/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #ifndef AOM_AV1_ENCODER_TEMPORAL_FILTER_H_ #define AOM_AV1_ENCODER_TEMPORAL_FILTER_H_ #include #include "aom_util/aom_pthread.h" #ifdef __cplusplus extern "C" { #endif /*!\cond */ struct AV1_COMP; struct AV1EncoderConfig; struct ThreadData; // TODO(wtc): These two variables are only used in avx2, sse2, neon // implementations, where the block size is still hard coded to TF_BLOCK_SIZE. // This should be fixed to align with the c implementation. #define BH 32 #define BW 32 // Block size used in temporal filtering. #define TF_BLOCK_SIZE BLOCK_32X32 // Window size for temporal filtering. #define TF_WINDOW_LENGTH 5 // A constant number, sqrt(pi / 2), used for noise estimation. static const double SQRT_PI_BY_2 = 1.25331413732; // Hyper-parameters used to compute filtering weight. These hyper-parameters can // be tuned for a better performance. // 0. A scale factor used in temporal filtering to raise the filter weight from // `double` with range [0, 1] to `int` with range [0, 1000]. #define TF_WEIGHT_SCALE 1000 // 1. Weight factor used to balance the weighted-average between window error // and block error. The weight is for window error while the weight for block // error is always set as 1. #define TF_WINDOW_BLOCK_BALANCE_WEIGHT 5 // 2. Threshold for using q to adjust the filtering weight. Concretely, when // using a small q (high bitrate), we would like to reduce the filtering // strength such that more detailed information can be preserved. Hence, when // q is smaller than this threshold, we will adjust the filtering weight // based on the q-value. #define TF_Q_DECAY_THRESHOLD 20 // 3. Normalization factor used to normalize the motion search error. Since the // motion search error can be large and uncontrollable, we will simply // normalize it before using it to compute the filtering weight. #define TF_SEARCH_ERROR_NORM_WEIGHT 20 // 4. Threshold for using `arnr_strength` to adjust the filtering strength. // Concretely, users can use `arnr_strength` arguments to control the // strength of temporal filtering. When `arnr_strength` is small enough ( // i.e., smaller than this threshold), we will adjust the filtering weight // based on the strength value. #define TF_STRENGTH_THRESHOLD 4 // 5. Threshold for using motion search distance to adjust the filtering weight. // Concretely, larger motion search vector leads to a higher probability of // unreliable search. Hence, we would like to reduce the filtering strength // when the distance is large enough. Considering that the distance actually // relies on the frame size, this threshold is also a resolution-based // threshold. Taking 720p videos as an instance, if this field equals to 0.1, // then the actual threshold will be 720 * 0.1 = 72. Similarly, the threshold // for 360p videos will be 360 * 0.1 = 36. #define TF_SEARCH_DISTANCE_THRESHOLD 0.1 // 6. Threshold to identify if the q is in a relative high range. // Above this cutoff q, a stronger filtering is applied. // For a high q, the quantization throws away more information, and thus a // stronger filtering is less likely to distort the encoded quality, while a // stronger filtering could reduce bit rates. // Ror a low q, more details are expected to be retained. Filtering is thus // more conservative. #define TF_QINDEX_CUTOFF 128 #define NOISE_ESTIMATION_EDGE_THRESHOLD 50 // Sum and SSE source vs filtered frame difference returned by // temporal filter. typedef struct { int64_t sum; int64_t sse; } FRAME_DIFF; /*!