/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/thirdpass.h" #if CONFIG_THREE_PASS && CONFIG_AV1_DECODER #include "aom/aom_codec.h" #include "aom/aomdx.h" #include "aom_dsp/psnr.h" #include "aom_mem/aom_mem.h" #include "av1/av1_iface_common.h" #include "av1/encoder/encoder.h" #include "av1/encoder/firstpass.h" #include "av1/common/blockd.h" #include "common/ivfdec.h" static void setup_two_pass_stream_input( struct AvxInputContext **input_ctx_ptr, const char *input_file_name, struct aom_internal_error_info *err_info) { FILE *infile; infile = fopen(input_file_name, "rb"); if (!infile) { aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, "Failed to open input file '%s'.", input_file_name); } struct AvxInputContext *aom_input_ctx = aom_malloc(sizeof(*aom_input_ctx)); if (!aom_input_ctx) { fclose(infile); aom_internal_error(err_info, AOM_CODEC_MEM_ERROR, "Failed to allocate memory for third-pass context."); } memset(aom_input_ctx, 0, sizeof(*aom_input_ctx)); aom_input_ctx->filename = input_file_name; aom_input_ctx->file = infile; if (file_is_ivf(aom_input_ctx)) { aom_input_ctx->file_type = FILE_TYPE_IVF; } else { fclose(infile); aom_free(aom_input_ctx); aom_internal_error(err_info, AOM_CODEC_INVALID_PARAM, "Unrecognized input file type."); } *input_ctx_ptr = aom_input_ctx; } static void init_third_pass(THIRD_PASS_DEC_CTX *ctx) { if (!ctx->input_ctx) { if (ctx->input_file_name == NULL) { aom_internal_error(ctx->err_info, AOM_CODEC_INVALID_PARAM, "No third pass input specified."); } setup_two_pass_stream_input(&ctx->input_ctx, ctx->input_file_name, ctx->err_info); } if (!ctx->decoder.iface) { aom_codec_iface_t *decoder_iface = &aom_codec_av1_inspect_algo; if (aom_codec_dec_init(&ctx->decoder, decoder_iface, NULL, 0)) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to initialize decoder."); } } } // Return 0: success // 1: cannot read because this is end of file // -1: failure to read the frame static int read_frame(THIRD_PASS_DEC_CTX *ctx) { if (!ctx->input_ctx || !ctx->decoder.iface) { init_third_pass(ctx); } if (!ctx->have_frame) { if (ivf_read_frame(ctx->input_ctx, &ctx->buf, &ctx->bytes_in_buffer, &ctx->buffer_size, NULL) != 0) { if (feof(ctx->input_ctx->file)) { return 1; } else { return -1; } } ctx->frame = ctx->buf; ctx->end_frame = ctx->frame + ctx->bytes_in_buffer; ctx->have_frame = 1; } Av1DecodeReturn adr; if (aom_codec_decode(&ctx->decoder, ctx->frame, (unsigned int)ctx->bytes_in_buffer, &adr) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to decode frame for third pass."); } ctx->this_frame_bits = (int)(adr.buf - ctx->frame) << 3; ctx->frame = adr.buf; ctx->bytes_in_buffer = ctx->end_frame - ctx->frame; if (ctx->frame == ctx->end_frame) ctx->have_frame = 0; return 0; } static void free_frame_info(THIRD_PASS_FRAME_INFO *frame_info) { if (!frame_info) return; aom_free(frame_info->mi_info); frame_info->mi_info = NULL; } // This function gets the information needed from the recently decoded frame, // via various decoder APIs, and saves the info into ctx->frame_info. // Return 0: success // 1: cannot read because this is end of file // -1: failure to read the frame static int get_frame_info(THIRD_PASS_DEC_CTX *ctx) { int ret = read_frame(ctx); if (ret != 0) return ret; int cur = ctx->frame_info_count; ctx->frame_info[cur].actual_bits = ctx->this_frame_bits; if (cur >= MAX_THIRD_PASS_BUF) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Third pass frame info ran out of available slots."); } aom_codec_frame_flags_t frame_type_flags = 0; if (aom_codec_control(&ctx->decoder, AOMD_GET_FRAME_FLAGS, &frame_type_flags) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read frame flags."); } if (frame_type_flags & AOM_FRAME_IS_KEY) { ctx->frame_info[cur].frame_type = KEY_FRAME; } else if (frame_type_flags & AOM_FRAME_IS_INTRAONLY) { ctx->frame_info[cur].frame_type = INTRA_ONLY_FRAME; } else if (frame_type_flags & AOM_FRAME_IS_SWITCH) { ctx->frame_info[cur].frame_type = S_FRAME; } else { ctx->frame_info[cur].frame_type = INTER_FRAME; } // Get frame width and height int frame_size[2]; if (aom_codec_control(&ctx->decoder, AV1D_GET_FRAME_SIZE, frame_size) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read frame size."); } // Check if we need to re-alloc the mi fields. const int mi_cols = (frame_size[0] + 3) >> 2; const int mi_rows = (frame_size[1] + 3) >> 2; ctx->frame_info[cur].mi_stride = mi_cols; ctx->frame_info[cur].mi_rows = mi_rows; ctx->frame_info[cur].mi_cols = mi_cols; if (ctx->frame_info[cur].width != frame_size[0] || ctx->frame_info[cur].height != frame_size[1] || !ctx->frame_info[cur].mi_info) { free_frame_info(&ctx->frame_info[cur]); ctx->frame_info[cur].mi_info = aom_malloc(mi_cols * mi_rows * sizeof(*ctx->frame_info[cur].mi_info)); if (!ctx->frame_info[cur].mi_info) { aom_internal_error(ctx->err_info, AOM_CODEC_MEM_ERROR, "Failed to allocate mi buffer for the third pass."); } } ctx->frame_info[cur].width = frame_size[0]; ctx->frame_info[cur].height = frame_size[1]; // Get frame base q idx if (aom_codec_control(&ctx->decoder, AOMD_GET_BASE_Q_IDX, &ctx->frame_info[cur].base_q_idx) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read base q index."); } // Get show existing frame flag if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_EXISTING_FRAME_FLAG, &ctx->frame_info[cur].is_show_existing_frame) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read show existing frame flag."); } // Get show frame flag if (aom_codec_control(&ctx->decoder, AOMD_GET_SHOW_FRAME_FLAG, &ctx->frame_info[cur].is_show_frame) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read show frame flag."); } // Get order hint if (aom_codec_control(&ctx->decoder, AOMD_GET_ORDER_HINT, &ctx->frame_info[cur].order_hint) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read order hint."); } // Clear MI info for (int mi_row = 0; mi_row < mi_rows; mi_row++) { for (int mi_col = 0; mi_col < mi_cols; mi_col++) { ctx->frame_info[cur].mi_info[mi_row * mi_cols + mi_col].bsize = BLOCK_INVALID; } } // Get relevant information regarding each 4x4 MI MB_MODE_INFO cur_mi_info; THIRD_PASS_MI_INFO *const this_mi = ctx->frame_info[cur].mi_info; for (int mi_row = 0; mi_row < mi_rows; mi_row++) { for (int mi_col = 0; mi_col < mi_cols; mi_col++) { const int offset = mi_row * mi_cols + mi_col; if (this_mi[offset].bsize != BLOCK_INVALID) { continue; } // Get info of this MI if (aom_codec_control(&ctx->decoder, AV1D_GET_MI_INFO, mi_row, mi_col, &cur_mi_info) != AOM_CODEC_OK) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read mi info."); } const int blk_mi_rows = mi_size_high[cur_mi_info.bsize]; const int blk_mi_cols = mi_size_wide[cur_mi_info.bsize]; for (int h = 0; h < blk_mi_rows; h++) { for (int w = 0; w < blk_mi_cols; w++) { if (h + mi_row >= mi_rows || w + mi_col >= mi_cols) { continue; } const int this_offset = offset + h * mi_cols + w; this_mi[this_offset].bsize = cur_mi_info.bsize; this_mi[this_offset].partition = cur_mi_info.partition; this_mi[this_offset].mi_row_start = mi_row; this_mi[this_offset].mi_col_start = mi_col; this_mi[this_offset].mv[0] = cur_mi_info.mv[0]; this_mi[this_offset].mv[1] = cur_mi_info.mv[1]; this_mi[this_offset].ref_frame[0] = cur_mi_info.ref_frame[0]; this_mi[this_offset].ref_frame[1] = cur_mi_info.ref_frame[1]; this_mi[this_offset].pred_mode = cur_mi_info.mode; } } } } ctx->frame_info_count++; return 0; } #define USE_SECOND_PASS_FILE 1 #if !USE_SECOND_PASS_FILE // Parse the frames in the gop and determine the last frame of the current GOP. // Decode more frames if necessary. The variable max_num is the maximum static // GOP length if we detect an IPPP structure, and it is expected that max_mum >= // MAX_GF_INTERVAL. static void get_current_gop_end(THIRD_PASS_DEC_CTX *ctx, int max_num, int *last_idx) { assert(max_num >= MAX_GF_INTERVAL); *last_idx = 0; int cur_idx = 0; int arf_order_hint = -1; int num_show_frames = 0; while (num_show_frames < max_num) { assert(cur_idx < MAX_THIRD_PASS_BUF); // Read in from bitstream if needed. if (cur_idx >= ctx->frame_info_count) { int ret = get_frame_info(ctx); if (ret == 1) { // At the end of the file, GOP ends in the prev frame. if (arf_order_hint >= 0) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to derive GOP length."); } *last_idx = cur_idx - 1; return; } if (ret < 0) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read frame for third pass."); } } // TODO(bohanli): verify that fwd_kf works here. if (ctx->frame_info[cur_idx].frame_type == KEY_FRAME && ctx->frame_info[cur_idx].is_show_frame) { if (cur_idx != 0) { // If this is a key frame and is not the first kf in this kf group, we // have reached the next key frame. Stop here. *last_idx = cur_idx - 1; return; } } else if (!ctx->frame_info[cur_idx].is_show_frame && arf_order_hint == -1) { // If this is an arf (the first no show) if (num_show_frames <= 1) { // This is an arf and we should end the GOP with its overlay. arf_order_hint = ctx->frame_info[cur_idx].order_hint; } else { // There are multiple show frames before the this arf, so we treat the // frames previous to this arf as a GOP. *last_idx = cur_idx - 1; return; } } else if (arf_order_hint >= 0 && ctx->frame_info[cur_idx].order_hint == (unsigned int)arf_order_hint) { // If this is the overlay/show existing of the arf assert(ctx->frame_info[cur_idx].is_show_frame); *last_idx = cur_idx; return; } else { // This frame is part of the GOP. if (ctx->frame_info[cur_idx].is_show_frame) num_show_frames++; } cur_idx++; } // This is a long IPPP GOP and we will use a length of max_num here. assert(arf_order_hint < 0); *last_idx = max_num - 1; return; } #endif static AOM_INLINE void read_gop_frames(THIRD_PASS_DEC_CTX *ctx) { int cur_idx = 0; while (cur_idx < ctx->gop_info.num_frames) { assert(cur_idx < MAX_THIRD_PASS_BUF); // Read in from bitstream if needed. if (cur_idx >= ctx->frame_info_count) { int ret = get_frame_info(ctx); if (ret != 0) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Failed to read frame for third pass."); } } cur_idx++; } return; } void av1_set_gop_third_pass(THIRD_PASS_DEC_CTX *ctx) { // Read in future frames in the current GOP. read_gop_frames(ctx); int gf_len = 0; // Check the GOP length against the value read from second_pass_file for (int i = 0; i < ctx->gop_info.num_frames; i++) { if (ctx->frame_info[i].is_show_frame) gf_len++; } if (gf_len != ctx->gop_info.gf_length) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Mismatch in third pass GOP length!"); } } void av1_pop_third_pass_info(THIRD_PASS_DEC_CTX *ctx) { if (ctx->frame_info_count == 0) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "No available frame info for third