/* * Copyright (c) 2020, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/encoder_alloc.h" #include "av1/encoder/superres_scale.h" #include "av1/encoder/random.h" // Compute the horizontal frequency components' energy in a frame // by calculuating the 16x4 Horizontal DCT. This is to be used to // decide the superresolution parameters. static void analyze_hor_freq(const AV1_COMP *cpi, double *energy) { uint64_t freq_energy[16] = { 0 }; const YV12_BUFFER_CONFIG *buf = cpi->source; const int bd = cpi->td.mb.e_mbd.bd; const int width = buf->y_crop_width; const int height = buf->y_crop_height; DECLARE_ALIGNED(16, int32_t, coeff[16 * 4]); int n = 0; memset(freq_energy, 0, sizeof(freq_energy)); if (buf->flags & YV12_FLAG_HIGHBITDEPTH) { const int16_t *src16 = (const int16_t *)CONVERT_TO_SHORTPTR(buf->y_buffer); for (int i = 0; i < height - 4; i += 4) { for (int j = 0; j < width - 16; j += 16) { av1_fwd_txfm2d_16x4(src16 + i * buf->y_stride + j, coeff, buf->y_stride, H_DCT, bd); for (int k = 1; k < 16; ++k) { const uint64_t this_energy = ((int64_t)coeff[k] * coeff[k]) + ((int64_t)coeff[k + 16] * coeff[k + 16]) + ((int64_t)coeff[k + 32] * coeff[k + 32]) + ((int64_t)coeff[k + 48] * coeff[k + 48]); freq_energy[k] += ROUND_POWER_OF_TWO(this_energy, 2 + 2 * (bd - 8)); } n++; } } } else { assert(bd == 8); DECLARE_ALIGNED(16, int16_t, src16[16 * 4]); for (int i = 0; i < height - 4; i += 4) { for (int j = 0; j < width - 16; j += 16) { for (int ii = 0; ii < 4; ++ii) for (int jj = 0; jj < 16; ++jj) src16[ii * 16 + jj] = buf->y_buffer[(i + ii) * buf->y_stride + (j + jj)]; av1_fwd_txfm2d_16x4(src16, coeff, 16, H_DCT, bd); for (int k = 1; k < 16; ++k) { const uint64_t this_energy = ((int64_t)coeff[k] * coeff[k]) + ((int64_t)coeff[k + 16] * coeff[k + 16]) + ((int64_t)coeff[k + 32] * coeff[k + 32]) + ((int64_t)coeff[k + 48] * coeff[k + 48]); freq_energy[k] += ROUND_POWER_OF_TWO(this_energy, 2); } n++; } } } if (n) { for (int k = 1; k < 16; ++k) energy[k] = (double)freq_energy[k] / n; // Convert to cumulative energy for (int k = 14; k > 0; --k) energy[k] += energy[k + 1]; } else { for (int k = 1; k < 16; ++k) energy[k] = 1e+20; } } static uint8_t calculate_next_resize_scale(const AV1_COMP *cpi) { // Choose an arbitrary random number static unsigned int seed = 56789; const ResizeCfg *resize_cfg = &cpi->oxcf.resize_cfg; if (is_stat_generation_stage(cpi)) return SCALE_NUMERATOR; uint8_t new_denom = SCALE_NUMERATOR; if (cpi->common.seq_params->reduced_still_picture_hdr) return SCALE_NUMERATOR; switch (resize_cfg->resize_mode) { case RESIZE_NONE: new_denom = SCALE_NUMERATOR; break; case RESIZE_FIXED: if (cpi->common.current_frame.frame_type == KEY_FRAME) new_denom = resize_cfg->resize_kf_scale_denominator; else new_denom = resize_cfg->resize_scale_denominator; break; case RESIZE_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break; default: assert(0); } return new_denom; } int av1_superres_in_recode_allowed(const AV1_COMP *const cpi) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; // Empirically found to not be beneficial for image coding. return oxcf->superres_cfg.superres_mode == AOM_SUPERRES_AUTO && cpi->sf.hl_sf.superres_auto_search_type != SUPERRES_AUTO_SOLO && cpi->rc.frames_to_key > 1; } #define SUPERRES_ENERGY_BY_Q2_THRESH_KEYFRAME_SOLO 0.012 #define SUPERRES_ENERGY_BY_Q2_THRESH_KEYFRAME 0.008 #define SUPERRES_ENERGY_BY_Q2_THRESH_ARFFRAME 0.008 #define SUPERRES_ENERGY_BY_AC_THRESH 0.2 static double get_energy_by_q2_thresh(const GF_GROUP *gf_group, const RATE_CONTROL *rc, int gf_frame_index) { // TODO(now): Return keyframe thresh * factor based on frame type / pyramid // level. if (gf_group->update_type[gf_frame_index] == ARF_UPDATE) { return SUPERRES_ENERGY_BY_Q2_THRESH_ARFFRAME; } else if (gf_group->update_type[gf_frame_index] == KF_UPDATE) { if (rc->frames_to_key <= 1) return SUPERRES_ENERGY_BY_Q2_THRESH_KEYFRAME_SOLO; else return SUPERRES_ENERGY_BY_Q2_THRESH_KEYFRAME; } else { assert(0); } return 0; } static uint8_t get_superres_denom_from_qindex_energy(int qindex, double *energy, double threshq, double threshp) { const double q = av1_convert_qindex_to_q(qindex, AOM_BITS_8); const double tq = threshq * q * q; const double tp = threshp * energy[1]; const double thresh = AOMMIN(tq, tp); int k; for (k = SCALE_NUMERATOR * 2; k > SCALE_NUMERATOR; --k) { if (energy[k - 1] > thresh) break; } return 3 * SCALE_NUMERATOR - k; } static uint8_t get_superres_denom_for_qindex(const AV1_COMP *cpi, int qindex, int sr_kf, int sr_arf) { // Use superres for Key-frames and Alt-ref frames only. const GF_GROUP *gf_group = &cpi->ppi->gf_group; if (gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE && gf_group->update_type[cpi->gf_frame_index] != ARF_UPDATE) { return SCALE_NUMERATOR; } if (gf_group->update_type[cpi->gf_frame_index] == KF_UPDATE && !sr_kf) { return SCALE_NUMERATOR; } if (gf_group->update_type[cpi->gf_frame_index] == ARF_UPDATE && !sr_arf) { return SCALE_NUMERATOR; } double energy[16]; analyze_hor_freq(cpi, energy); const double energy_by_q2_thresh = get_energy_by_q2_thresh(gf_group, &cpi->rc, cpi->gf_frame_index); int denom = get_superres_denom_from_qindex_energy( qindex, energy, energy_by_q2_thresh, SUPERRES_ENERGY_BY_AC_THRESH); /* printf("\nenergy = ["); for (int k = 1; k < 16; ++k) printf("%f, ", energy[k]); printf("]\n"); printf("boost = %d\n", (gf_group->update_type[cpi->gf_frame_index] == KF_UPDATE) ? cpi->ppi->p_rc.kf_boost : cpi->rc.gfu_boost); printf("denom = %d\n", denom); */ if (av1_superres_in_recode_allowed(cpi)) { assert(cpi->superres_mode != AOM_SUPERRES_NONE); // Force superres to be tried in the recode loop, as full-res is also going // to be tried anyway. denom = AOMMAX(denom, SCALE_NUMERATOR + 1); } return denom; } static uint8_t calculate_next_superres_scale(AV1_COMP *cpi) { // Choose an arbitrary random number static unsigned int seed = 34567; const AV1EncoderConfig *oxcf = &cpi->oxcf; const SuperResCfg *const superres_cfg = &oxcf->superres_cfg; const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; const RateControlCfg *const rc_cfg = &oxcf->rc_cfg; if (is_stat_generation_stage(cpi)) return SCALE_NUMERATOR; uint8_t new_denom = SCALE_NUMERATOR; // Make sure that superres mode of the frame is consistent with the // sequence-level flag. assert(IMPLIES(superres_cfg->superres_mode != AOM_SUPERRES_NONE, cpi->common.seq_params->enable_superres)); assert(IMPLIES(!cpi->common.seq_params->enable_superres, superres_cfg->superres_mode == AOM_SUPERRES_NONE)); // Make sure that superres mode for current encoding is consistent with user // provided superres mode. assert(IMPLIES(superres_cfg->superres_mode != AOM_SUPERRES_AUTO, cpi->superres_mode == superres_cfg->superres_mode)); // Note: we must look at the current superres_mode to be tried in 'cpi' here, // not the user given mode in 'oxcf'. switch (cpi->superres_mode) { case AOM_SUPERRES_NONE: new_denom = SCALE_NUMERATOR; break; case AOM_SUPERRES_FIXED: if (cpi->common.current_frame.frame_type == KEY_FRAME) new_denom = superres_cfg->superres_kf_scale_denominator; else new_denom = superres_cfg->superres_scale_denominator; break; case AOM_SUPERRES_RANDOM: new_denom = lcg_rand16(&seed) % 9 + 8; break; case AOM_SUPERRES_QTHRESH: { // Do not use superres when