\endcond */ /*! * \brief Parameters related to temporal filtering. */ typedef struct { /*! * Frame buffers used for temporal filtering. */ YV12_BUFFER_CONFIG *frames[MAX_LAG_BUFFERS]; /*! * Number of frames in the frame buffer. */ int num_frames; /*! * Output filtered frame */ YV12_BUFFER_CONFIG *output_frame; /*! * Index of the frame to be filtered. */ int filter_frame_idx; /*! * Whether to accumulate diff for show existing condition check. */ int compute_frame_diff; /*! * Frame scaling factor. */ struct scale_factors sf; /*! * Estimated noise levels for each plane in the frame. */ double noise_levels[MAX_MB_PLANE]; /*! * Number of pixels in the temporal filtering block across all planes. */ int num_pels; /*! * Number of temporal filtering block rows. */ int mb_rows; /*! * Number of temporal filtering block columns. */ int mb_cols; /*! * Whether the frame is high-bitdepth or not. */ int is_highbitdepth; /*! * Quantization factor used in temporal filtering. */ int q_factor; } TemporalFilterCtx; /*! * buffer count in TEMPORAL_FILTER_INFO * Currently we only apply filtering on KEY and ARF after * define_gf_group(). Hence, the count is two. */ #define TF_INFO_BUF_COUNT 2 /*! * \brief Temporal filter info for a gop */ typedef struct TEMPORAL_FILTER_INFO { /*! * A flag indicate whether temporal filter shoud be applied. * This flag will stored the result of * av1_is_temporal_filter_on() */ int is_temporal_filter_on; /*! * buffers used for temporal filtering in a GOP * index 0 for key frame and index 1 for ARF */ YV12_BUFFER_CONFIG tf_buf[TF_INFO_BUF_COUNT]; /*! * buffers used for temporal filtering for * INTNL_ARF_UPDATE * Check av1_gop_is_second_arf() for the * definition of second_arf in detail */ YV12_BUFFER_CONFIG tf_buf_second_arf; /*! * whether to show the buffer directly or not. */ FRAME_DIFF frame_diff[TF_INFO_BUF_COUNT]; /*! * the corresponding gf_index for the buffer. */ int tf_buf_gf_index[TF_INFO_BUF_COUNT]; /*! * the display_index offset between next show frame and the frames in the GOP */ int tf_buf_display_index_offset[TF_INFO_BUF_COUNT]; /*! * whether the buf is valid or not. */ int tf_buf_valid[TF_INFO_BUF_COUNT]; } TEMPORAL_FILTER_INFO; /*!\brief Check whether we should apply temporal filter at all. * \param[in] oxcf AV1 encoder config * * \return 1: temporal filter is on 0: temporal is off */ int av1_is_temporal_filter_on(const struct AV1EncoderConfig *oxcf); /*!\brief Allocate buffers for TEMPORAL_FILTER_INFO * \param[in,out] tf_info Temporal filter info for a gop * \param[in,out] cpi Top level encoder instance structure * * \return True on success, false on memory allocation failure. */ bool av1_tf_info_alloc(TEMPORAL_FILTER_INFO *tf_info, const struct AV1_COMP *cpi); /*!\brief Free buffers for TEMPORAL_FILTER_INFO * \param[in,out] tf_info Temporal filter info for a gop */ void av1_tf_info_free(TEMPORAL_FILTER_INFO *tf_info); /*!\brief Reset validity of tf_buf in TEMPORAL_FILTER_INFO * \param[in,out] tf_info Temporal filter info for a gop */ void av1_tf_info_reset(TEMPORAL_FILTER_INFO *tf_info); /*!\brief Apply temporal filter for key frame and ARF in a gop * \param[in,out] tf_info Temporal filter info for a gop * \param[in,out] cpi Top level encoder instance structure * \param[in] gf_group GF/ARF group data structure */ void av1_tf_info_filtering(TEMPORAL_FILTER_INFO *tf_info, struct AV1_COMP *cpi, const GF_GROUP *gf_group); /*!\brief Get a filtered buffer from TEMPORAL_FILTER_INFO * \param[in,out] tf_info Temporal filter info for a gop * \param[in] gf_index gf_index for the target buffer * \param[out] show_tf_buf whether the target buffer can be shown * directly */ YV12_BUFFER_CONFIG *av1_tf_info_get_filtered_buf(TEMPORAL_FILTER_INFO *tf_info, int gf_index, FRAME_DIFF *frame_diff); /*!