/* * Copyright (c) 2023, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/firstpass.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/saliency_map.h" // The Gabor filter is generated by setting the parameters as: // ksize = 9 // sigma = 1 // theta = y*np.pi/4, where y /in {0, 1, 2, 3}, i.e., 0, 45, 90, 135 degree // lambda1 = 1 // gamma=0.8 // phi =0 static const double kGaborFilter[4][9][9] = { // [angle: 0, 45, 90, 135 // degree][ksize][ksize] { { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 }, { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, { 3.3546262e-04, 1.1108996e-02, 1.3533528e-01, 6.0653067e-01, 1.0000000e+00, 6.0653067e-01, 1.3533528e-01, 1.1108996e-02, 3.3546262e-04 }, { 2.4359586e-04, 8.0667874e-03, 9.8273583e-02, 4.4043165e-01, 7.2614902e-01, 4.4043165e-01, 9.8273583e-02, 8.0667874e-03, 2.4359586e-04 }, { 9.3271126e-05, 3.0887155e-03, 3.7628256e-02, 1.6863814e-01, 2.7803731e-01, 1.6863814e-01, 3.7628256e-02, 3.0887155e-03, 9.3271126e-05 }, { 1.8831115e-05, 6.2360091e-04, 7.5970138e-03, 3.4047455e-02, 5.6134764e-02, 3.4047455e-02, 7.5970138e-03, 6.2360091e-04, 1.8831115e-05 }, { 2.0047323e-06, 6.6387620e-05, 8.0876675e-04, 3.6246411e-03, 5.9760227e-03, 3.6246411e-03, 8.0876675e-04, 6.6387620e-05, 2.0047323e-06 } }, { { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, 3.5712848e-05 }, { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, -8.1631159e-05 }, { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, -9.9486928e-04 }, { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, 1.3962291e-03 }, { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, 6.6981313e-04 }, { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, -4.4602581e-04 }, { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, 3.0079011e-06 }, { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, 3.8760313e-06 }, { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, -6.2165498e-08 } }, { { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 }, { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, { 5.9760227e-03, 5.6134764e-02, 2.7803731e-01, 7.2614902e-01, 1.0000000e+00, 7.2614902e-01, 2.7803731e-01, 5.6134764e-02, 5.9760227e-03 }, { 3.6246411e-03, 3.4047455e-02, 1.6863814e-01, 4.4043165e-01, 6.0653067e-01, 4.4043165e-01, 1.6863814e-01, 3.4047455e-02, 3.6246411e-03 }, { 8.0876675e-04, 7.5970138e-03, 3.7628256e-02, 9.8273583e-02, 1.3533528e-01, 9.8273583e-02, 3.7628256e-02, 7.5970138e-03, 8.0876675e-04 }, { 6.6387620e-05, 6.2360091e-04, 3.0887155e-03, 8.0667874e-03, 1.1108996e-02, 8.0667874e-03, 3.0887155e-03, 6.2360091e-04, 6.6387620e-05 }, { 2.0047323e-06, 1.8831115e-05, 9.3271126e-05, 2.4359586e-04, 3.3546262e-04, 2.4359586e-04, 9.3271126e-05, 1.8831115e-05, 2.0047323e-06 } }, { { 3.5712848e-05, -8.1631159e-05, -9.9486928e-04, 1.3962291e-03, 6.6981313e-04, -4.4602581e-04, 3.0079011e-06, 3.8760313e-06, -6.2165498e-08 }, { -8.1631159e-05, 3.1511115e-03, -3.7979286e-03, -2.4406660e-02, 1.8061366e-02, 4.5687673e-03, -1.6041942e-03, 5.7044272e-06, 3.8760313e-06 }, { -9.9486928e-04, -3.7979286e-03, 7.7304743e-02, -4.9129307e-02, -1.6647682e-01, 6.4960226e-02, 8.6645801e-03, -1.6041942e-03, 3.0079011e-06 }, { 1.3962291e-03, -2.4406660e-02, -4.9129307e-02, 5.2729243e-01, -1.7670043e-01, -3.1572008e-01, 6.4960226e-02, 4.5687673e-03, -4.4602581e-04 }, { 6.6981313e-04, 1.8061366e-02, -1.6647682e-01, -1.7670043e-01, 1.0000000e+00, -1.7670043e-01, -1.6647682e-01, 1.8061366e-02, 6.6981313e-04 }, { -4.4602581e-04, 4.5687673e-03, 6.4960226e-02, -3.1572008e-01, -1.7670043e-01, 5.2729243e-01, -4.9129307e-02, -2.4406660e-02, 1.3962291e-03 }, { 3.0079011e-06, -1.6041942e-03, 8.6645801e-03, 6.4960226e-02, -1.6647682e-01, -4.9129307e-02, 7.7304743e-02, -3.7979286e-03, -9.9486928e-04 }, { 3.8760313e-06, 5.7044272e-06, -1.6041942e-03, 4.5687673e-03, 1.8061366e-02, -2.4406660e-02, -3.7979286e-03, 3.1511115e-03, -8.1631159e-05 }, { -6.2165498e-08, 3.8760313e-06, 3.0079011e-06, -4.4602581e-04, 6.6981313e-04, 1.3962291e-03, -9.9486928e-04, -8.1631159e-05, 3.5712848e-05 } } }; // This function is to extract red/green/blue channels, and calculate intensity // = (r+g+b)/3. Note that it only handles 8bits case now. // TODO(linzhen): add high bitdepth support. static void get_color_intensity(const YV12_BUFFER_CONFIG *src, int subsampling_x, int subsampling_y, double *cr, double *cg, double *cb, double *intensity) { const uint8_t *y = src->buffers[0]; const uint8_t *u = src->buffers[1]; const uint8_t *v = src->buffers[2]; const int