/* * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include #include #include "av1/encoder/encoder.h" #include "av1/encoder/encoder_alloc.h" static void swap_ptr(void *a, void *b) { void **a_p = (void **)a; void **b_p = (void **)b; void *c = *a_p; *a_p = *b_p; *b_p = c; } void av1_init_layer_context(AV1_COMP *const cpi) { AV1_COMMON *const cm = &cpi->common; const AV1EncoderConfig *const oxcf = &cpi->oxcf; SVC *const svc = &cpi->svc; int mi_rows = cpi->common.mi_params.mi_rows; int mi_cols = cpi->common.mi_params.mi_cols; svc->base_framerate = 30.0; svc->current_superframe = 0; svc->force_zero_mode_spatial_ref = 1; svc->num_encoded_top_layer = 0; svc->use_flexible_mode = 0; svc->has_lower_quality_layer = 0; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; RATE_CONTROL *const lrc = &lc->rc; PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; lrc->ni_av_qi = oxcf->rc_cfg.worst_allowed_q; lp_rc->total_actual_bits = 0; lrc->ni_tot_qi = 0; lp_rc->tot_q = 0.0; lp_rc->avg_q = 0.0; lp_rc->ni_frames = 0; lrc->decimation_count = 0; lrc->decimation_factor = 0; lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q); lrc->best_quality = av1_quantizer_to_qindex(lc->min_q); lrc->rtc_external_ratectrl = 0; for (int i = 0; i < RATE_FACTOR_LEVELS; ++i) { lp_rc->rate_correction_factors[i] = 1.0; } lc->target_bandwidth = lc->layer_target_bitrate; lp_rc->last_q[INTER_FRAME] = lrc->worst_quality; lp_rc->avg_frame_qindex[INTER_FRAME] = lrc->worst_quality; lp_rc->avg_frame_qindex[KEY_FRAME] = lrc->worst_quality; lp_rc->buffer_level = oxcf->rc_cfg.starting_buffer_level_ms * lc->target_bandwidth / 1000; lp_rc->bits_off_target = lp_rc->buffer_level; // Initialize the cyclic refresh parameters. If spatial layers are used // (i.e., ss_number_layers > 1), these need to be updated per spatial // layer. Cyclic refresh is only applied on base temporal layer. if (svc->number_spatial_layers > 1 && tl == 0) { lc->sb_index = 0; lc->actual_num_seg1_blocks = 0; lc->actual_num_seg2_blocks = 0; lc->counter_encode_maxq_scene_change = 0; aom_free(lc->map); CHECK_MEM_ERROR(cm, lc->map, aom_calloc(mi_rows * mi_cols, sizeof(*lc->map))); } } svc->downsample_filter_type[sl] = BILINEAR; svc->downsample_filter_phase[sl] = 8; svc->last_layer_dropped[sl] = false; svc->drop_spatial_layer[sl] = false; } if (svc->number_spatial_layers == 3) { svc->downsample_filter_type[0] = EIGHTTAP_SMOOTH; } } bool av1_alloc_layer_context(AV1_COMP *cpi, int num_layers) { SVC *const svc = &cpi->svc; if (svc->layer_context == NULL || svc->num_allocated_layers < num_layers) { assert(num_layers > 1); aom_free(svc->layer_context); svc->num_allocated_layers = 0; svc->layer_context = (LAYER_CONTEXT *)aom_calloc(num_layers, sizeof(*svc->layer_context)); if (svc->layer_context == NULL) return false; svc->num_allocated_layers = num_layers; } return true; } // Update the layer context from a change_config() call. void av1_update_layer_context_change_config(AV1_COMP *const cpi, const int64_t target_bandwidth) { const RATE_CONTROL *const rc = &cpi->rc; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; AV1_COMMON *const cm = &cpi->common; SVC *const svc = &cpi->svc; int layer = 0; int64_t spatial_layer_target = 0; float bitrate_alloc = 1.0; const int mi_rows = cm->mi_params.mi_rows; const int mi_cols = cm->mi_params.mi_cols; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; svc->layer_context[layer].target_bandwidth = lc->layer_target_bitrate; } spatial_layer_target = svc->layer_context[layer].target_bandwidth; for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { LAYER_CONTEXT *const lc = &svc->layer_context[sl * svc->number_temporal_layers + tl]; RATE_CONTROL *const lrc = &lc->rc; PRIMARY_RATE_CONTROL *const lp_rc = &lc->p_rc; lc->spatial_layer_target_bandwidth = spatial_layer_target; if (target_bandwidth != 0) { bitrate_alloc = (float)lc->target_bandwidth / target_bandwidth; } lp_rc->starting_buffer_level = (int64_t)(p_rc->starting_buffer_level * bitrate_alloc); lp_rc->optimal_buffer_level = (int64_t)(p_rc->optimal_buffer_level * bitrate_alloc); lp_rc->maximum_buffer_size = (int64_t)(p_rc->maximum_buffer_size * bitrate_alloc); lp_rc->bits_off_target = AOMMIN(lp_rc->bits_off_target, lp_rc->maximum_buffer_size); lp_rc->buffer_level = AOMMIN(lp_rc->buffer_level, lp_rc->maximum_buffer_size); lc->framerate = cpi->framerate / lc->framerate_factor; lrc->avg_frame_bandwidth = (int)round(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = rc->max_frame_bandwidth; lrc->rtc_external_ratectrl = rc->rtc_external_ratectrl; lrc->worst_quality = av1_quantizer_to_qindex(lc->max_q); lrc->best_quality = av1_quantizer_to_qindex(lc->min_q); if (rc->use_external_qp_one_pass) { lrc->worst_quality = rc->worst_quality; lrc->best_quality = rc->best_quality; } // Reset the cyclic refresh parameters, if needed (map is NULL), // or number of spatial layers has changed. // Cyclic refresh is only applied on base temporal layer. if (svc->number_spatial_layers > 1 && tl == 0 && (lc->map == NULL || svc->prev_number_spatial_layers != svc->number_spatial_layers)) { lc->sb_index = 0; lc->actual_num_seg1_blocks = 0; lc->actual_num_seg2_blocks = 0; lc->counter_encode_maxq_scene_change = 0; aom_free(lc->map); CHECK_MEM_ERROR(cm, lc->map, aom_calloc(mi_rows * mi_cols, sizeof(*lc->map))); } } } } /*!\brief Return layer context for current layer. * * \ingroup rate_control * \param[in] cpi Top level encoder structure * * \return LAYER_CONTEXT for current layer. */ static LAYER_CONTEXT *get_layer_context(AV1_COMP *const cpi) { return &cpi->svc.layer_context[cpi->svc.spatial_layer_id * cpi->svc.number_temporal_layers + cpi->svc.temporal_layer_id]; } void av1_update_temporal_layer_framerate(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; LAYER_CONTEXT *const lc = get_layer_context(cpi); RATE_CONTROL *const lrc = &lc->rc; const int tl = svc->temporal_layer_id; lc->framerate = cpi->framerate / lc->framerate_factor; lrc->avg_frame_bandwidth = (int)round(lc->target_bandwidth / lc->framerate); lrc->max_frame_bandwidth = cpi->rc.max_frame_bandwidth; // Update the average layer frame size (non-cumulative per-frame-bw). if (tl == 0) { lc->avg_frame_size = lrc->avg_frame_bandwidth; } else { int prev_layer = svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id - 1; LAYER_CONTEXT *const lcprev = &svc->layer_context[prev_layer]; const double prev_layer_framerate = cpi->framerate / lcprev->framerate_factor; const int64_t prev_layer_target_bandwidth = lcprev->layer_target_bitrate; lc->avg_frame_size = (int)round((lc->target_bandwidth - prev_layer_target_bandwidth) / (lc->framerate - prev_layer_framerate)); } } bool av1_check_ref_is_low_spatial_res_super_frame(AV1_COMP *const cpi, int ref_frame) { SVC *svc = &cpi->svc; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; int ref_frame_idx = rtc_ref->ref_idx[ref_frame - 1]; return rtc_ref->buffer_time_index[ref_frame_idx] == svc->current_superframe && rtc_ref->buffer_spatial_layer[ref_frame_idx] <= svc->spatial_layer_id - 1; } void