is_winner_mode) { if (txfm_params->use_qm_dist_metric) { // QM-weighted PSNR is computed in transform space, so we need to forcibly // enable the use of tx domain distortion. txfm_params->use_transform_domain_distortion = 1; txfm_params->tx_domain_dist_threshold = 0; return; } if (!enable_winner_mode_for_tx_domain_dist) { txfm_params->use_transform_domain_distortion = winner_mode_params->use_transform_domain_distortion[DEFAULT_EVAL]; txfm_params->tx_domain_dist_threshold = winner_mode_params->tx_domain_dist_threshold[DEFAULT_EVAL]; return; } if (is_winner_mode) { txfm_params->use_transform_domain_distortion = winner_mode_params->use_transform_domain_distortion[WINNER_MODE_EVAL]; txfm_params->tx_domain_dist_threshold = winner_mode_params->tx_domain_dist_threshold[WINNER_MODE_EVAL]; } else { txfm_params->use_transform_domain_distortion = winner_mode_params->use_transform_domain_distortion[MODE_EVAL]; txfm_params->tx_domain_dist_threshold = winner_mode_params->tx_domain_dist_threshold[MODE_EVAL]; } } // This function sets mode parameters for different mode evaluation stages static INLINE void set_mode_eval_params(const struct AV1_COMP *cpi, MACROBLOCK *x, MODE_EVAL_TYPE mode_eval_type) { const AV1_COMMON *cm = &cpi->common; const SPEED_FEATURES *sf = &cpi->sf; const WinnerModeParams *winner_mode_params = &cpi->winner_mode_params; TxfmSearchParams *txfm_params = &x->txfm_search_params; txfm_params->use_qm_dist_metric = cpi->oxcf.tune_cfg.dist_metric == AOM_DIST_METRIC_QM_PSNR; switch (mode_eval_type) { case DEFAULT_EVAL: txfm_params->default_inter_tx_type_prob_thresh = INT_MAX; txfm_params->use_default_intra_tx_type = 0; txfm_params->skip_txfm_level = winner_mode_params->skip_txfm_level[DEFAULT_EVAL]; txfm_params->predict_dc_level = winner_mode_params->predict_dc_level[DEFAULT_EVAL]; // Set default transform domain distortion type set_tx_domain_dist_params(winner_mode_params, txfm_params, 0, 0); // Get default threshold for R-D optimization of coefficients get_rd_opt_coeff_thresh(winner_mode_params->coeff_opt_thresholds, txfm_params, 0, 0); // Set default transform size search method set_tx_size_search_method(cm, winner_mode_params, txfm_params, 0, 0); // Set default transform type prune set_tx_type_prune(sf, txfm_params, 0, 0); break; case MODE_EVAL: txfm_params->use_default_intra_tx_type = (cpi->sf.tx_sf.tx_type_search.fast_intra_tx_type_search || cpi->oxcf.txfm_cfg.use_intra_default_tx_only); txfm_params->default_inter_tx_type_prob_thresh = cpi->sf.tx_sf.tx_type_search.fast_inter_tx_type_prob_thresh; txfm_params->skip_txfm_level = winner_mode_params->skip_txfm_level[MODE_EVAL]; txfm_params->predict_dc_level = winner_mode_params->predict_dc_level[MODE_EVAL]; // Set transform domain distortion type for mode evaluation set_tx_domain_dist_params( winner_mode_params, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_use_tx_domain_dist, 0); // Get threshold for R-D optimization of coefficients during mode // evaluation get_rd_opt_coeff_thresh( winner_mode_params->coeff_opt_thresholds, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_coeff_opt, 0); // Set the transform size search method for mode evaluation set_tx_size_search_method( cm, winner_mode_params, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_tx_size_srch, 0); // Set transform type prune for mode evaluation set_tx_type_prune(sf, txfm_params, sf->tx_sf.tx_type_search.winner_mode_tx_type_pruning, 0); break; case WINNER_MODE_EVAL: txfm_params->default_inter_tx_type_prob_thresh = INT_MAX; txfm_params->use_default_intra_tx_type = 0; txfm_params->skip_txfm_level = winner_mode_params->skip_txfm_level[WINNER_MODE_EVAL]; txfm_params->predict_dc_level = winner_mode_params->predict_dc_level[WINNER_MODE_EVAL]; // Set transform domain distortion type for winner mode evaluation set_tx_domain_dist_params( winner_mode_params, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_use_tx_domain_dist, 1); // Get threshold for R-D optimization of coefficients for winner mode // evaluation get_rd_opt_coeff_thresh( winner_mode_params->coeff_opt_thresholds, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_coeff_opt, 1); // Set the transform size search method for winner mode evaluation set_tx_size_search_method( cm, winner_mode_params, txfm_params, sf->winner_mode_sf.enable_winner_mode_for_tx_size_srch, 1); // Set default transform type prune mode for winner mode evaluation set_tx_type_prune(sf, txfm_params, sf->tx_sf.tx_type_search.winner_mode_tx_type_pruning, 1); break; default: assert(0); } // Rd record collected at a specific mode evaluation stage can not be used // across other evaluation stages as the transform parameters are different. // Hence, reset mb rd record whenever mode evaluation stage type changes. if (txfm_params->mode_eval_type != mode_eval_type) reset_mb_rd_record(x->txfm_search_info.mb_rd_record); txfm_params->mode_eval_type = mode_eval_type; } // Similar to store_cfl_required(), but for use during the RDO process, // where we haven't yet determined whether this block uses CfL. static INLINE CFL_ALLOWED_TYPE store_cfl_required_rdo(const AV1_COMMON *cm, const MACROBLOCK *x) { const MACROBLOCKD *xd = &x->e_mbd; if (cm->seq_params->monochrome || !xd->is_chroma_ref) return CFL_DISALLOWED; if (!xd->is_chroma_ref) { // For non-chroma-reference blocks, we should always store the luma pixels, // in case the corresponding chroma-reference block uses CfL. // Note that this can only happen for block sizes which are <8 on // their shortest side, as otherwise they would be chroma reference // blocks. return CFL_ALLOWED; } // For chroma reference blocks, we should store data in the encoder iff we're // allowed to try out CfL. return is_cfl_allowed(xd); } static AOM_INLINE void init_sbuv_mode(MB_MODE_INFO *const mbmi) { mbmi->uv_mode = UV_DC_PRED; mbmi->palette_mode_info.palette_size[1] = 0; } // Store best mode stats for winner mode processing static INLINE void store_winner_mode_stats( const AV1_COMMON *const cm, MACROBLOCK *x, const MB_MODE_INFO *mbmi, RD_STATS *rd_cost, RD_STATS *rd_cost_y, RD_STATS *rd_cost_uv, THR_MODES mode_index, uint8_t *color_map, BLOCK_SIZE bsize, int64_t this_rd, int multi_winner_mode_type, int txfm_search_done) { WinnerModeStats *winner_mode_stats = x->winner_mode_stats; int mode_idx = 0; int is_palette_mode = mbmi->palette_mode_info.palette_size[PLANE_TYPE_Y] > 0; // Mode stat is not required when multiwinner mode processing is disabled if (multi_winner_mode_type == MULTI_WINNER_MODE_OFF) return; // Ignore mode with maximum rd if (this_rd == INT64_MAX) return; // TODO(any): Winner mode processing is currently not applicable for palette // mode in Inter frames. Clean-up the following code, once support is added if (!frame_is_intra_only(cm) && is_palette_mode) return; int max_winner_mode_count = winner_mode_count_allowed[multi_winner_mode_type]; assert(x->winner_mode_count >= 0 && x->winner_mode_count <= max_winner_mode_count); if (x->winner_mode_count) { // Find