y_height = src->crop_heights[0]; const int y_width = src->crop_widths[0]; const int y_stride = src->strides[0]; const int c_stride = src->strides[1]; for (int i = 0; i < y_height; ++i) { for (int j = 0; j < y_width; ++j) { cr[i * y_width + j] = fclamp((double)y[i * y_stride + j] + 1.370 * (double)(v[(i >> subsampling_y) * c_stride + (j >> subsampling_x)] - 128), 0, 255); cg[i * y_width + j] = fclamp((double)y[i * y_stride + j] - 0.698 * (double)(u[(i >> subsampling_y) * c_stride + (j >> subsampling_x)] - 128) - 0.337 * (double)(v[(i >> subsampling_y) * c_stride + (j >> subsampling_x)] - 128), 0, 255); cb[i * y_width + j] = fclamp((double)y[i * y_stride + j] + 1.732 * (double)(u[(i >> subsampling_y) * c_stride + (j >> subsampling_x)] - 128), 0, 255); intensity[i * y_width + j] = (cr[i * y_width + j] + cg[i * y_width + j] + cb[i * y_width + j]) / 3.0; assert(intensity[i * y_width + j] >= 0 && intensity[i * y_width + j] <= 255); intensity[i * y_width + j] /= 256; cr[i * y_width + j] /= 256; cg[i * y_width + j] /= 256; cb[i * y_width + j] /= 256; } } } static INLINE double convolve_map(const double *filter, const double *map, const int size) { double result = 0; for (int i = 0; i < size; ++i) { result += filter[i] * map[i]; // symmetric filter is used } return result; } // This function is to decimate the map by half, and apply Gaussian filter on // top of the downsampled map. static INLINE void decimate_map(const double *map, int height, int width, int stride, double *downsampled_map) { const int new_width = width / 2; const int window_size = 5; const double gaussian_filter[25] = { 1. / 256, 1.0 / 64, 3. / 128, 1. / 64, 1. / 256, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 3. / 128, 3. / 32, 9. / 64, 3. / 32, 3. / 128, 1. / 64, 1. / 16, 3. / 32, 1. / 16, 1. / 64, 1. / 256, 1. / 64, 3. / 128, 1. / 64, 1. / 256 }; double map_region[25]; for (int y = 0; y < height - 1; y += 2) { for (int x = 0; x < width - 1; x += 2) { int i = 0; for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { int yvalue = clamp(yy, 0, height - 1); int xvalue = clamp(xx, 0, width - 1); map_region[i++] = map[yvalue * stride + xvalue]; } } downsampled_map[(y / 2) * new_width + (x / 2)] = convolve_map(gaussian_filter, map_region, window_size * window_size); } } } // This function is to upscale the map from in_level size to out_level size. // Note that the map at "level-1" will upscale the map at "level" by x2. static INLINE int upscale_map(const double *input, int in_level, int out_level, int height[9], int width[9], double *output) { for (int level = in_level; level > out_level; level--) { const int cur_width = width[level]; const int cur_height = height[level]; const int cur_stride = width[level]; double *original = (level == in_level) ? (double *)input : output; assert(level > 0); const int h_upscale = height[level - 1]; const int w_upscale = width[level - 1]; const int s_upscale = width[level - 1]; double *upscale = aom_malloc(h_upscale * w_upscale * sizeof(*upscale)); if (!upscale) { return 0; } for (int i = 0; i < h_upscale; ++i) { for (int j = 0; j < w_upscale; ++j) { const int ii = clamp((i >> 1), 0, cur_height - 1); const int jj = clamp((j >> 1), 0, cur_width - 1); upscale[j + i * s_upscale] = (double)original[jj + ii * cur_stride]; } } memcpy(output, upscale, h_upscale * w_upscale * sizeof(double)); aom_free(upscale); } return 1; } // This function calculates the differences between a fine scale c and a // coarser scale s yielding the feature maps. c \in {2, 3, 4}, and s = c + // delta, where delta \in {3, 4}. static int center_surround_diff(const double *input[9], int height[9], int width[9], saliency_feature_map *output[6]) { int j = 0; for (int k = 2; k < 5; ++k) { int cur_height = height[k]; int cur_width = width[k]; if (upscale_map(input[k + 3], k + 3, k, height, width, output[j]->buf) == 0) { return 0; } for (int r = 0; r < cur_height; ++r) { for (int c = 0; c < cur_width; ++c) { output[j]->buf[r * cur_width + c] = fabs((double)(input[k][r * cur_width + c] - output[j]->buf[r * cur_width + c])); } } if (upscale_map(input[k + 4], k + 4, k, height, width, output[j + 1]->buf) == 0) { return 0; } for (int r = 0; r < cur_height; ++r) { for (int c = 0; c < cur_width; ++c) { output[j + 1]->buf[r * cur_width + c] = fabs(input[k][r * cur_width + c] - output[j + 1]->buf[r * cur_width + c]); } } j += 2; } return 1; } // For color channels, the differences is calculated based on "color // double-opponency". For example, the RG feature map is