/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/common/av1_common_int.h" #include "av1/encoder/sparse_linear_solver.h" #include "config/aom_config.h" #include "aom_mem/aom_mem.h" #include "av1/common/alloccommon.h" #if CONFIG_OPTICAL_FLOW_API /* * Input: * rows: array of row positions * cols: array of column positions * values: array of element values * num_elem: total number of elements in the matrix * num_rows: number of rows in the matrix * num_cols: number of columns in the matrix * * Output: * sm: pointer to the sparse matrix to be initialized * * Return: 0 - success * -1 - failed */ int av1_init_sparse_mtx(const int *rows, const int *cols, const double *values, int num_elem, int num_rows, int num_cols, SPARSE_MTX *sm) { sm->n_elem = num_elem; sm->n_rows = num_rows; sm->n_cols = num_cols; if (num_elem == 0) { sm->row_pos = NULL; sm->col_pos = NULL; sm->value = NULL; return 0; } sm->row_pos = aom_calloc(num_elem, sizeof(*sm->row_pos)); sm->col_pos = aom_calloc(num_elem, sizeof(*sm->col_pos)); sm->value = aom_calloc(num_elem, sizeof(*sm->value)); if (!sm->row_pos || !sm->col_pos || !sm->value) { av1_free_sparse_mtx_elems(sm); return -1; } memcpy(sm->row_pos, rows, num_elem * sizeof(*sm->row_pos)); memcpy(sm->col_pos, cols, num_elem * sizeof(*sm->col_pos)); memcpy(sm->value, values, num_elem * sizeof(*sm->value)); return 0; } /* * Combines two sparse matrices (allocating new space). * * Input: * sm1, sm2: matrices to be combined * row_offset1, row_offset2: row offset of each matrix in the new matrix * col_offset1, col_offset2: column offset of each matrix in the new matrix * new_n_rows, new_n_cols: number of rows and columns in the new matrix * * Output: * sm: the combined matrix * * Return: 0 - success * -1 - failed */ int av1_init_combine_sparse_mtx(const SPARSE_MTX *sm1, const SPARSE_MTX *sm2, SPARSE_MTX *sm, int row_offset1, int col_offset1, int row_offset2, int col_offset2, int new_n_rows, int new_n_cols) { sm->n_elem = sm1->n_elem + sm2->n_elem; sm->n_cols = new_n_cols; sm->n_rows = new_n_rows; if (sm->n_elem == 0) { sm->row_pos = NULL; sm->col_pos = NULL; sm->value = NULL; return 0; } sm->row_pos = aom_calloc(sm->n_elem, sizeof(*sm->row_pos)); sm->col_pos = aom_calloc(sm->n_elem, sizeof(*sm->col_pos)); sm->value = aom_calloc(sm->n_elem, sizeof(*sm->value)); if (!sm->row_pos || !sm->col_pos || !sm->value) { av1_free_sparse_mtx_elems(sm); return -1; } for (int i = 0; i < sm1->n_elem; i++) { sm->row_pos[i] = sm1->row_pos[i] + row_offset1; sm->col_pos[i] = sm1->col_pos[i] + col_offset1; } memcpy(sm->value, sm1->value, sm1->n_elem * sizeof(*sm1->value)); int n_elem1 = sm1->n_elem; for (int i = 0; i < sm2->n_elem; i++) { sm->row_pos[n_elem1 + i] = sm2->row_pos[i] + row_offset2; sm->col_pos[n_elem1 + i] = sm2->col_pos[i] + col_offset2; } memcpy(sm->value + n_elem1, sm2->value, sm2->n_elem * sizeof(*sm2->value)); return 0; } void av1_free_sparse_mtx_elems(SPARSE_MTX *sm) { sm->n_cols = 0; sm->n_rows = 0; if (sm->n_elem != 0) { aom_free(sm->row_pos); aom_free(sm->col_pos); aom_free(sm->value); } sm->n_elem = 0; } /* * Calculate matrix and vector multiplication: A*b * * Input: * sm: matrix A * srcv: the vector b to be multiplied to * dstl: the length of vectors * * Output: * dstv: pointer to the resulting vector */ void av1_mtx_vect_multi_right(const SPARSE_MTX *sm, const double *srcv, double *dstv, int dstl) { memset(dstv, 0, sizeof(*dstv) * dstl); for (int i = 0; i < sm->n_elem; i++) { dstv[sm->row_pos[i]] += srcv[sm->col_pos[i]] * sm->value[i]; } } /* * Calculate