/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "av1/common/av1_common_int.h" #include "av1/common/blockd.h" #include "av1/common/mvref_common.h" #include "av1/common/obmc.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/encoder/reconinter_enc.h" static AOM_INLINE void enc_calc_subpel_params( const MV *const src_mv, InterPredParams *const inter_pred_params, uint8_t **pre, SubpelParams *subpel_params, int *src_stride) { struct buf_2d *pre_buf = &inter_pred_params->ref_frame_buf; init_subpel_params(src_mv, inter_pred_params, subpel_params, pre_buf->width, pre_buf->height); *pre = pre_buf->buf0 + (subpel_params->pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (subpel_params->pos_x >> SCALE_SUBPEL_BITS); *src_stride = pre_buf->stride; } #define IS_DEC 0 #include "av1/common/reconinter_template.inc" #undef IS_DEC void av1_enc_build_one_inter_predictor(uint8_t *dst, int dst_stride, const MV *src_mv, InterPredParams *inter_pred_params) { build_one_inter_predictor(dst, dst_stride, src_mv, inter_pred_params); } static void enc_build_inter_predictors(const AV1_COMMON *cm, MACROBLOCKD *xd, int plane, const MB_MODE_INFO *mi, int bw, int bh, int mi_x, int mi_y) { build_inter_predictors(cm, xd, plane, mi, /*build_for_obmc=*/0, bw, bh, mi_x, mi_y); } void av1_enc_build_inter_predictor_y(MACROBLOCKD *xd, int mi_row, int mi_col) { const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; InterPredParams inter_pred_params; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf; const MV mv = xd->mi[0]->mv[0].as_mv; const struct scale_factors *const sf = xd->block_ref_scale_factors[0]; av1_init_inter_params(&inter_pred_params, pd->width, pd->height, mi_y, mi_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), false, sf, pd->pre, xd->mi[0]->interp_filters); inter_pred_params.conv_params = get_conv_params_no_round( 0, AOM_PLANE_Y, xd->tmp_conv_dst, MAX_SB_SIZE, false, xd->bd); inter_pred_params.conv_params.use_dist_wtd_comp_avg = 0; av1_enc_build_one_inter_predictor(dst, dst_buf->stride, &mv, &inter_pred_params); } void av1_enc_build_inter_predictor_y_nonrd(MACROBLOCKD *xd, InterPredParams *inter_pred_params, const SubpelParams *subpel_params) { struct macroblockd_plane *const pd = &xd->plane[AOM_PLANE_Y]; const MB_MODE_INFO *mbmi = xd->mi[0]; struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *pre_buf = &pd->pre[0]; const uint8_t *src = pre_buf->buf0 + (subpel_params->pos_y >> SCALE_SUBPEL_BITS) * pre_buf->stride + (subpel_params->pos_x >> SCALE_SUBPEL_BITS); uint8_t *const dst = dst_buf->buf; int src_stride = pre_buf->stride; int dst_stride = dst_buf->stride; inter_pred_params->ref_frame_buf = *pre_buf; // Initialize interp filter for single reference mode. init_interp_filter_params(inter_pred_params->interp_filter_params, &mbmi->interp_filters.as_filters, pd->width, pd->height, /*is_intrabc=*/0); av1_make_inter_predictor(src, src_stride, dst, dst_stride, inter_pred_params, subpel_params); } void av1_enc_build_inter_predictor(const AV1_COMMON *cm, MACROBLOCKD *xd, int mi_row, int mi_col, const BUFFER_SET *ctx, BLOCK_SIZE bsize, int plane_from, int plane_to) { for (int plane = plane_from; plane <= plane_to; ++plane) { if (plane && !xd->is_chroma_ref) break; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; enc_build_inter_predictors(cm, xd, plane, xd->mi[0], xd->plane[plane].width, xd->plane[plane].height, mi_x, mi_y); if (is_interintra_pred(xd->mi[0])) { BUFFER_SET default_ctx = { { xd->plane[0].dst.buf, xd->plane[1].dst.buf, xd->plane[2].dst.buf }, { xd->plane[0].dst.stride, xd->plane[1].dst.stride, xd->plane[2].dst.stride } }; if (!ctx) { ctx = &default_ctx; } av1_build_interintra_predictor(cm, xd, xd->plane[plane].dst.buf, xd->plane[plane].dst.stride, ctx, plane, bsize); } } } static