av1_restore_layer_context(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; const AV1_COMMON *const cm = &cpi->common; LAYER_CONTEXT *const lc = get_layer_context(cpi); const int old_frame_since_key = cpi->rc.frames_since_key; const int old_frame_to_key = cpi->rc.frames_to_key; const int max_consec_drop = cpi->rc.max_consec_drop; // Restore layer rate control. cpi->rc = lc->rc; cpi->ppi->p_rc = lc->p_rc; cpi->oxcf.rc_cfg.target_bandwidth = lc->target_bandwidth; cpi->gf_frame_index = 0; cpi->mv_search_params.max_mv_magnitude = lc->max_mv_magnitude; if (cpi->mv_search_params.max_mv_magnitude == 0) cpi->mv_search_params.max_mv_magnitude = AOMMAX(cm->width, cm->height); // Reset the frames_since_key and frames_to_key counters to their values // before the layer restore. Keep these defined for the stream (not layer). cpi->rc.frames_since_key = old_frame_since_key; cpi->rc.frames_to_key = old_frame_to_key; // Reset to value before the layer restore. cpi->rc.max_consec_drop = max_consec_drop; // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && svc->number_spatial_layers > 1 && svc->temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; swap_ptr(&cr->map, &lc->map); cr->sb_index = lc->sb_index; cr->actual_num_seg1_blocks = lc->actual_num_seg1_blocks; cr->actual_num_seg2_blocks = lc->actual_num_seg2_blocks; cr->counter_encode_maxq_scene_change = lc->counter_encode_maxq_scene_change; } svc->skip_mvsearch_last = 0; svc->skip_mvsearch_gf = 0; svc->skip_mvsearch_altref = 0; // For each reference (LAST/GOLDEN) set the skip_mvsearch_last/gf frame flags. // This is to skip searching mv for that reference if it was last // refreshed (i.e., buffer slot holding that reference was refreshed) on the // previous spatial layer(s) at the same time (current_superframe). if (rtc_ref->set_ref_frame_config && svc->force_zero_mode_spatial_ref && cpi->sf.rt_sf.use_nonrd_pick_mode) { if (av1_check_ref_is_low_spatial_res_super_frame(cpi, LAST_FRAME)) { svc->skip_mvsearch_last = 1; } if (av1_check_ref_is_low_spatial_res_super_frame(cpi, GOLDEN_FRAME)) { svc->skip_mvsearch_gf = 1; } if (av1_check_ref_is_low_spatial_res_super_frame(cpi, ALTREF_FRAME)) { svc->skip_mvsearch_altref = 1; } } } void av1_svc_update_buffer_slot_refreshed(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; const unsigned int current_frame = cpi->ppi->use_svc ? svc->current_superframe : cpi->common.current_frame.frame_number; // For any buffer slot that is refreshed, update it with // the spatial_layer_id and the current_superframe. if (cpi->common.current_frame.frame_type == KEY_FRAME) { // All slots are refreshed on KEY. for (unsigned int i = 0; i < REF_FRAMES; i++) { rtc_ref->buffer_time_index[i] = current_frame; rtc_ref->buffer_spatial_layer[i] = svc->spatial_layer_id; } } else if (rtc_ref->set_ref_frame_config) { for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { const int ref_frame_map_idx = rtc_ref->ref_idx[i]; if (cpi->ppi->rtc_ref.refresh[ref_frame_map_idx]) { rtc_ref->buffer_time_index[ref_frame_map_idx] = current_frame; rtc_ref->buffer_spatial_layer[ref_frame_map_idx] = svc->spatial_layer_id; } } } } void av1_save_layer_context(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; const AV1_COMMON *const cm = &cpi->common; LAYER_CONTEXT *lc = get_layer_context(cpi); lc->rc = cpi->rc; lc->p_rc = cpi->ppi->p_rc; lc->target_bandwidth = (int)cpi->oxcf.rc_cfg.target_bandwidth; lc->group_index = cpi->gf_frame_index; lc->max_mv_magnitude = cpi->mv_search_params.max_mv_magnitude; if (svc->spatial_layer_id == 0) svc->base_framerate = cpi->framerate; // For spatial-svc, allow cyclic-refresh to be applied on the spatial layers, // for the base temporal layer. if (cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cpi->svc.number_spatial_layers > 1 && svc->temporal_layer_id == 0) { CYCLIC_REFRESH *const cr = cpi->cyclic_refresh; signed char *temp = lc->map; lc->map = cr->map; cr->map = temp; lc->sb_index = cr->sb_index; lc->actual_num_seg1_blocks = cr->actual_num_seg1_blocks; lc->actual_num_seg2_blocks = cr->actual_num_seg2_blocks; lc->counter_encode_maxq_scene_change = cr->counter_encode_maxq_scene_change; } av1_svc_update_buffer_slot_refreshed(cpi); for (unsigned int i = 0; i < REF_FRAMES; i++) { if (frame_is_intra_only(cm) || cm->current_frame.refresh_frame_flags & (1 << i)) { svc->spatial_layer_fb[i] = svc->spatial_layer_id; svc->temporal_layer_fb[i] = svc->temporal_layer_id; } } if (svc->spatial_layer_id == svc->number_spatial_layers - 1) { svc->current_superframe++; // Reset drop flag to false for next superframe. for (int sl = 0; sl < svc->number_spatial_layers; sl++) svc->drop_spatial_layer[sl] = false; } } int av1_svc_primary_ref_frame(const AV1_COMP *const cpi) { const SVC *const svc = &cpi->svc; const AV1_COMMON *const cm = &cpi->common; int fb_idx = -1; int primary_ref_frame = PRIMARY_REF_NONE; if (cpi->svc.number_spatial_layers > 1 || cpi->svc.number_temporal_layers > 1) { // Set the primary_ref_frame to LAST_FRAME if that buffer slot for LAST // was last updated on a lower temporal layer (or base TL0) and for the // same spatial layer. For RTC patterns this allows for continued decoding // when set of enhancement layers are dropped (continued decoding starting // at next base TL0), so error_resilience can be off/0 for all layers. fb_idx = get_ref_frame_map_idx(cm, LAST_FRAME); if (svc->spatial_layer_fb[fb_idx] == svc->spatial_layer_id && (svc->temporal_layer_fb[fb_idx] < svc->temporal_layer_id || svc->temporal_layer_fb[fb_idx] == 0)) { primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME } } else if (cpi->ppi->rtc_ref.set_ref_frame_config) { const ExternalFlags *const ext_flags = &cpi->ext_flags; int flags = ext_flags->ref_frame_flags; if (flags & AOM_LAST_FLAG) { primary_ref_frame = 0; // LAST_FRAME: ref_frame - LAST_FRAME } else if (flags & AOM_GOLD_FLAG) { primary_ref_frame = GOLDEN_FRAME - LAST_FRAME; } else if (flags & AOM_ALT_FLAG) { primary_ref_frame = ALTREF_FRAME - LAST_FRAME; } } return primary_ref_frame; } void av1_free_svc_cyclic_refresh(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { int layer = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *const lc = &svc->layer_context[layer]; aom_free(lc->map); lc->map = NULL; } } } void av1_svc_reset_temporal_layers(AV1_COMP *const cpi, int is_key) { SVC *const svc = &cpi->svc; LAYER_CONTEXT *lc = NULL; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { lc = &cpi->svc.layer_context[sl * svc->number_temporal_layers + tl]; if (is_key) lc->frames_from_key_frame = 0; } } av1_update_temporal_layer_framerate(cpi); av1_restore_layer_context(cpi); } void av1_get_layer_resolution(const int width_org, const int height_org, const int num, const int den, int *width_out, int *height_out) { int w, h; if (width_out == NULL || height_out == NULL || den == 0) return; if (den == 1 && num == 1) { *width_out = width_org; *height_out = height_org; return; } w = width_org * num / den; h = height_org * num / den; // Make height and width even. w += w % 2; h += h % 2; *width_out = w; *height_out = h; } void av1_one_pass_cbr_svc_start_layer(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; AV1_COMMON *const cm = &cpi->common; LAYER_CONTEXT *lc = NULL; int width = 0, height = 0; lc = &svc->layer_context[svc->spatial_layer_id * svc->number_temporal_layers + svc->temporal_layer_id]; // Set the lower quality layer flag. svc->has_lower_quality_layer = 0; if (cpi->svc.spatial_layer_id > 0) { const LAYER_CONTEXT *lc_prev = &svc->layer_context[(svc->spatial_layer_id - 1) * svc->number_temporal_layers + svc->temporal_layer_id]; if (lc_prev->scaling_factor_den == 1 && lc_prev->scaling_factor_num == 1) svc->has_lower_quality_layer = 1; } av1_get_layer_resolution(cpi->oxcf.frm_dim_cfg.width, cpi->oxcf.frm_dim_cfg.height, lc->scaling_factor_num, lc->scaling_factor_den, &width, &height); // Use Eightap_smooth for low resolutions. if (width * height <= 320 * 240) svc->downsample_filter_type[svc->spatial_layer_id] = EIGHTTAP_SMOOTH; cm->width = width; cm->height = height; alloc_mb_mode_info_buffers(cpi); av1_update_frame_size(cpi); if (svc->spatial_layer_id == svc->number_spatial_layers - 1) { svc->mi_cols_full_resoln = cm->mi_params.mi_cols; svc->mi_rows_full_resoln = cm->mi_params.mi_rows; } } enum { SVC_LAST_FRAME = 0, SVC_LAST2_FRAME, SVC_LAST3_FRAME, SVC_GOLDEN_FRAME, SVC_BWDREF_FRAME, SVC_ALTREF2_FRAME, SVC_ALTREF_FRAME }; // For fixed svc mode: fixed pattern is set based on the number of // spatial and temporal layers, and the ksvc_fixed_mode. void av1_set_svc_fixed_mode(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; int i; assert(svc->use_flexible_mode == 0); // Fixed SVC mode only supports at most 3 spatial or temporal layers. assert(svc->number_spatial_layers >= 1 && svc->number_spatial_layers <= 3 && svc->number_temporal_layers >= 1 && svc->number_temporal_layers <= 3); rtc_ref->set_ref_frame_config = 1; int superframe_cnt = svc->current_superframe; // Set the reference map buffer idx for the 7 references: // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = i; for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->reference[i] = 0; for (i = 0; i < REF_FRAMES; i++) rtc_ref->refresh[i] = 0; // Always reference LAST, and reference GOLDEN on SL > 0. // For KSVC: GOLDEN reference will be removed on INTER_FRAMES later // when frame_type is set. rtc_ref->reference[SVC_LAST_FRAME] = 1; if (svc->spatial_layer_id > 0) rtc_ref->reference[SVC_GOLDEN_FRAME] = 1; if (svc->temporal_layer_id == 0) { // Base temporal layer. if (svc->spatial_layer_id == 0) { // Set all buffer_idx to 0. Update slot 0 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; rtc_ref->refresh[0] = 1; } else if (svc->spatial_layer_id == 1) { // Set buffer_idx for LAST to slot 1, GOLDEN (and all other refs) to // slot 0. Update slot 1 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; rtc_ref->refresh[1] = 1; } else if (svc->spatial_layer_id == 2) { // Set buffer_idx for LAST to slot 2, GOLDEN (and all other refs) to // slot 1. Update slot 2 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 1; rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; rtc_ref->refresh[2] = 1; } } else if (svc->temporal_layer_id == 2 && (superframe_cnt - 1) % 4 == 0) { // First top temporal enhancement layer. if (svc->spatial_layer_id == 0) { // Reference LAST (slot 0). // Set GOLDEN to slot 3 and update slot 3. // Set all other buffer_idx to slot 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; rtc_ref->refresh[3] = 1; } } else if (svc->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 3. // Set LAST2 to slot 4 and Update slot 4. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 3; rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4; rtc_ref->refresh[4] = 1; } } else if (svc->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, // GOLDEN (and all other refs) to slot 4. // No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 4; rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; } } else if (svc->temporal_layer_id == 1) { // Middle temporal enhancement layer. if (svc->spatial_layer_id == 0) { // Reference LAST. // Set all buffer_idx to 0. // Set GOLDEN to slot 5 and update slot 5. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; if (svc->temporal_layer_id < svc->number_temporal_layers - 1 || svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 5; rtc_ref->refresh[5] = 1; } } else if (svc->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 5. // Set LAST3 to slot 6 and update slot 6. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 5; rtc_ref->ref_idx[SVC_LAST_FRAME] = 1; if (svc->temporal_layer_id < svc->number_temporal_layers - 1 || svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_LAST3_FRAME] = 6; rtc_ref->refresh[6] = 1; } } else if (svc->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, // GOLDEN (and all other refs) to slot 6. // Set LAST3 to slot 7 and update slot 7. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 6; rtc_ref->ref_idx[SVC_LAST_FRAME] = 2; if (svc->temporal_layer_id < svc->number_temporal_layers - 1) { rtc_ref->ref_idx[SVC_LAST3_FRAME] = 7; rtc_ref->refresh[7] = 1; } } } else if (svc->temporal_layer_id == 2 && (superframe_cnt - 3) % 4 == 0) { // Second top temporal enhancement layer. if (svc->spatial_layer_id == 0) { // Set LAST to slot 5 and reference LAST. // Set GOLDEN to slot 3 and update slot 3. // Set all other buffer_idx to 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; rtc_ref->ref_idx[SVC_LAST_FRAME] = 5; if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; rtc_ref->refresh[3] = 1; } } else if (svc->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6, // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; rtc_ref->ref_idx[SVC_LAST_FRAME] = 6; rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 3; if (svc->spatial_layer_id < svc->number_spatial_layers - 1) { rtc_ref->ref_idx[SVC_LAST2_FRAME] = 4; rtc_ref->refresh[4] = 1; } } else if (svc->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7, // GOLDEN to slot 4. No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) rtc_ref->ref_idx[i] = 0; rtc_ref->ref_idx[SVC_LAST_FRAME] = 7; rtc_ref->ref_idx[SVC_GOLDEN_FRAME] = 4; } } } void av1_svc_check_reset_layer_rc_flag(AV1_COMP *const cpi) { SVC *const svc = &cpi->svc; for (int sl = 0; sl < svc->number_spatial_layers; ++sl) { // Check for reset based on avg_frame_bandwidth for spatial layer sl. // If avg_frame_bandwidth for top temporal layer is not set // (because enhancement layer was inactive), use the base TL0 int layer = LAYER_IDS_TO_IDX(sl, svc->number_temporal_layers - 1, svc->number_temporal_layers); LAYER_CONTEXT *lc = &svc->layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; int avg_frame_bandwidth = lrc->avg_frame_bandwidth; int prev_avg_frame_bandwidth = lrc->prev_avg_frame_bandwidth; if (avg_frame_bandwidth == 0 || prev_avg_frame_bandwidth == 0) { // Use base TL0. layer = LAYER_IDS_TO_IDX(sl, 0, svc->number_temporal_layers); lc = &svc->layer_context[layer]; lrc = &lc->rc; avg_frame_bandwidth = lrc->avg_frame_bandwidth; prev_avg_frame_bandwidth = lrc->prev_avg_frame_bandwidth; } if (avg_frame_bandwidth > (3 * prev_avg_frame_bandwidth >> 1) || avg_frame_bandwidth < (prev_avg_frame_bandwidth >> 1)) { // Reset for all temporal layers with spatial layer sl. for (int tl = 0; tl < svc->number_temporal_layers; ++tl) { int layer2 = LAYER_IDS_TO_IDX(sl, tl, svc->number_temporal_layers); LAYER_CONTEXT *lc2 = &svc->layer_context[layer2]; RATE_CONTROL *lrc2 = &lc2->rc; PRIMARY_RATE_CONTROL *lp_rc2 = &lc2->p_rc; PRIMARY_RATE_CONTROL *const lp_rc = &lc2->p_rc; lrc2->rc_1_frame = 0; lrc2->rc_2_frame = 0; lp_rc2->bits_off_target = lp_rc->optimal_buffer_level; lp_rc2->buffer_level = lp_rc->optimal_buffer_level; } } } } void av1_svc_set_last_source(AV1_COMP *const cpi, EncodeFrameInput *frame_input, YV12_BUFFER_CONFIG *prev_source) { frame_input->last_source = prev_source != NULL ? prev_source : NULL; if (!cpi->ppi->use_svc && cpi->rc.prev_frame_is_dropped && cpi->rc.frame_number_encoded > 0) { frame_input->last_source = &cpi->svc.source_last_TL0; } else { RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; if (cpi->svc.spatial_layer_id == 0) { // For base spatial layer: if the LAST reference (index 0) is not // the previous (super)frame set the last_source to the source // corresponding to the last TL0, otherwise keep it at prev_source. // Always use source_last_TL0 if previous base TL0 was dropped. if (cpi->svc.current_superframe > 0) { const int buffslot_last = rtc_ref->ref_idx[0]; // Check if previous frame was dropped on base TL0 layer. const int layer = LAYER_IDS_TO_IDX(0, 0, cpi->svc.number_temporal_layers); LAYER_CONTEXT *lc = &cpi->svc.layer_context[layer]; RATE_CONTROL *lrc = &lc->rc; if (lrc->prev_frame_is_dropped || rtc_ref->buffer_time_index[buffslot_last] < cpi->svc.current_superframe - 1) { frame_input->last_source = &cpi->svc.source_last_TL0; } } } else if (cpi->svc.spatial_layer_id > 0) { // For spatial enhancement layers: the previous source (prev_source) // corresponds to the lower spatial layer (which is the same source so // we can't use that), so always set the last_source to the source of the // last TL0. if (cpi->svc.current_superframe > 0) frame_input->last_source = &cpi->svc.source_last_TL0; else frame_input->last_source = NULL; } } } int av1_svc_get_min_ref_dist(const AV1_COMP *cpi) { RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; int min_dist = INT_MAX; const unsigned int current_frame_num = cpi->ppi->use_svc ? cpi->svc.current_superframe : cpi->common.current_frame.frame_number; for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { if (cpi->ppi->rtc_ref.reference[i]) { const int ref_frame_map_idx = rtc_ref->ref_idx[i]; const int dist = current_frame_num - rtc_ref->buffer_time_index[ref_frame_map_idx]; if (dist < min_dist) min_dist = dist; } } return min_dist; } void av1_svc_set_reference_was_previous(AV1_COMP *cpi) { RTC_REF *const rtc_ref = &cpi->ppi->rtc_ref; // Check if the encoded frame had some reference that was the // previous frame. const unsigned int current_frame = cpi->ppi->use_svc ? cpi->svc.current_superframe : cpi->common.current_frame.frame_number; rtc_ref->reference_was_previous_frame = true; if (current_frame > 0) { rtc_ref->reference_was_previous_frame = false; for (unsigned int i = 0; i < INTER_REFS_PER_FRAME; i++) { if (rtc_ref->reference[i]) { const int ref_frame_map_idx = rtc_ref->ref_idx[i]; if (rtc_ref->buffer_time_index[ref_frame_map_idx] == current_frame - 1) rtc_ref->reference_was_previous_frame = true; } } } }