screen content tools are used. if (cpi->common.features.allow_screen_content_tools) break; if (rc_cfg->mode == AOM_VBR || rc_cfg->mode == AOM_CQ) av1_set_target_rate(cpi, frm_dim_cfg->width, frm_dim_cfg->height); // Now decide the use of superres based on 'q'. int bottom_index, top_index; const int q = av1_rc_pick_q_and_bounds( cpi, frm_dim_cfg->width, frm_dim_cfg->height, cpi->gf_frame_index, &bottom_index, &top_index); const int qthresh = (frame_is_intra_only(&cpi->common)) ? superres_cfg->superres_kf_qthresh : superres_cfg->superres_qthresh; if (q <= qthresh) { new_denom = SCALE_NUMERATOR; } else { new_denom = get_superres_denom_for_qindex(cpi, q, 1, 1); } break; } case AOM_SUPERRES_AUTO: { if (cpi->common.features.allow_screen_content_tools) break; if (rc_cfg->mode == AOM_VBR || rc_cfg->mode == AOM_CQ) av1_set_target_rate(cpi, frm_dim_cfg->width, frm_dim_cfg->height); // Now decide the use of superres based on 'q'. int bottom_index, top_index; const int q = av1_rc_pick_q_and_bounds( cpi, frm_dim_cfg->width, frm_dim_cfg->height, cpi->gf_frame_index, &bottom_index, &top_index); const SUPERRES_AUTO_SEARCH_TYPE sr_search_type = cpi->sf.hl_sf.superres_auto_search_type; const int qthresh = (sr_search_type == SUPERRES_AUTO_SOLO) ? 128 : 0; if (q <= qthresh) { new_denom = SCALE_NUMERATOR; // Don't use superres. } else { if (sr_search_type == SUPERRES_AUTO_ALL) { if (cpi->common.current_frame.frame_type == KEY_FRAME) new_denom = superres_cfg->superres_kf_scale_denominator; else new_denom = superres_cfg->superres_scale_denominator; } else { new_denom = get_superres_denom_for_qindex(cpi, q, 1, 1); } } break; } default: assert(0); } return new_denom; } static int dimension_is_ok(int orig_dim, int resized_dim, int denom) { return (resized_dim * SCALE_NUMERATOR >= orig_dim * denom / 2); } static int dimensions_are_ok(int owidth, int oheight, size_params_type *rsz) { // Only need to check the width, as scaling is horizontal only. (void)oheight; return dimension_is_ok(owidth, rsz->resize_width, rsz->superres_denom); } static int validate_size_scales(RESIZE_MODE resize_mode, aom_superres_mode superres_mode, int owidth, int oheight, size_params_type *rsz) { if (dimensions_are_ok(owidth, oheight, rsz)) { // Nothing to do. return 1; } // Calculate current resize scale. int resize_denom = AOMMAX(DIVIDE_AND_ROUND(owidth * SCALE_NUMERATOR, rsz->resize_width), DIVIDE_AND_ROUND(oheight * SCALE_NUMERATOR, rsz->resize_height)); if (resize_mode != RESIZE_RANDOM && superres_mode == AOM_SUPERRES_RANDOM) { // Alter superres scale as needed to enforce conformity. rsz->superres_denom = (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / resize_denom; if (!dimensions_are_ok(owidth, oheight, rsz)) { if (rsz->superres_denom > SCALE_NUMERATOR) --rsz->superres_denom; } } else if (resize_mode == RESIZE_RANDOM && superres_mode != AOM_SUPERRES_RANDOM) { // Alter resize scale as needed to enforce conformity. resize_denom = (2 * SCALE_NUMERATOR * SCALE_NUMERATOR) / rsz->superres_denom; rsz->resize_width = owidth; rsz->resize_height = oheight; av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, resize_denom); if (!dimensions_are_ok(owidth, oheight, rsz)) { if (resize_denom > SCALE_NUMERATOR) { --resize_denom; rsz->resize_width = owidth; rsz->resize_height = oheight; av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, resize_denom); } } } else if (resize_mode == RESIZE_RANDOM && superres_mode == AOM_SUPERRES_RANDOM) { // Alter both resize and superres scales as needed to enforce conformity. do { if (resize_denom > rsz->superres_denom) --resize_denom; else --rsz->superres_denom; rsz->resize_width = owidth; rsz->resize_height = oheight; av1_calculate_scaled_size(&rsz->resize_width, &rsz->resize_height, resize_denom); } while (!dimensions_are_ok(owidth, oheight, rsz) && (resize_denom > SCALE_NUMERATOR || rsz->superres_denom > SCALE_NUMERATOR)); } else { // We are allowed to alter neither resize scale nor superres // scale. return 0; } return dimensions_are_ok(owidth, oheight, rsz); } // Calculates resize and superres params for next frame static size_params_type calculate_next_size_params(AV1_COMP *cpi) { const AV1EncoderConfig *oxcf = &cpi->oxcf; ResizePendingParams *resize_pending_params = &cpi->resize_pending_params; const FrameDimensionCfg *const frm_dim_cfg = &oxcf->frm_dim_cfg; size_params_type rsz = { frm_dim_cfg->width, frm_dim_cfg->height, SCALE_NUMERATOR }; int resize_denom = SCALE_NUMERATOR; if (has_no_stats_stage(cpi) && cpi->ppi->use_svc && (cpi->common.width != cpi->oxcf.frm_dim_cfg.width || cpi->common.height != cpi->oxcf.frm_dim_cfg.height)) { rsz.resize_width = cpi->common.width; rsz.resize_height = cpi->common.height; return rsz; } if (is_stat_generation_stage(cpi)) return rsz; if (resize_pending_params->width && resize_pending_params->height) { rsz.resize_width = resize_pending_params->width; rsz.resize_height = resize_pending_params->height; resize_pending_params->width = resize_pending_params->height = 0; if (oxcf->superres_cfg.superres_mode == AOM_SUPERRES_NONE) return rsz; } else { resize_denom = calculate_next_resize_scale(cpi); rsz.resize_width = frm_dim_cfg->width; rsz.resize_height = frm_dim_cfg->height; av1_calculate_scaled_size(&rsz.resize_width, &rsz.resize_height, resize_denom); } rsz.superres_denom = calculate_next_superres_scale(cpi); if (!validate_size_scales(oxcf->resize_cfg.resize_mode, cpi->superres_mode, frm_dim_cfg->width, frm_dim_cfg->height, &rsz)) assert(0 && "Invalid scale parameters"); return rsz; } static void setup_frame_size_from_params(AV1_COMP *cpi, const size_params_type *rsz) { int encode_width = rsz->resize_width; int encode_height = rsz->resize_height; AV1_COMMON *cm = &cpi->common; cm->superres_upscaled_width = encode_width; cm->superres_upscaled_height = encode_height; cm->superres_scale_denominator = rsz->superres_denom; av1_calculate_scaled_superres_size(&encode_width, &encode_height, rsz->superres_denom); av1_set_frame_size(cpi, encode_width, encode_height); } void av1_setup_frame_size(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; // Reset superres params from previous frame. cm->superres_scale_denominator = SCALE_NUMERATOR; const size_params_type rsz = calculate_next_size_params(cpi); setup_frame_size_from_params(cpi, &rsz); assert(av1_is_min_tile_width_satisfied(cm)); } void av1_superres_post_encode(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; assert(cpi->oxcf.superres_cfg.enable_superres); assert(!is_lossless_requested(&cpi->oxcf.rc_cfg)); assert(!cm->features.all_lossless); av1_superres_upscale(cm, NULL, cpi->alloc_pyramid); // If regular resizing is occurring the source will need to be downscaled to // match the upscaled superres resolution. Otherwise the original source is // used. if (!av1_resize_scaled(cm)) { cpi->source = cpi->unscaled_source; if (cpi->last_source != NULL) cpi->last_source = cpi->unscaled_last_source; } else { assert(cpi->unscaled_source->y_crop_width != cm->superres_upscaled_width); assert(cpi->unscaled_source->y_crop_height != cm->superres_upscaled_height); // Do downscale. cm->(width|height) has been updated by // av1_superres_upscale cpi->source = realloc_and_scale_source(cpi, cm->superres_upscaled_width, cm->superres_upscaled_height); } }