\cond */ // Data related to temporal filtering. typedef struct { // Source vs filtered frame error. FRAME_DIFF diff; // Pointer to temporary block info used to store state in temporal filtering // process. MB_MODE_INFO *tmp_mbmi; // Pointer to accumulator buffer used in temporal filtering process. uint32_t *accum; // Pointer to count buffer used in temporal filtering process. uint16_t *count; // Pointer to predictor used in temporal filtering process. uint8_t *pred; } TemporalFilterData; // Data related to temporal filter multi-thread synchronization. typedef struct { #if CONFIG_MULTITHREAD // Mutex lock used for dispatching jobs. pthread_mutex_t *mutex_; #endif // CONFIG_MULTITHREAD // Next temporal filter block row to be filtered. int next_tf_row; // Initialized to false, set to true by the worker thread that encounters an // error in order to abort the processing of other worker threads. bool tf_mt_exit; } AV1TemporalFilterSync; // Estimates noise level from a given frame using a single plane (Y, U, or V). // This is an adaptation of the mehtod in the following paper: // Shen-Chuan Tai, Shih-Ming Yang, "A fast method for image noise // estimation using Laplacian operator and adaptive edge detection", // Proc. 3rd International Symposium on Communications, Control and // Signal Processing, 2008, St Julians, Malta. // Inputs: // frame: Pointer to the frame to estimate noise level from. // noise_level: Pointer to store the estimated noise. // plane_from: Index of the starting plane used for noise estimation. // Commonly, 0 for Y-plane, 1 for U-plane, and 2 for V-plane. // plane_to: Index of the end plane used for noise estimation. // bit_depth: Actual bit-depth instead of the encoding bit-depth of the frame. // edge_thresh: Edge threshold. void av1_estimate_noise_level(const YV12_BUFFER_CONFIG *frame, double *noise_level, int plane_from, int plane_to, int bit_depth, int edge_thresh); /*!\endcond */ /*!\brief Does temporal filter for a given macroblock row. * * \ingroup src_frame_proc * \param[in] cpi Top level encoder instance structure * \param[in] td Pointer to thread data * \param[in] mb_row Macroblock row to be filtered filtering * * \remark Nothing will be returned, but the contents of td->diff will be modified. */ void av1_tf_do_filtering_row(struct AV1_COMP *cpi, struct ThreadData *td, int mb_row); /*!\brief Performs temporal filtering if needed on a source frame. * For example to create a filtered alternate reference frame (ARF) * * In this function, the lookahead index is different from the 0-based * real index. For example, if we want to filter the first frame in the * pre-fetched buffer `cpi->lookahead`, the lookahead index will be -1 instead * of 0. More concretely, 0 indicates the first LOOKAHEAD frame, which is the * second frame in the pre-fetched buffer. Another example: if we want to filter * the 17-th frame, which is an ARF, the lookahead index is 15 instead of 16. * Futhermore, negative number is used for key frame in one-pass mode, where key * frame is filtered with the frames before it instead of after it. For example, * -15 means to filter the 17-th frame, which is a key frame in one-pass mode. * * \ingroup src_frame_proc * \param[in] cpi Top level encoder instance * structure * \param[in] filter_frame_lookahead_idx The index of the * to-filter frame in the lookahead * buffer cpi->lookahead. * \param[in] gf_frame_index Index of GOP * \param[in,out] frame_diff structure of sse and sum of the * filtered frame. * \param[out] output_frame Ouput filtered frame. */ void av1_temporal_filter(struct AV1_COMP *cpi, const int filter_frame_lookahead_idx, int gf_frame_index, FRAME_DIFF *frame_diff, YV12_BUFFER_CONFIG *output_frame); /*!\brief Check whether a filtered frame can be show directly * * This function will use the filtered frame's sse and current q index * to make decision. * * \ingroup src_frame_proc * \param[in] frame filtered frame's buffer * \param[in] frame_diff structure of sse and sum of the * filtered frame. * \param[in] q_index q_index used for this frame * \param[in] bit_depth bit depth * \return return 1 if this frame can be shown directly, otherwise * return 0 */ int av1_check_show_filtered_frame(const YV12_BUFFER_CONFIG *frame, const FRAME_DIFF *frame_diff, int q_index, aom_bit_depth_t bit_depth); /*!