void setup_address_for_obmc(MACROBLOCKD *xd, int mi_row_offset, int mi_col_offset, MB_MODE_INFO *ref_mbmi, struct build_prediction_ctxt *ctxt, const int num_planes) { const BLOCK_SIZE ref_bsize = AOMMAX(BLOCK_8X8, ref_mbmi->bsize); const int ref_mi_row = xd->mi_row + mi_row_offset; const int ref_mi_col = xd->mi_col + mi_col_offset; for (int plane = 0; plane < num_planes; ++plane) { struct macroblockd_plane *const pd = &xd->plane[plane]; setup_pred_plane(&pd->dst, ref_bsize, ctxt->tmp_buf[plane], ctxt->tmp_width[plane], ctxt->tmp_height[plane], ctxt->tmp_stride[plane], mi_row_offset, mi_col_offset, NULL, pd->subsampling_x, pd->subsampling_y); } const MV_REFERENCE_FRAME frame = ref_mbmi->ref_frame[0]; const RefCntBuffer *const ref_buf = get_ref_frame_buf(ctxt->cm, frame); const struct scale_factors *const sf = get_ref_scale_factors_const(ctxt->cm, frame); xd->block_ref_scale_factors[0] = sf; if (!av1_is_valid_scale(sf)) aom_internal_error(xd->error_info, AOM_CODEC_UNSUP_BITSTREAM, "Reference frame has invalid dimensions"); av1_setup_pre_planes(xd, 0, &ref_buf->buf, ref_mi_row, ref_mi_col, sf, num_planes); } static INLINE void build_obmc_prediction(MACROBLOCKD *xd, int rel_mi_row, int rel_mi_col, uint8_t op_mi_size, int dir, MB_MODE_INFO *above_mbmi, void *fun_ctxt, const int num_planes) { struct build_prediction_ctxt *ctxt = (struct build_prediction_ctxt *)fun_ctxt; setup_address_for_obmc(xd, rel_mi_row, rel_mi_col, above_mbmi, ctxt, num_planes); const int mi_x = (xd->mi_col + rel_mi_col) << MI_SIZE_LOG2; const int mi_y = (xd->mi_row + rel_mi_row) << MI_SIZE_LOG2; const BLOCK_SIZE bsize = xd->mi[0]->bsize; InterPredParams inter_pred_params; for (int j = 0; j < num_planes; ++j) { const struct macroblockd_plane *pd = &xd->plane[j]; int bw = 0, bh = 0; if (dir) { // prepare left reference block size bw = clamp(block_size_wide[bsize] >> (pd->subsampling_x + 1), 4, block_size_wide[BLOCK_64X64] >> (pd->subsampling_x + 1)); bh = (op_mi_size << MI_SIZE_LOG2) >> pd->subsampling_y; } else { // prepare above reference block size bw = (op_mi_size * MI_SIZE) >> pd->subsampling_x; bh = clamp(block_size_high[bsize] >> (pd->subsampling_y + 1), 4, block_size_high[BLOCK_64X64] >> (pd->subsampling_y + 1)); } if (av1_skip_u4x4_pred_in_obmc(bsize, pd, dir)) continue; const struct buf_2d *const pre_buf = &pd->pre[0]; const MV mv = above_mbmi->mv[0].as_mv; av1_init_inter_params(&inter_pred_params, bw, bh, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0, xd->block_ref_scale_factors[0], pre_buf, above_mbmi->interp_filters); inter_pred_params.conv_params = get_conv_params(0, j, xd->bd); av1_enc_build_one_inter_predictor(pd->dst.buf, pd->dst.stride, &mv, &inter_pred_params); } } void av1_build_prediction_by_above_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->up_available) return; struct build_prediction_ctxt ctxt = { cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_right_edge, NULL }; BLOCK_SIZE bsize = xd->mi[0]->bsize; foreach_overlappable_nb_above(cm, xd, max_neighbor_obmc[mi_size_wide_log2[bsize]], build_obmc_prediction, &ctxt); } void av1_build_prediction_by_left_preds(const AV1_COMMON *cm, MACROBLOCKD *xd, uint8_t *tmp_buf[MAX_MB_PLANE], int tmp_width[MAX_MB_PLANE], int tmp_height[MAX_MB_PLANE], int tmp_stride[MAX_MB_PLANE]) { if (!xd->left_available) return; struct build_prediction_ctxt ctxt = { cm, tmp_buf, tmp_width, tmp_height, tmp_stride, xd->mb_to_bottom_edge, NULL }; BLOCK_SIZE bsize = xd->mi[0]->bsize; foreach_overlappable_nb_left(cm, xd, max_neighbor_obmc[mi_size_high_log2[bsize]], build_obmc_prediction, &ctxt); } void av1_build_obmc_inter_predictors_sb(const AV1_COMMON *cm, MACROBLOCKD *xd) { const int num_planes = av1_num_planes(cm); uint8_t *dst_buf1[MAX_MB_PLANE], *dst_buf2[MAX_MB_PLANE]; int dst_stride1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_stride2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_width2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height1[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; int dst_height2[MAX_MB_PLANE] = { MAX_SB_SIZE, MAX_SB_SIZE, MAX_SB_SIZE }; av1_setup_obmc_dst_bufs(xd, dst_buf1, dst_buf2); const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; av1_build_prediction_by_above_preds(cm, xd, dst_buf1, dst_width1, dst_height1, dst_stride1); av1_build_prediction_by_left_preds(cm, xd, dst_buf2, dst_width2, dst_height2, dst_stride2); av1_setup_dst_planes(xd->plane, xd->mi[0]->bsize, &cm->cur_frame->buf, mi_row, mi_col, 0, num_planes); av1_build_obmc_inter_prediction(cm, xd, dst_buf1, dst_stride1, dst_buf2, dst_stride2); } void av1_build_inter_predictors_for_planes_single_buf( MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, int ref, uint8_t *ext_dst[], int ext_dst_stride[]) { assert(bsize < BLOCK_SIZES_ALL); const MB_MODE_INFO *mi = xd->mi[0]; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; WarpTypesAllowed warp_types; const WarpedMotionParams *const wm = &xd->global_motion[mi->ref_frame[ref]]; warp_types.global_warp_allowed = is_global_mv_block(mi, wm->wmtype); warp_types.local_warp_allowed = mi->motion_mode == WARPED_CAUSAL; for (int plane = plane_from; plane <= plane_to; ++plane) { const struct macroblockd_plane *pd = &xd->plane[plane]; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; InterPredParams inter_pred_params; av1_init_inter_params(&inter_pred_params, bw, bh, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0, xd->block_ref_scale_factors[ref], &pd->pre[ref], mi->interp_filters); inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); av1_init_warp_params(&inter_pred_params, &warp_types, ref, xd, mi); uint8_t *const dst = get_buf_by_bd(xd, ext_dst[plane]); const MV mv = mi->mv[ref].as_mv; av1_enc_build_one_inter_predictor(dst, ext_dst_stride[plane], &mv, &inter_pred_params); } } static void build_masked_compound( uint8_t *dst, int dst_stride, const uint8_t *src0, int src0_stride, const uint8_t *src1, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); aom_blend_a64_mask(dst, dst_stride, src0, src0_stride, src1, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh); } #if CONFIG_AV1_HIGHBITDEPTH static void build_masked_compound_highbd( uint8_t *dst_8, int dst_stride, const uint8_t *src0_8, int src0_stride, const uint8_t *src1_8, int src1_stride, const INTERINTER_COMPOUND_DATA *const comp_data, BLOCK_SIZE sb_type, int h, int w, int bd) { // Derive subsampling from h and w passed in. May be refactored to // pass in subsampling factors directly. const int subh = (2 << mi_size_high_log2[sb_type]) == h; const int subw = (2 << mi_size_wide_log2[sb_type]) == w; const uint8_t *mask = av1_get_compound_type_mask(comp_data, sb_type); // const uint8_t *mask = // av1_get_contiguous_soft_mask(wedge_index, wedge_sign, sb_type); aom_highbd_blend_a64_mask(dst_8, dst_stride, src0_8, src0_stride, src1_8, src1_stride, mask, block_size_wide[sb_type], w, h, subw, subh, bd); } #endif static void build_wedge_inter_predictor_from_buf( MACROBLOCKD *xd, int plane, int x, int y, int w, int h, uint8_t *ext_dst0, int ext_dst_stride0, uint8_t *ext_dst1, int ext_dst_stride1) { MB_MODE_INFO *const mbmi = xd->mi[0]; const int is_compound = has_second_ref(mbmi); MACROBLOCKD_PLANE *const pd = &xd->plane[plane]; struct buf_2d *const dst_buf = &pd->dst; uint8_t *const dst = dst_buf->buf + dst_buf->stride * y + x; mbmi->interinter_comp.seg_mask = xd->seg_mask; const INTERINTER_COMPOUND_DATA *comp_data = &mbmi->interinter_comp; const int is_hbd = is_cur_buf_hbd(xd); if (is_compound && is_masked_compound_type(comp_data->type)) { if (!plane && comp_data->type == COMPOUND_DIFFWTD) { #if CONFIG_AV1_HIGHBITDEPTH if (is_hbd) { av1_build_compound_diffwtd_mask_highbd( comp_data->seg_mask, comp_data->mask_type, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, h, w, xd->bd); } else { av1_build_compound_diffwtd_mask( comp_data->seg_mask, comp_data->mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w); } #else (void)is_hbd; av1_build_compound_diffwtd_mask(comp_data->seg_mask, comp_data->mask_type, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, h, w); #endif // CONFIG_AV1_HIGHBITDEPTH } #if CONFIG_AV1_HIGHBITDEPTH if (is_hbd) { build_masked_compound_highbd( dst, dst_buf->stride, CONVERT_TO_BYTEPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_BYTEPTR(ext_dst1), ext_dst_stride1, comp_data, mbmi->bsize, h, w, xd->bd); } else { build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, comp_data, mbmi->bsize, h, w); } #else build_masked_compound(dst, dst_buf->stride, ext_dst0, ext_dst_stride0, ext_dst1, ext_dst_stride1, comp_data, mbmi->bsize, h, w); #endif } else { #if CONFIG_AV1_HIGHBITDEPTH if (is_hbd) { aom_highbd_convolve_copy(CONVERT_TO_SHORTPTR(ext_dst0), ext_dst_stride0, CONVERT_TO_SHORTPTR(dst), dst_buf->stride, w, h); } else { aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, w, h); } #else aom_convolve_copy(ext_dst0, ext_dst_stride0, dst, dst_buf->stride, w, h); #endif } } void av1_build_wedge_inter_predictor_from_buf(MACROBLOCKD *xd, BLOCK_SIZE bsize, int plane_from, int plane_to, uint8_t *ext_dst0[], int ext_dst_stride0[], uint8_t *ext_dst1[], int ext_dst_stride1[]) { int plane; assert(bsize < BLOCK_SIZES_ALL); for (plane = plane_from; plane <= plane_to; ++plane) { const BLOCK_SIZE plane_bsize = get_plane_block_size( bsize, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); const int bw = block_size_wide[plane_bsize]; const int bh = block_size_high[plane_bsize]; build_wedge_inter_predictor_from_buf( xd, plane, 0, 0, bw, bh, ext_dst0[plane], ext_dst_stride0[plane], ext_dst1[plane], ext_dst_stride1[plane]); } } // Get pred block from up-sampled reference. void aom_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int plane = 0; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; InterPredParams inter_pred_params; inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); const int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); av1_init_inter_params( &inter_pred_params, width, height, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters); av1_enc_build_one_inter_predictor(comp_pred, width, mv, &inter_pred_params); return; } } const InterpFilterParams *filter = av1_get_filter(subpel_search); if (!subpel_x_q3 && !subpel_y_q3) { for (int i = 0; i < height; i++) { memcpy(comp_pred, ref, width * sizeof(*comp_pred)); comp_pred += width; ref += ref_stride; } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_convolve8_horiz_c(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1, width, height); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_convolve8_vert_c(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16, width, height); } else { DECLARE_ALIGNED(16, uint8_t, temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_convolve8_horiz_c(ref - ref_stride * ((filter->taps >> 1) - 1), ref_stride, temp, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height); aom_convolve8_vert_c(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1), MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16, width, height); } } void aom_comp_avg_upsampled_pred_c(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { int i, j; aom_upsampled_pred_c(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { comp_pred[j] = ROUND_POWER_OF_TWO(comp_pred[j] + pred[j], 1); } comp_pred += width; pred += width; } } void aom_comp_mask_upsampled_pred(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask, int subpel_search) { if (subpel_x_q3 | subpel_y_q3) { aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); ref = comp_pred; ref_stride = width; } aom_comp_mask_pred(comp_pred, pred, width, height, ref, ref_stride, mask, mask_stride, invert_mask); } void aom_dist_wtd_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, const DIST_WTD_COMP_PARAMS *jcp_param, int subpel_search) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; aom_upsampled_pred_c(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint8_t)tmp; } comp_pred += width; pred += width; } } #if CONFIG_AV1_HIGHBITDEPTH void aom_highbd_upsampled_pred_c(MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int plane = 0; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; InterPredParams inter_pred_params; inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); const int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); av1_init_inter_params( &inter_pred_params, width, height, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters); av1_enc_build_one_inter_predictor(comp_pred8, width, mv, &inter_pred_params); return; } } const InterpFilterParams *filter = av1_get_filter(subpel_search); if (!subpel_x_q3 && !subpel_y_q3) { const uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); for (int i = 0; i < height; i++) { memcpy(comp_pred, ref, width * sizeof(*comp_pred)); comp_pred += width; ref += ref_stride; } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_highbd_convolve8_horiz_c(ref8, ref_stride, comp_pred8, width, kernel, 16, NULL, -1, width, height, bd); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_highbd_convolve8_vert_c(ref8, ref_stride, comp_pred8, width, NULL, -1, kernel, 16, width, height, bd); } else { DECLARE_ALIGNED(16, uint16_t, temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter->taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_highbd_convolve8_horiz_c(ref8 - ref_stride * ((filter->taps >> 1) - 1), ref_stride, CONVERT_TO_BYTEPTR(temp), MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height, bd); aom_highbd_convolve8_vert_c( CONVERT_TO_BYTEPTR(temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1)), MAX_SB_SIZE, comp_pred8, width, NULL, -1, kernel_y, 16, width, height, bd); } } void aom_highbd_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { int i, j; const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); for (i = 0; i < height; ++i) { for (j = 0; j < width; ++j) { comp_pred[j] = ROUND_POWER_OF_TWO(pred[j] + comp_pred[j], 1); } comp_pred += width; pred += width; } } void aom_highbd_dist_wtd_comp_avg_upsampled_pred_c( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, const DIST_WTD_COMP_PARAMS *jcp_param, int subpel_search) { int i, j; const int fwd_offset = jcp_param->fwd_offset; const int bck_offset = jcp_param->bck_offset; const uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); aom_highbd_upsampled_pred_c(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); for (i = 0; i < height; i++) { for (j = 0; j < width; j++) { int tmp = pred[j] * bck_offset + comp_pred[j] * fwd_offset; tmp = ROUND_POWER_OF_TWO(tmp, DIST_PRECISION_BITS); comp_pred[j] = (uint16_t)tmp; } comp_pred += width; pred += width; } } void aom_highbd_comp_mask_upsampled_pred( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask, int bd, int subpel_search) { aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); aom_highbd_comp_mask_pred(comp_pred8, pred8, width, height, comp_pred8, width, mask, mask_stride, invert_mask); } #endif // CONFIG_AV1_HIGHBITDEPTH