constructed between a // fine scale c of R-G component and a coarser scale s of G-R component. static int center_surround_diff_rgb(const double *input_1[9], const double *input_2[9], int height[9], int width[9], saliency_feature_map *output[6]) { int j = 0; for (int k = 2; k < 5; ++k) { int cur_height = height[k]; int cur_width = width[k]; if (upscale_map(input_2[k + 3], k + 3, k, height, width, output[j]->buf) == 0) { return 0; } for (int r = 0; r < cur_height; ++r) { for (int c = 0; c < cur_width; ++c) { output[j]->buf[r * cur_width + c] = fabs((double)(input_1[k][r * cur_width + c] - output[j]->buf[r * cur_width + c])); } } if (upscale_map(input_2[k + 4], k + 4, k, height, width, output[j + 1]->buf) == 0) { return 0; } for (int r = 0; r < cur_height; ++r) { for (int c = 0; c < cur_width; ++c) { output[j + 1]->buf[r * cur_width + c] = fabs(input_1[k][r * cur_width + c] - output[j + 1]->buf[r * cur_width + c]); } } j += 2; } return 1; } // This function is to generate Gaussian pyramid images with indexes from 0 to // 8, and construct the feature maps from calculating the center-surround // differences. static int gaussian_pyramid(const double *src, int width[9], int height[9], saliency_feature_map *dst[6]) { double *gaussian_map[9]; // scale = 9 gaussian_map[0] = (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); if (!gaussian_map[0]) { return 0; } memcpy(gaussian_map[0], src, width[0] * height[0] * sizeof(double)); for (int i = 1; i < 9; ++i) { int stride = width[i - 1]; int new_width = width[i]; int new_height = height[i]; gaussian_map[i] = (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); if (!gaussian_map[i]) { for (int l = 0; l < i; ++l) { aom_free(gaussian_map[l]); } return 0; } memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, gaussian_map[i]); } if (center_surround_diff((const double **)gaussian_map, height, width, dst) == 0) { for (int l = 0; l < 9; ++l) { aom_free(gaussian_map[l]); } return 0; } for (int i = 0; i < 9; ++i) { aom_free(gaussian_map[i]); } return 1; } static int gaussian_pyramid_rgb(double *src_1, double *src_2, int width[9], int height[9], saliency_feature_map *dst[6]) { double *gaussian_map[2][9]; // scale = 9 double *src[2]; src[0] = src_1; src[1] = src_2; for (int k = 0; k < 2; ++k) { gaussian_map[k][0] = (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[k][0])); if (!gaussian_map[k][0]) { for (int l = 0; l < k; ++l) { aom_free(gaussian_map[l][0]); } return 0; } memcpy(gaussian_map[k][0], src[k], width[0] * height[0] * sizeof(double)); for (int i = 1; i < 9; ++i) { int stride = width[i - 1]; int new_width = width[i]; int new_height = height[i]; gaussian_map[k][i] = (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[k][i])); if (!gaussian_map[k][i]) { for (int l = 0; l < k; ++l) { aom_free(gaussian_map[l][i]); } return 0; } memset(gaussian_map[k][i], 0, new_width * new_height * sizeof(double)); decimate_map(gaussian_map[k][i - 1], height[i - 1], width[i - 1], stride, gaussian_map[k][i]); } } if (center_surround_diff_rgb((const double **)gaussian_map[0], (const double **)gaussian_map[1], height, width, dst) == 0) { for (int l = 0; l < 2; ++l) { for (int i = 0; i < 9; ++i) { aom_free(gaussian_map[l][i]); } } return 0; } for (int l = 0; l < 2; ++l) { for (int i = 0; i < 9; ++i) { aom_free(gaussian_map[l][i]); } } return 1; } static int get_feature_map_intensity(double *intensity, int width[9], int height[9], saliency_feature_map *i_map[6]) { if (gaussian_pyramid(intensity, width, height, i_map) == 0) { return 0; } return 1; } static int get_feature_map_rgb(double *cr, double *cg, double *cb, int width[9], int height[9], saliency_feature_map *rg_map[6], saliency_feature_map *by_map[6]) { double *rg_mat = aom_malloc(height[0] * width[0] * sizeof(*rg_mat)); double *by_mat = aom_malloc(height[0] * width[0] * sizeof(*by_mat)); double *gr_mat = aom_malloc(height[0] * width[0] * sizeof(*gr_mat)); double *yb_mat = aom_malloc(height[0] * width[0] * sizeof(*yb_mat)); if (!rg_mat || !by_mat || !gr_mat || !yb_mat) { aom_free(rg_mat); aom_free(by_mat); aom_free(gr_mat); aom_free(yb_mat); return 0; } double r, g, b, y; for (int i = 0; i < height[0]; ++i) { for (int j = 0; j < width[0]; ++j) { r = AOMMAX(0, cr[i * width[0] + j] - (cg[i * width[0] + j] + cb[i * width[0] + j]) / 2); g = AOMMAX(0, cg[i * width[0] + j] - (cr[i * width[0] + j] + cb[i * width[0] + j]) / 2); b = AOMMAX(0, cb[i * width[0] + j] - (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2); y = AOMMAX(0, (cr[i * width[0] + j] + cg[i * width[0] + j]) / 2 - fabs(cr[i * width[0] + j] - cg[i * width[0] + j]) / 2 - cb[i * width[0] + j]); rg_mat[i * width[0] + j] = r - g; by_mat[i * width[0] + j] = b - y; gr_mat[i * width[0] + j] = g - r; yb_mat[i * width[0] + j] = y - b; } } if (gaussian_pyramid_rgb(rg_mat, gr_mat, width, height, rg_map) == 0 || gaussian_pyramid_rgb(by_mat, yb_mat, width, height, by_map) == 0) { aom_free(rg_mat); aom_free(by_mat); aom_free(gr_mat); aom_free(yb_mat); return 0; } aom_free(rg_mat); aom_free(by_mat); aom_free(gr_mat); aom_free(yb_mat); return 1; } static INLINE void filter2d(const double *input, const double kernel[9][9], int width, int height, double *output) { const int window_size = 9; double map_section[81]; for (int y = 0; y <= height - 1; ++y) { for (int x = 0; x <= width - 1; ++x) { int i = 0; for (int yy = y - window_size / 2; yy <= y + window_size / 2; ++yy) { for (int xx = x - window_size / 2; xx <= x + window_size / 2; ++xx) { int yvalue = clamp(yy, 0, height - 1); int xvalue = clamp(xx, 0, width - 1); map_section[i++] = input[yvalue * width + xvalue]; } } output[y * width + x] = 0; for (int k = 0; k < window_size; ++k) { for (int l = 0; l < window_size; ++l) { output[y * width + x] += kernel[k][l] * map_section[k * window_size + l]; } } } } } static int get_feature_map_orientation(const double *intensity, int width[9], int height[9], saliency_feature_map *dst[24]) { double *gaussian_map[9]; gaussian_map[0] = (double *)aom_malloc(width[0] * height[0] * sizeof(*gaussian_map[0])); if (!gaussian_map[0]) { return 0; } memcpy(gaussian_map[0], intensity, width[0] * height[0] * sizeof(double)); for (int i = 1; i < 9; ++i) { int stride = width[i - 1]; int new_width = width[i]; int new_height = height[i]; gaussian_map[i] = (double *)aom_malloc(new_width * new_height * sizeof(*gaussian_map[i])); if (!gaussian_map[i]) { for (int l = 0; l < i; ++l) { aom_free(gaussian_map[l]); } return 0; } memset(gaussian_map[i], 0, new_width * new_height * sizeof(double)); decimate_map(gaussian_map[i - 1], height[i - 1], width[i - 1], stride, gaussian_map[i]); } double *tempGaborOutput[4][9]; //[angle: 0, 45, 90, 135 degree][filter_size] for (int i = 2; i < 9; ++i) { const int cur_height = height[i]; const int cur_width = width[i]; for (int j = 0; j < 4; ++j) { tempGaborOutput[j][i] = (double *)aom_malloc( cur_height * cur_width * sizeof(*tempGaborOutput[j][i])); if (!tempGaborOutput[j][i]) { for (int l = 0; l < 9; ++l) { aom_free(gaussian_map[l]); } for (int h = 0; h < 4; ++h) { for (int g = 2; g < 9; ++g) { aom_free(tempGaborOutput[h][g]); } } return 0; } filter2d(gaussian_map[i], kGaborFilter[j], cur_width, cur_height, tempGaborOutput[j][i]); } } for (int i = 0; i < 9; ++i) { aom_free(gaussian_map[i]); } saliency_feature_map *tmp[4][6]; //[angle: 0, 45, 90, 135 degree][filter_size] for (int i = 0; i < 6; ++i) { for (int j = 0; j < 4; ++j) { tmp[j][i] = dst[j * 6 + i]; } } for (int j = 0; j < 4; ++j) { if (center_surround_diff((const double **)tempGaborOutput[j], height, width, tmp[j]) == 0) { for (int h = 0; h < 4; ++h) { for (int g = 2; g < 9; ++g) { aom_free(tempGaborOutput[h][g]); } } return 0; } } for (int i = 2; i < 9; ++i) { for (int j = 0; j < 4; ++j) { aom_free(tempGaborOutput[j][i]); } } return 1; } static INLINE void find_min_max(const saliency_feature_map *input, double *max_value, double *min_value) { assert(input && input->buf); *min_value = DBL_MAX; *max_value = 0.0; for (int i = 0; i < input->height; ++i) { for (int j = 0; j < input->width; ++j) { assert(input->buf[i * input->width + j] >= 0.0); *min_value = fmin(input->buf[i * input->width + j], *min_value); *max_value = fmax(input->buf[i * input->width + j], *max_value); } } } static INLINE double average_local_max(const saliency_feature_map *input, int stepsize) { int numlocal = 0; double lmaxmean = 0, lmax = 0, dummy = 0; saliency_feature_map local_map; local_map.height = stepsize; local_map.width = stepsize; local_map.buf = (double *)aom_malloc(stepsize * stepsize * sizeof(*local_map.buf)); if (!local_map.buf) { return -1; } for (int y = 0; y < input->height - stepsize; y += stepsize) { for (int x = 0; x < input->width - stepsize; x += stepsize) { for (int i = 0; i < stepsize; ++i) { for (int j = 0; j < stepsize; ++j) { local_map.buf[i * stepsize + j] = input->buf[(y + i) * input->width + x + j]; } } find_min_max(&local_map, &lmax, &dummy); lmaxmean += lmax; numlocal++; } } aom_free(local_map.buf); return lmaxmean / numlocal; } // Linear normalization