the mode which has higher rd cost than this_rd for (mode_idx = 0; mode_idx < x->winner_mode_count; mode_idx++) if (winner_mode_stats[mode_idx].rd > this_rd) break; if (mode_idx == max_winner_mode_count) { // No mode has higher rd cost than this_rd return; } else if (mode_idx < max_winner_mode_count - 1) { // Create a slot for current mode and move others to the next slot memmove( &winner_mode_stats[mode_idx + 1], &winner_mode_stats[mode_idx], (max_winner_mode_count - mode_idx - 1) * sizeof(*winner_mode_stats)); } } // Add a mode stat for winner mode processing winner_mode_stats[mode_idx].mbmi = *mbmi; winner_mode_stats[mode_idx].rd = this_rd; winner_mode_stats[mode_idx].mode_index = mode_index; // Update rd stats required for inter frame if (!frame_is_intra_only(cm) && rd_cost && rd_cost_y && rd_cost_uv) { const MACROBLOCKD *xd = &x->e_mbd; const int skip_ctx = av1_get_skip_txfm_context(xd); const int is_intra_mode = av1_mode_defs[mode_index].mode < INTRA_MODE_END; const int skip_txfm = mbmi->skip_txfm && !is_intra_mode; winner_mode_stats[mode_idx].rd_cost = *rd_cost; if (txfm_search_done) { winner_mode_stats[mode_idx].rate_y = rd_cost_y->rate + x->mode_costs .skip_txfm_cost[skip_ctx][rd_cost->skip_txfm || skip_txfm]; winner_mode_stats[mode_idx].rate_uv = rd_cost_uv->rate; } } if (color_map) { // Store color_index_map for palette mode const MACROBLOCKD *const xd = &x->e_mbd; int block_width, block_height; av1_get_block_dimensions(bsize, AOM_PLANE_Y, xd, &block_width, &block_height, NULL, NULL); memcpy(winner_mode_stats[mode_idx].color_index_map, color_map, block_width * block_height * sizeof(color_map[0])); } x->winner_mode_count = AOMMIN(x->winner_mode_count + 1, max_winner_mode_count); } unsigned int av1_get_perpixel_variance(const AV1_COMP *cpi, const MACROBLOCKD *xd, const struct buf_2d *ref, BLOCK_SIZE bsize, int plane, int use_hbd); unsigned int av1_get_perpixel_variance_facade(const struct AV1_COMP *cpi, const MACROBLOCKD *xd, const struct buf_2d *ref, BLOCK_SIZE bsize, int plane); static INLINE int is_mode_intra(PREDICTION_MODE mode) { return mode < INTRA_MODE_END; } // This function will copy usable ref_mv_stack[ref_frame][4] and // weight[ref_frame][4] information from ref_mv_stack[ref_frame][8] and // weight[ref_frame][8]. static INLINE void av1_copy_usable_ref_mv_stack_and_weight( const MACROBLOCKD *xd, MB_MODE_INFO_EXT *const mbmi_ext, MV_REFERENCE_FRAME ref_frame) { memcpy(mbmi_ext->weight[ref_frame], xd->weight[ref_frame], USABLE_REF_MV_STACK_SIZE * sizeof(xd->weight[0][0])); memcpy(mbmi_ext->ref_mv_stack[ref_frame], xd->ref_mv_stack[ref_frame], USABLE_REF_MV_STACK_SIZE * sizeof(xd->ref_mv_stack[0][0])); } // Get transform rd gate level for the given transform search case. static INLINE int get_txfm_rd_gate_level( const int is_masked_compound_enabled, const int txfm_rd_gate_level[TX_SEARCH_CASES], BLOCK_SIZE bsize, TX_SEARCH_CASE tx_search_case, int eval_motion_mode) { assert(tx_search_case < TX_SEARCH_CASES); if (tx_search_case == TX_SEARCH_MOTION_MODE && !eval_motion_mode && num_pels_log2_lookup[bsize] > 8) return txfm_rd_gate_level[TX_SEARCH_MOTION_MODE]; // Enable aggressive gating of transform search only when masked compound type // is enabled. else if (tx_search_case == TX_SEARCH_COMP_TYPE_MODE && is_masked_compound_enabled) return txfm_rd_gate_level[TX_SEARCH_COMP_TYPE_MODE]; return txfm_rd_gate_level[TX_SEARCH_DEFAULT]; } #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_RDOPT_UTILS_H_