matrix and vector multiplication: b*A * * Input: * sm: matrix A * srcv: the vector b to be multiplied to * dstl: the length of vectors * * Output: * dstv: pointer to the resulting vector */ void av1_mtx_vect_multi_left(const SPARSE_MTX *sm, const double *srcv, double *dstv, int dstl) { memset(dstv, 0, sizeof(*dstv) * dstl); for (int i = 0; i < sm->n_elem; i++) { dstv[sm->col_pos[i]] += srcv[sm->row_pos[i]] * sm->value[i]; } } /* * Calculate inner product of two vectors * * Input: * src1, scr2: the vectors to be multiplied * src1l: length of the vectors * * Output: * the inner product */ double av1_vect_vect_multi(const double *src1, int src1l, const double *src2) { double result = 0; for (int i = 0; i < src1l; i++) { result += src1[i] * src2[i]; } return result; } /* * Multiply each element in the matrix sm with a constant c */ void av1_constant_multiply_sparse_matrix(SPARSE_MTX *sm, double c) { for (int i = 0; i < sm->n_elem; i++) { sm->value[i] *= c; } } static INLINE void free_solver_local_buf(double *buf1, double *buf2, double *buf3, double *buf4, double *buf5, double *buf6, double *buf7) { aom_free(buf1); aom_free(buf2); aom_free(buf3); aom_free(buf4); aom_free(buf5); aom_free(buf6); aom_free(buf7); } /* * Solve for Ax = b * no requirement on A * * Input: * A: the sparse matrix * b: the vector b * bl: length of b * x: the vector x * * Output: * x: pointer to the solution vector * * Return: 0 - success * -1 - failed */ int av1_bi_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) { double *r = NULL, *r_hat = NULL, *p = NULL, *p_hat = NULL, *Ap = NULL, *p_hatA = NULL, *x_hat = NULL; double alpha, beta, rtr, r_norm_2; double denormtemp; // initialize r = aom_calloc(bl, sizeof(*r)); r_hat = aom_calloc(bl, sizeof(*r_hat)); p = aom_calloc(bl, sizeof(*p)); p_hat = aom_calloc(bl, sizeof(*p_hat)); Ap = aom_calloc(bl, sizeof(*Ap)); p_hatA = aom_calloc(bl, sizeof(*p_hatA)); x_hat = aom_calloc(bl, sizeof(*x_hat)); if (!r || !r_hat || !p || !p_hat || !Ap || !p_hatA || !x_hat) { free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat); return -1; } int i; for (i = 0; i < bl; i++) { r[i] = b[i]; r_hat[i] = b[i]; p[i] = r[i]; p_hat[i] = r_hat[i]; x[i] = 0; x_hat[i] = 0; } r_norm_2 = av1_vect_vect_multi(r_hat, bl, r); for (int k = 0; k < MAX_CG_SP_ITER; k++) { rtr = r_norm_2; av1_mtx_vect_multi_right(A, p, Ap, bl); av1_mtx_vect_multi_left(A, p_hat, p_hatA, bl); denormtemp = av1_vect_vect_multi(p_hat, bl, Ap); if (denormtemp < 1e-10) break; alpha = rtr / denormtemp; r_norm_2 = 0; for (i = 0; i < bl; i++) { x[i] += alpha * p[i]; x_hat[i] += alpha * p_hat[i]; r[i] -= alpha * Ap[i]; r_hat[i] -= alpha * p_hatA[i]; r_norm_2 += r_hat[i] * r[i]; } if (sqrt(r_norm_2) < 1e-2) { break; } if (rtr < 1e-10) break; beta = r_norm_2 / rtr; for (i = 0; i < bl; i++) { p[i] = r[i] + beta * p[i]; p_hat[i] = r_hat[i] + beta * p_hat[i]; } } // free free_solver_local_buf(r, r_hat, p, p_hat, Ap, p_hatA, x_hat); return 0; } /* * Solve for Ax = b when A is symmetric and positive definite * * Input: * A: the sparse matrix * b: the vector b * bl: length of b * x: the vector x * * Output: * x: pointer to the solution vector * * Return: 0 - success * -1 - failed */ int av1_conjugate_gradient_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) { double *r = NULL, *p = NULL, *Ap = NULL; double alpha, beta, rtr, r_norm_2; double denormtemp; // initialize r = aom_calloc(bl, sizeof(*r)); p = aom_calloc(bl, sizeof(*p)); Ap = aom_calloc(bl, sizeof(*Ap)); if (!r || !p || !Ap) { free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL); return -1; } int i; for (i = 0; i < bl; i++) { r[i] = b[i]; p[i] = r[i]; x[i] = 0; } r_norm_2 = av1_vect_vect_multi(r, bl, r); int k; for (k = 0; k < MAX_CG_SP_ITER; k++) { rtr = r_norm_2; av1_mtx_vect_multi_right(A, p, Ap, bl); denormtemp = av1_vect_vect_multi(p, bl, Ap); if (denormtemp < 1e-10) break; alpha = rtr / denormtemp; r_norm_2 = 0; for (i = 0; i < bl; i++) { x[i] += alpha * p[i]; r[i] -= alpha * Ap[i]; r_norm_2 += r[i] * r[i]; } if (r_norm_2 < 1e-8 * bl) break; if (rtr < 1e-10) break; beta = r_norm_2 / rtr; for (i = 0; i < bl; i++) { p[i] = r[i] + beta * p[i]; } } // free free_solver_local_buf(r, p, Ap, NULL, NULL, NULL, NULL); return 0; } /* * Solve for Ax = b using Jacobi method * * Input: * A: the sparse matrix * b: the vector b * bl: length of b * x: the vector x * * Output: * x: pointer to the solution vector * * Return: 0 - success * -1 - failed */ int av1_jacobi_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) { double *diags = NULL, *Rx = NULL, *x_last = NULL, *x_cur = NULL, *tempx = NULL; double resi2; diags = aom_calloc(bl, sizeof(*diags)); Rx = aom_calloc(bl, sizeof(*Rx)); x_last = aom_calloc(bl, sizeof(*x_last)); x_cur = aom_calloc(bl, sizeof(*x_cur)); if (!diags || !Rx || !x_last || !x_cur) { free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL); return -1; } int i; memset(x_last, 0, sizeof(*x_last) * bl); // get the diagonals of A memset(diags, 0, sizeof(*diags) * bl); for (int c = 0; c < A->n_elem; c++) { if (A->row_pos[c] != A->col_pos[c]) continue; diags[A->row_pos[c]] = A->value[c]; } int k; for (k = 0; k < MAX_CG_SP_ITER; k++) { // R = A - diag(diags) // get R*x_last memset(Rx, 0, sizeof(*Rx) * bl); for (int c = 0; c < A->n_elem; c++) { if (A->row_pos[c] == A->col_pos[c]) continue; Rx[A->row_pos[c]] += x_last[A->col_pos[c]] * A->value[c]; } resi2 = 0; for (i = 0; i < bl; i++) { x_cur[i] = (b[i] - Rx[i]) / diags[i]; resi2 += (x_last[i] - x_cur[i]) * (x_last[i] - x_cur[i]); } if (resi2 <= 1e-10 * bl) break; // swap last & cur buffer ptrs tempx = x_last; x_last = x_cur; x_cur = tempx; } printf("\n numiter: %d\n", k); for (i = 0; i < bl; i++) { x[i] = x_cur[i]; } free_solver_local_buf(diags, Rx, x_last, x_cur, NULL, NULL, NULL); return 0; } /* * Solve for Ax = b using Steepest descent method * * Input: * A: the sparse matrix * b: the vector b * bl: length of b * x: the vector x * * Output: * x: pointer to the solution vector * * Return: 0 - success * -1 - failed */ int av1_steepest_descent_sparse(const SPARSE_MTX *A, const double *b, int bl, double *x) { double *d = NULL, *Ad = NULL, *Ax = NULL; double resi2, resi2_last, dAd, temp; d = aom_calloc(bl, sizeof(*d)); Ax = aom_calloc(bl, sizeof(*Ax)); Ad = aom_calloc(bl, sizeof(*Ad)); if (!d || !Ax || !Ad) { free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL); return -1; } int i; // initialize with 0s resi2 = 0; for (i = 0; i < bl; i++) { x[i] = 0; d[i] = b[i]; resi2 += d[i] * d[i] / bl; } int k; for (k = 0; k < MAX_CG_SP_ITER; k++) { // get A*x_last av1_mtx_vect_multi_right(A, d, Ad, bl); dAd = resi2 * bl / av1_vect_vect_multi(d, bl, Ad); for (i = 0; i < bl; i++) { temp = dAd * d[i]; x[i] = x[i] + temp; } av1_mtx_vect_multi_right(A, x, Ax, bl); resi2_last = resi2; resi2 = 0; for (i = 0; i < bl; i++) { d[i] = b[i] - Ax[i]; resi2 += d[i] * d[i] / bl; } if (resi2 <= 1e-8) break; if (resi2_last - resi2 < 1e-8) { break; } } free_solver_local_buf(d, Ax, Ad, NULL, NULL, NULL, NULL); return 0; } #endif // CONFIG_OPTICAL_FLOW_API