the values in the map to [0,1]. static void minmax_normalize(saliency_feature_map *input) { double max_value, min_value; find_min_max(input, &max_value, &min_value); for (int i = 0; i < input->height; ++i) { for (int j = 0; j < input->width; ++j) { if (max_value != min_value) { input->buf[i * input->width + j] = input->buf[i * input->width + j] / (max_value - min_value) + min_value / (min_value - max_value); } else { input->buf[i * input->width + j] -= min_value; } } } } // This function is to promote meaningful “activation spots” in the map and // ignores homogeneous areas. static int nomalization_operator(saliency_feature_map *input, int stepsize) { minmax_normalize(input); double lmaxmean = average_local_max(input, stepsize); if (lmaxmean < 0) { return 0; } double normCoeff = (1 - lmaxmean) * (1 - lmaxmean); for (int i = 0; i < input->height; ++i) { for (int j = 0; j < input->width; ++j) { input->buf[i * input->width + j] *= normCoeff; } } return 1; } // Normalize the values in feature maps to [0,1], and then upscale all maps to // the original frame size. static int normalize_fm(saliency_feature_map *input[6], int width[9], int height[9], int num_fm, saliency_feature_map *output[6]) { // Feature maps (FM) are generated by function "center_surround_diff()". The // difference is between a fine scale c and a coarser scale s, where c \in {2, // 3, 4}, and s = c + delta, where delta \in {3, 4}, and the FM size is scale // c. Specifically, i=0: c=2 and s=5, i=1: c=2 and s=6, i=2: c=3 and s=6, i=3: // c=3 and s=7, i=4: c=4 and s=7, i=5: c=4 and s=8. for (int i = 0; i < num_fm; ++i) { if (nomalization_operator(input[i], 8) == 0) { return 0; } // Upscale FM to original frame size if (upscale_map(input[i]->buf, (i / 2) + 2, 0, height, width, output[i]->buf) == 0) { return 0; } } return 1; } // Combine feature maps with the same category (intensity, color, or // orientation) into one conspicuity map. static int normalized_map(saliency_feature_map *input[6], int width[9], int height[9], saliency_feature_map *output) { int num_fm = 6; saliency_feature_map *n_input[6]; for (int i = 0; i < 6; ++i) { n_input[i] = (saliency_feature_map *)aom_malloc(sizeof(*n_input[i])); if (!n_input[i]) { return 0; } n_input[i]->buf = (double *)aom_malloc(width[0] * height[0] * sizeof(*n_input[i]->buf)); if (!n_input[i]->buf) { aom_free(n_input[i]); return 0; } n_input[i]->height = height[0]; n_input[i]->width = width[0]; } if (normalize_fm(input, width, height, num_fm, n_input) == 0) { for (int i = 0; i < num_fm; ++i) { aom_free(n_input[i]->buf); aom_free(n_input[i]); } return 0; } // Add up all normalized feature maps with the same category into one map. for (int i = 0; i < num_fm; ++i) { for (int r = 0; r < height[0]; ++r) { for (int c = 0; c < width[0]; ++c) { output->buf[r * width[0] + c] += n_input[i]->buf[r * width[0] + c]; } } } for (int i = 0; i < num_fm; ++i) { aom_free(n_input[i]->buf); aom_free(n_input[i]); } nomalization_operator(output, 8); return 1; } static int normalized_map_rgb(saliency_feature_map *rg_map[6], saliency_feature_map *by_map[6], int width[9], int height[9], saliency_feature_map *output) { saliency_feature_map *color_cm[2]; // 0: color_cm_rg, 1: color_cm_by for (int i = 0; i < 2; ++i) { color_cm[i] = aom_malloc(sizeof(*color_cm[i])); if (!color_cm[i]) { return 0; } color_cm[i]->buf = (double *)aom_malloc(width[0] * height[0] * sizeof(*color_cm[i]->buf)); if (!color_cm[i]->buf) { for (int l = 0; l < i; ++l) { aom_free(color_cm[l]->buf); } aom_free(color_cm[i]); return 0; } color_cm[i]->width = width[0]; color_cm[i]->height = height[0]; memset(color_cm[i]->buf, 0, width[0] * height[0] * sizeof(*color_cm[i]->buf)); } if (normalized_map(rg_map, width, height, color_cm[0]) == 0 || normalized_map(by_map, width, height, color_cm[1]) == 0) { for (int i = 0; i < 2; ++i) { aom_free(color_cm[i]->buf); aom_free(color_cm[i]); } return 0; } for (int r = 0; r < height[0]; ++r) { for (int c = 0; c < width[0]; ++c) { output->buf[r * width[0] + c] = color_cm[0]->buf[r * width[0] + c] + color_cm[1]->buf[r * width[0] + c]; } } for (int i = 0; i < 2; ++i) { aom_free(color_cm[i]->buf); aom_free(color_cm[i]); } nomalization_operator(output, 8); return 1; } static int normalized_map_orientation(saliency_feature_map *orientation_map[24], int width[9], int height[9], saliency_feature_map *output) { int num_fms_per_angle = 6; saliency_feature_map *ofm[4][6]; for (int i = 0; i < num_fms_per_angle; ++i) { for (int j = 0; j < 4; ++j) { ofm[j][i] = orientation_map[j * num_fms_per_angle + i]; } } // extract conspicuity map for each angle saliency_feature_map *nofm = aom_malloc(sizeof(*nofm)); if (!nofm) { return 0; } nofm->buf = (double *)aom_malloc(width[0] * height[0] * sizeof(*nofm->buf)); if (!nofm->buf) { aom_free(nofm); return 0; } nofm->height = height[0]; nofm->width = width[0]; for (int i = 0; i < 4; ++i) { memset(nofm->buf, 0, width[0] * height[0] * sizeof(*nofm->buf)); if (normalized_map(ofm[i], width, height, nofm) == 0) { aom_free(nofm->buf); aom_free(nofm); return 0; } for (int r = 0; r < height[0]; ++r) { for (int c = 0; c < width[0]; ++c) { output->buf[r * width[0] + c] += nofm->buf[r * width[0] + c]; } } } aom_free(nofm->buf); aom_free(nofm); nomalization_operator(output, 8); return 1; } // Set pixel level saliency mask based on Itti-Koch algorithm int av1_set_saliency_map(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; int frm_width = cm->width; int frm_height = cm->height; int pyr_height[9]; int pyr_width[9]; pyr_height[0] = frm_height; pyr_width[0] = frm_width; for (int i = 1; i < 9; ++i) { pyr_width[i] = pyr_width[i - 1] / 2; pyr_height[i] = pyr_height[i - 1] / 2; } double *cr = aom_malloc(frm_width * frm_height * sizeof(*cr)); double *cg = aom_malloc(frm_width * frm_height * sizeof(*cg)); double *cb = aom_malloc(frm_width * frm_height * sizeof(*cb)); double *intensity = aom_malloc(frm_width * frm_height * sizeof(*intensity)); if (!cr || !cg || !cb || !intensity) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); return 0; } // Extract red / green / blue channels and intensity component get_color_intensity(cpi->source, cm->seq_params->subsampling_x, cm->seq_params->subsampling_y, cr, cg, cb, intensity); // Feature Map Extraction // intensity map saliency_feature_map *i_map[6]; for (int i = 0; i < 6; ++i) { int cur_height = pyr_height[(i / 2) + 2]; int cur_width = pyr_width[(i / 2) + 2]; i_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*i_map[i])); if (!i_map[i]) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < i; ++l) { aom_free(i_map[l]); } return 0; } i_map[i]->buf = (double *)aom_malloc(cur_height * cur_width * sizeof(*i_map[i]->buf)); if (!i_map[i]->buf) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < i; ++l) { aom_free(i_map[l]->buf); aom_free(i_map[l]); } return 0; } i_map[i]->height = cur_height; i_map[i]->width = cur_width; } if (get_feature_map_intensity(intensity, pyr_width, pyr_height, i_map) == 0) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(i_map[l]); } return 0; } // RGB map saliency_feature_map *rg_map[6], *by_map[6]; for (int i = 0; i < 6; ++i) { int cur_height = pyr_height[(i / 2) + 2]; int cur_width = pyr_width[(i / 2) + 2]; rg_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*rg_map[i])); by_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*by_map[i])); if (!rg_map[i] || !by_map[i]) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } return 0; } rg_map[i]->buf = (double *)aom_malloc(cur_height * cur_width * sizeof(*rg_map[i]->buf)); by_map[i]->buf = (double *)aom_malloc(cur_height * cur_width * sizeof(*by_map[i]->buf)); if (!by_map[i]->buf || !rg_map[i]->buf) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(i_map[l]); } for (int l = 0; l < i; ++l) { aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(rg_map[l]); aom_free(by_map[l]); } return 0; } rg_map[i]->height = cur_height; rg_map[i]->width = cur_width; by_map[i]->height = cur_height; by_map[i]->width = cur_width; } if (get_feature_map_rgb(cr, cg, cb, pyr_width, pyr_height, rg_map, by_map) == 0) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } return 0; } // Orientation map saliency_feature_map *orientation_map[24]; for (int i = 0; i < 24; ++i) { int cur_height = pyr_height[((i % 6) / 2) + 2]; int cur_width = pyr_width[((i % 6) / 2) + 2]; orientation_map[i] = (saliency_feature_map *)aom_malloc(sizeof(*orientation_map[i])); if (!orientation_map[i]) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } for (int h = 0; h < i; ++h) { aom_free(orientation_map[h]); } return 0; } orientation_map[i]->buf = (double *)aom_malloc( cur_height * cur_width * sizeof(*orientation_map[i]->buf)); if (!orientation_map[i]->buf) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } for (int h = 0; h < i; ++h) { aom_free(orientation_map[h]->buf); aom_free(orientation_map[h]->buf); aom_free(orientation_map[h]); aom_free(orientation_map[h]); } return 0; } orientation_map[i]->height = cur_height; orientation_map[i]->width = cur_width; } if (get_feature_map_orientation(intensity, pyr_width, pyr_height, orientation_map) == 0) { aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } for (int h = 0; h < 24; ++h) { aom_free(orientation_map[h]->buf); aom_free(orientation_map[h]); } return 0; } aom_free(cr); aom_free(cg); aom_free(cb); aom_free(intensity); saliency_feature_map *normalized_maps[3]; // 0: intensity, 1: color, 2: orientation for (int i = 0; i < 3; ++i) { normalized_maps[i] = aom_malloc(sizeof(*normalized_maps[i])); if (!normalized_maps[i]) { for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } for (int h = 0; h < 24; ++h) { aom_free(orientation_map[h]->buf); aom_free(orientation_map[h]); } for (int l = 0; l < i; ++l) { aom_free(normalized_maps[l]); } return 0; } normalized_maps[i]->buf = (double *)aom_malloc( frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); if (!normalized_maps[i]->buf) { for (int l = 0; l < 6; ++l) { aom_free(i_map[l]->buf); aom_free(rg_map[l]->buf); aom_free(by_map[l]->buf); aom_free(i_map[l]); aom_free(rg_map[l]); aom_free(by_map[l]); } for (int h = 0; h < 24; ++h) { aom_free(orientation_map[h]->buf); aom_free(orientation_map[h]); } for (int l = 0; l < i; ++l) { aom_free(normalized_maps[l]->buf); aom_free(normalized_maps[l]); } return 0; } normalized_maps[i]->width = frm_width; normalized_maps[i]->height = frm_height; memset(normalized_maps[i]->buf, 0, frm_width * frm_height * sizeof(*normalized_maps[i]->buf)); } // Conspicuity map generation if (normalized_map(i_map, pyr_width, pyr_height, normalized_maps[0]) == 0 || normalized_map_rgb(rg_map, by_map, pyr_width, pyr_height, normalized_maps[1]) == 0 || normalized_map_orientation(orientation_map, pyr_width, pyr_height, normalized_maps[2]) == 0) { for (int i = 0; i < 6; ++i) { aom_free(i_map[i]->buf); aom_free(rg_map[i]->buf); aom_free(by_map[i]->buf); aom_free(i_map[i]); aom_free(rg_map[i]); aom_free(by_map[i]); } for (int i = 0; i < 24; ++i) { aom_free(orientation_map[i]->buf); aom_free(orientation_map[i]); } for (int i = 0; i < 3; ++i) { aom_free(normalized_maps[i]->buf); aom_free(normalized_maps[i]); } return 0; } for (int i = 0; i < 6; ++i) { aom_free(i_map[i]->buf); aom_free(rg_map[i]->buf); aom_free(by_map[i]->buf); aom_free(i_map[i]); aom_free(rg_map[i]); aom_free(by_map[i]); } for (int i = 0; i < 24; ++i) { aom_free(orientation_map[i]->buf); aom_free(orientation_map[i]); } // Pixel level saliency map saliency_feature_map *combined_saliency_map = aom_malloc(sizeof(*combined_saliency_map)); if (!combined_saliency_map) { for (int i = 0; i < 3; ++i) { aom_free(normalized_maps[i]->buf); aom_free(normalized_maps[i]); } return 0; } combined_saliency_map->buf = (double *)aom_malloc( frm_width * frm_height * sizeof(*combined_saliency_map->buf)); if (!combined_saliency_map->buf) { for (int i = 0; i < 3; ++i) { aom_free(normalized_maps[i]->buf); aom_free(normalized_maps[i]); } aom_free(combined_saliency_map); return 0; } combined_saliency_map->height = frm_height; combined_saliency_map->width = frm_width; double w_intensity, w_color, w_orient; w_intensity = w_color = w_orient = (double)1 / 3; for (int r = 0; r < frm_height; ++r) { for (int c = 0; c < frm_width; ++c) { combined_saliency_map->buf[r * frm_width + c] = (w_intensity * normalized_maps[0]->buf[r * frm_width + c] + w_color * normalized_maps[1]->buf[r * frm_width + c] + w_orient * normalized_maps[2]->buf[r * frm_width + c]); } } for (int r = 0; r < frm_height; ++r) { for (int c = 0; c < frm_width; ++c) { int index = r * frm_width + c; cpi->saliency_map[index] = (uint8_t)(combined_saliency_map->buf[index] * 255); } } for (int i = 0; i < 3; ++i) { aom_free(normalized_maps[i]->buf); aom_free(normalized_maps[i]); } aom_free(combined_saliency_map->buf); aom_free(combined_saliency_map); return 1; } // Set superblock level saliency mask for rdmult scaling int av1_setup_sm_rdmult_scaling_factor(AV1_COMP *cpi, double motion_ratio) { AV1_COMMON *cm = &cpi->common; saliency_feature_map *sb_saliency_map = aom_malloc(sizeof(saliency_feature_map)); if (sb_saliency_map == NULL) { return 0; } const BLOCK_SIZE bsize = cm->seq_params->sb_size; const int num_mi_w = mi_size_wide[bsize]; const int num_mi_h = mi_size_high[bsize]; const int block_width = block_size_wide[bsize]; const int block_height = block_size_high[bsize]; const int num_sb_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; const int num_sb_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; sb_saliency_map->height = num_sb_rows; sb_saliency_map->width = num_sb_cols; sb_saliency_map->buf = (double *)aom_malloc(num_sb_rows * num_sb_cols * sizeof(*sb_saliency_map->buf)); if (sb_saliency_map->buf == NULL) { aom_free(sb_saliency_map); return 0; } for (int row = 0; row < num_sb_rows; ++row) { for (int col = 0; col < num_sb_cols; ++col) { const int index = row * num_sb_cols + col; double total_pixel = 0; double total_weight = 0; for (int i = 0; i < block_height; i++) { for (int j = 0; j < block_width; j++) { if ((row * block_height + i) >= cpi->common.height || (col * block_width + j) >= cpi->common.width) continue; total_pixel++; total_weight += cpi->saliency_map[(row * block_height + i) * cpi->common.width + col * block_width + j]; } } assert(total_pixel > 0); // Calculate the superblock level saliency map from pixel level saliency // map sb_saliency_map->buf[index] = total_weight / total_pixel; // Further lower the superblock saliency score for boundary superblocks. if (row < 1 || row > num_sb_rows - 2 || col < 1 || col > num_sb_cols - 2) { sb_saliency_map->buf[index] /= 5; } } } // superblock level saliency map finalization minmax_normalize(sb_saliency_map); double log_sum = 0.0; double sum = 0.0; int block_count = 0; // Calculate the average superblock sm_scaling_factor for a frame, to be used // for clamping later. for (int row = 0; row < num_sb_rows; ++row) { for (int col = 0; col < num_sb_cols; ++col) { const int index = row * num_sb_cols + col; const double saliency = sb_saliency_map->buf[index]; cpi->sm_scaling_factor[index] = 1 - saliency; sum += cpi->sm_scaling_factor[index]; block_count++; } } assert(block_count > 0); sum /= block_count; // Calculate the geometric mean of superblock sm_scaling_factor for a frame, // to be used for normalization. for (int row = 0; row < num_sb_rows; ++row) { for (int col = 0; col < num_sb_cols; ++col) { const int index = row * num_sb_cols + col; log_sum += log(fmax(cpi->sm_scaling_factor[index], 0.001)); cpi->sm_scaling_factor[index] = fmax(cpi->sm_scaling_factor[index], 0.8 * sum); } } log_sum = exp(log_sum / block_count); // Normalize the sm_scaling_factor by geometric mean. for (int row = 0; row < num_sb_rows; ++row) { for (int col = 0; col < num_sb_cols; ++col) { const int index = row * num_sb_cols + col; assert(log_sum > 0); cpi->sm_scaling_factor[index] /= log_sum; // Modulate the sm_scaling_factor by frame basis motion factor cpi->sm_scaling_factor[index] = cpi->sm_scaling_factor[index] * motion_ratio; } } aom_free(sb_saliency_map->buf); aom_free(sb_saliency_map); return 1; } // av1_setup_motion_ratio() is only enabled when CONFIG_REALTIME_ONLY is 0, // because the computations need to access the first pass stats which are // only available when CONFIG_REALTIME_ONLY is equal to 0. #if !CONFIG_REALTIME_ONLY // Set motion_ratio that reflects the motion quantities between two consecutive // frames. Motion_ratio will be used to set up saliency_map based rdmult scaling // factor, i.e., the less the motion quantities are, the more bits will be spent // on this frame, and vice versa. double av1_setup_motion_ratio(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; int frames_since_key = cm->current_frame.display_order_hint - cpi->rc.frames_since_key; const FIRSTPASS_STATS *cur_stats = av1_firstpass_info_peek( &cpi->ppi->twopass.firstpass_info, frames_since_key); assert(cur_stats != NULL); assert(cpi->ppi->twopass.firstpass_info.total_stats.count > 0); const double avg_intra_error = exp(cpi->ppi->twopass.firstpass_info.total_stats.log_intra_error / cpi->ppi->twopass.firstpass_info.total_stats.count); const double avg_inter_error = exp(cpi->ppi->twopass.firstpass_info.total_stats.log_coded_error / cpi->ppi->twopass.firstpass_info.total_stats.count); double inter_error = cur_stats->coded_error; double error_stdev = 0; const double avg_error = cpi->ppi->twopass.firstpass_info.total_stats.intra_error / cpi->ppi->twopass.firstpass_info.total_stats.count; for (int i = 0; i < cpi->ppi->twopass.firstpass_info.total_stats.count; i++) { const FIRSTPASS_STATS *stats = &cpi->ppi->twopass.firstpass_info.stats_buf[i]; error_stdev += (stats->intra_error - avg_error) * (stats->intra_error - avg_error); } error_stdev = sqrt(error_stdev / cpi->ppi->twopass.firstpass_info.total_stats.count); double motion_ratio = 1; if (error_stdev / fmax(avg_intra_error, 1) > 0.1) { motion_ratio = inter_error / fmax(1, avg_inter_error); motion_ratio = AOMMIN(motion_ratio, 1.5); motion_ratio = AOMMAX(motion_ratio, 0.8); } return motion_ratio; } #endif // !CONFIG_REALTIME_ONLY