\cond */ // Helper function to get `q` used for encoding. int av1_get_q(const struct AV1_COMP *cpi); // Allocates memory for members of TemporalFilterData. // Inputs: // tf_data: Pointer to the structure containing temporal filter related data. // num_pels: Number of pixels in the block across all planes. // is_high_bitdepth: Whether the frame is high-bitdepth or not. // Returns: // True if allocation is successful and false otherwise. static AOM_INLINE bool tf_alloc_and_reset_data(TemporalFilterData *tf_data, int num_pels, int is_high_bitdepth) { tf_data->tmp_mbmi = (MB_MODE_INFO *)aom_calloc(1, sizeof(*tf_data->tmp_mbmi)); tf_data->accum = (uint32_t *)aom_memalign(16, num_pels * sizeof(*tf_data->accum)); tf_data->count = (uint16_t *)aom_memalign(16, num_pels * sizeof(*tf_data->count)); if (is_high_bitdepth) tf_data->pred = CONVERT_TO_BYTEPTR( aom_memalign(32, num_pels * 2 * sizeof(*tf_data->pred))); else tf_data->pred = (uint8_t *)aom_memalign(32, num_pels * sizeof(*tf_data->pred)); // In case of an allocation failure, other successfully allocated buffers will // be freed by the tf_dealloc_data() call in encoder_destroy(). if (!(tf_data->tmp_mbmi && tf_data->accum && tf_data->count && tf_data->pred)) return false; memset(&tf_data->diff, 0, sizeof(tf_data->diff)); return true; } // Setup macroblockd params for temporal filtering process. // Inputs: // mbd: Pointer to the block for filtering. // tf_data: Pointer to the structure containing temporal filter related data. // scale: Scaling factor. // Returns: // Nothing will be returned. Contents of mbd will be modified. static AOM_INLINE void tf_setup_macroblockd(MACROBLOCKD *mbd, TemporalFilterData *tf_data, const struct scale_factors *scale) { mbd->block_ref_scale_factors[0] = scale; mbd->block_ref_scale_factors[1] = scale; mbd->mi = &tf_data->tmp_mbmi; mbd->mi[0]->motion_mode = SIMPLE_TRANSLATION; } // Deallocates the memory allocated for members of TemporalFilterData. // Inputs: // tf_data: Pointer to the structure containing temporal filter related data. // is_high_bitdepth: Whether the frame is high-bitdepth or not. // Returns: // Nothing will be returned. static AOM_INLINE void tf_dealloc_data(TemporalFilterData *tf_data, int is_high_bitdepth) { if (is_high_bitdepth) tf_data->pred = (uint8_t *)CONVERT_TO_SHORTPTR(tf_data->pred); aom_free(tf_data->tmp_mbmi); tf_data->tmp_mbmi = NULL; aom_free(tf_data->accum); tf_data->accum = NULL; aom_free(tf_data->count); tf_data->count = NULL; aom_free(tf_data->pred); tf_data->pred = NULL; } // Saves the state prior to temporal filter process. // Inputs: // mbd: Pointer to the block for filtering. // input_mbmi: Backup block info to save input state. // input_buffer: Backup buffer pointer to save input state. // num_planes: Number of planes. // Returns: // Nothing will be returned. Contents of input_mbmi and input_buffer will be // modified. static INLINE void tf_save_state(MACROBLOCKD *mbd, MB_MODE_INFO ***input_mbmi, uint8_t **input_buffer, int num_planes) { for (int i = 0; i < num_planes; i++) { input_buffer[i] = mbd->plane[i].pre[0].buf; } *input_mbmi = mbd->mi; } // Restores the initial state after temporal filter process. // Inputs: // mbd: Pointer to the block for filtering. // input_mbmi: Backup block info from where input state is restored. // input_buffer: Backup buffer pointer from where input state is restored. // num_planes: Number of planes. // Returns: // Nothing will be returned. Contents of mbd will be modified. static INLINE void tf_restore_state(MACROBLOCKD *mbd, MB_MODE_INFO **input_mbmi, uint8_t **input_buffer, int num_planes) { for (int i = 0; i < num_planes; i++) { mbd->plane[i].pre[0].buf = input_buffer[i]; } mbd->mi = input_mbmi; } /*!\endcond */ #ifdef __cplusplus } // extern "C" #endif #endif // AOM_AV1_ENCODER_TEMPORAL_FILTER_H_