pass."); } ctx->frame_info_count--; free_frame_info(&ctx->frame_info[0]); for (int i = 0; i < ctx->frame_info_count; i++) { ctx->frame_info[i] = ctx->frame_info[i + 1]; } ctx->frame_info[ctx->frame_info_count].mi_info = NULL; } void av1_init_thirdpass_ctx(AV1_COMMON *cm, THIRD_PASS_DEC_CTX **ctx, const char *file) { av1_free_thirdpass_ctx(*ctx); CHECK_MEM_ERROR(cm, *ctx, aom_calloc(1, sizeof(**ctx))); THIRD_PASS_DEC_CTX *ctx_ptr = *ctx; ctx_ptr->input_file_name = file; ctx_ptr->prev_gop_end = -1; ctx_ptr->err_info = cm->error; } void av1_free_thirdpass_ctx(THIRD_PASS_DEC_CTX *ctx) { if (ctx == NULL) return; if (ctx->decoder.iface) { aom_codec_destroy(&ctx->decoder); } if (ctx->input_ctx && ctx->input_ctx->file) fclose(ctx->input_ctx->file); aom_free(ctx->input_ctx); if (ctx->buf) free(ctx->buf); for (int i = 0; i < MAX_THIRD_PASS_BUF; i++) { free_frame_info(&ctx->frame_info[i]); } aom_free(ctx); } void av1_write_second_pass_gop_info(AV1_COMP *cpi) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const PRIMARY_RATE_CONTROL *const p_rc = &cpi->ppi->p_rc; if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { // Write the GOP length to a log file. av1_open_second_pass_log(cpi, 0); THIRD_PASS_GOP_INFO gop_info; gop_info.num_frames = gf_group->size; gop_info.use_arf = (gf_group->arf_index >= 0); gop_info.gf_length = p_rc->baseline_gf_interval; size_t count = fwrite(&gop_info, sizeof(gop_info), 1, cpi->second_pass_log_stream); if (count < 1) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not write to second pass log file!"); } } } void av1_write_second_pass_per_frame_info(AV1_COMP *cpi, int gf_index) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; if (oxcf->pass == AOM_RC_SECOND_PASS && oxcf->second_pass_log) { // write target bitrate int bits = gf_group->bit_allocation[gf_index]; size_t count = fwrite(&bits, sizeof(bits), 1, cpi->second_pass_log_stream); if (count < 1) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not write to second pass log file!"); } // write sse uint64_t sse = 0; int pkt_idx = cpi->ppi->output_pkt_list->cnt - 1; if (pkt_idx >= 0 && cpi->ppi->output_pkt_list->pkts[pkt_idx].kind == AOM_CODEC_PSNR_PKT) { sse = cpi->ppi->output_pkt_list->pkts[pkt_idx].data.psnr.sse[0]; #if CONFIG_INTERNAL_STATS } else if (cpi->ppi->b_calculate_psnr) { sse = cpi->ppi->total_sq_error[0]; #endif } else { const YV12_BUFFER_CONFIG *orig = cpi->source; const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; PSNR_STATS psnr; #if CONFIG_AV1_HIGHBITDEPTH const uint32_t in_bit_depth = cpi->oxcf.input_cfg.input_bit_depth; const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; aom_calc_highbd_psnr(orig, recon, &psnr, bit_depth, in_bit_depth); #else aom_calc_psnr(orig, recon, &psnr); #endif sse = psnr.sse[0]; } count = fwrite(&sse, sizeof(sse), 1, cpi->second_pass_log_stream); if (count < 1) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not write to second pass log file!"); } // write bpm_factor double factor = cpi->ppi->twopass.bpm_factor; count = fwrite(&factor, sizeof(factor), 1, cpi->second_pass_log_stream); if (count < 1) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not write to second pass log file!"); } } } void av1_open_second_pass_log(AV1_COMP *cpi, int is_read) { const AV1EncoderConfig *const oxcf = &cpi->oxcf; if (oxcf->second_pass_log == NULL) { aom_internal_error(cpi->common.error, AOM_CODEC_INVALID_PARAM, "No second pass log file specified for the third pass!"); } // Read the GOP length from a file. if (!cpi->second_pass_log_stream) { if (is_read) { cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "rb"); } else { cpi->second_pass_log_stream = fopen(cpi->oxcf.second_pass_log, "wb"); } if (!cpi->second_pass_log_stream) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not open second pass log file!"); } } } void av1_close_second_pass_log(AV1_COMP *cpi) { if (cpi->second_pass_log_stream) { int ret = fclose(cpi->second_pass_log_stream); if (ret != 0) { aom_internal_error(cpi->common.error, AOM_CODEC_ERROR, "Could not close second pass log file!"); } cpi->second_pass_log_stream = 0; } } void av1_read_second_pass_gop_info(FILE *second_pass_log_stream, THIRD_PASS_GOP_INFO *gop_info, struct aom_internal_error_info *error) { size_t count = fread(gop_info, sizeof(*gop_info), 1, second_pass_log_stream); if (count < 1) { aom_internal_error(error, AOM_CODEC_ERROR, "Could not read from second pass log file!"); } } void av1_read_second_pass_per_frame_info( FILE *second_pass_log_stream, THIRD_PASS_FRAME_INFO *frame_info_arr, int frame_info_count, struct aom_internal_error_info *error) { for (int i = 0; i < frame_info_count; i++) { // read target bits int bits = 0; size_t count = fread(&bits, sizeof(bits), 1, second_pass_log_stream); if (count < 1) { aom_internal_error(error, AOM_CODEC_ERROR, "Could not read from second pass log file!"); } frame_info_arr[i].bits_allocated = bits; // read distortion uint64_t sse; count = fread(&sse, sizeof(sse), 1, second_pass_log_stream); if (count < 1) { aom_internal_error(error, AOM_CODEC_ERROR, "Could not read from second pass log file!"); } frame_info_arr[i].sse = sse; // read bpm factor double factor; count = fread(&factor, sizeof(factor), 1, second_pass_log_stream); if (count < 1) { aom_internal_error(error, AOM_CODEC_ERROR, "Could not read from second pass log file!"); } frame_info_arr[i].bpm_factor = factor; } } int av1_check_use_arf(THIRD_PASS_DEC_CTX *ctx) { if (ctx == NULL) return -1; int use_arf = 0; for (int i = 0; i < ctx->gop_info.gf_length; i++) { if (ctx->frame_info[i].order_hint != 0 && ctx->frame_info[i].is_show_frame == 0) { use_arf = 1; } } if (use_arf != ctx->gop_info.use_arf) { aom_internal_error(ctx->err_info, AOM_CODEC_ERROR, "Mismatch in third pass GOP length!"); } return use_arf; } void av1_get_third_pass_ratio(THIRD_PASS_DEC_CTX *ctx, int fidx, int fheight, int fwidth, double *ratio_h, double *ratio_w) { assert(ctx); assert(fidx < ctx->frame_info_count); const int fheight_second_pass = ctx->frame_info[fidx].height; const int fwidth_second_pass = ctx->frame_info[fidx].width; assert(fheight_second_pass <= fheight && fwidth_second_pass <= fwidth); *ratio_h = (double)fheight / fheight_second_pass; *ratio_w = (double)fwidth / fwidth_second_pass; } THIRD_PASS_MI_INFO *av1_get_third_pass_mi(THIRD_PASS_DEC_CTX *ctx, int fidx, int mi_row, int mi_col, double ratio_h, double ratio_w) { assert(ctx); assert(fidx < ctx->frame_info_count); const int mi_rows_second_pass = ctx->frame_info[fidx].mi_rows; const int mi_cols_second_pass = ctx->frame_info[fidx].mi_cols; const int mi_row_second_pass = clamp((int)round(mi_row / ratio_h), 0, mi_rows_second_pass - 1); const int mi_col_second_pass = clamp((int)round(mi_col / ratio_w), 0, mi_cols_second_pass - 1); const int mi_stride_second_pass = ctx->frame_info[fidx].mi_stride; THIRD_PASS_MI_INFO *this_mi = ctx->frame_info[fidx].mi_info + mi_row_second_pass * mi_stride_second_pass + mi_col_second_pass; return this_mi; } void av1_third_pass_get_adjusted_mi(THIRD_PASS_MI_INFO *third_pass_mi, double ratio_h, double ratio_w, int *mi_row, int *mi_col) { *mi_row = (int)round(third_pass_mi->mi_row_start * ratio_h); *mi_col = (int)round(third_pass_mi->mi_col_start * ratio_w); } int_mv av1_get_third_pass_adjusted_mv(THIRD_PASS_MI_INFO *this_mi, double ratio_h, double ratio_w, MV_REFERENCE_FRAME frame) { assert(this_mi != NULL); int_mv cur_mv; cur_mv.as_int = INVALID_MV; if (frame < LAST_FRAME || frame > ALTREF_FRAME) return cur_mv; for (int r = 0; r < 2; r++) { if (this_mi->ref_frame[r] == frame) { cur_mv.as_mv.row = (int16_t)round(this_mi->mv[r].as_mv.row * ratio_h); cur_mv.as_mv.col = (int16_t)round(this_mi->mv[r].as_mv.col * ratio_w); } } return cur_mv; } BLOCK_SIZE av1_get_third_pass_adjusted_blk_size(THIRD_PASS_MI_INFO *this_mi, double ratio_h, double ratio_w) { assert(this_mi != NULL); BLOCK_SIZE bsize = BLOCK_INVALID; const BLOCK_SIZE bsize_second_pass = this_mi->bsize; assert(bsize_second_pass != BLOCK_INVALID); const int w_second_pass = block_size_wide[bsize_second_pass]; const int h_second_pass = block_size_high[bsize_second_pass]; int part_type; if (w_second_pass == h_second_pass) { part_type = PARTITION_NONE; } else if (w_second_pass / h_second_pass == 2) { part_type = PARTITION_HORZ; } else if (w_second_pass / h_second_pass == 4) { part_type = PARTITION_HORZ_4; } else if (h_second_pass / w_second_pass == 2) { part_type = PARTITION_VERT; } else if (h_second_pass / w_second_pass == 4) { part_type = PARTITION_VERT_4; } else { part_type = PARTITION_INVALID; } assert(part_type != PARTITION_INVALID); const int w = (int)(round(w_second_pass * ratio_w)); const int h = (int)(round(h_second_pass * ratio_h)); for (int i = 0; i < SQR_BLOCK_SIZES; i++) { const BLOCK_SIZE this_bsize = subsize_lookup[part_type][i]; if (this_bsize == BLOCK_INVALID) continue; const int this_w = block_size_wide[this_bsize]; const int this_h = block_size_high[this_bsize]; if (this_w >= w && this_h >= h) { // find the smallest block size that contains the mapped block bsize = this_bsize; break; } } if (bsize == BLOCK_INVALID) { // could not find a proper one, just use the largest then. bsize = BLOCK_128X128; } return bsize; } PARTITION_TYPE av1_third_pass_get_sb_part_type(THIRD_PASS_DEC_CTX *ctx, THIRD_PASS_MI_INFO *this_mi) { int mi_stride = ctx->frame_info[0].mi_stride; int mi_row = this_mi->mi_row_start; int mi_col = this_mi->mi_col_start; THIRD_PASS_MI_INFO *corner_mi = &ctx->frame_info[0].mi_info[mi_row * mi_stride + mi_col]; return corner_mi->partition; } #else // !(CONFIG_THREE_PASS && CONFIG_AV1_DECODER) void av1_init_thirdpass_ctx(AV1_COMMON *cm, THIRD_PASS_DEC_CTX **ctx, const char *file) { (void)ctx; (void)file; aom_internal_error(cm->error, AOM_CODEC_ERROR, "To utilize three-pass encoding, libaom must be built " "with CONFIG_THREE_PASS=1 & CONFIG_AV1_DECODER=1."); } void av1_free_thirdpass_ctx(THIRD_PASS_DEC_CTX *ctx) { (void)ctx; } void av1_set_gop_third_pass(THIRD_PASS_DEC_CTX *ctx) { (void)ctx; } void av1_pop_third_pass_info(THIRD_PASS_DEC_CTX *ctx) { (void)ctx; } void av1_open_second_pass_log(struct AV1_COMP *cpi, int is_read) { (void)cpi; (void)is_read; } void av1_close_second_pass_log(struct AV1_COMP *cpi) { (void)cpi; } void av1_write_second_pass_gop_info(struct AV1_COMP *cpi) { (void)cpi; } void av1_write_second_pass_per_frame_info(struct AV1_COMP *cpi, int gf_index) { (void)cpi; (void)gf_index; } void av1_read_second_pass_gop_info(FILE *second_pass_log_stream, THIRD_PASS_GOP_INFO *gop_info, struct aom_internal_error_info *error) { (void)second_pass_log_stream; (void)gop_info; (void)error; } void av1_read_second_pass_per_frame_info( FILE *second_pass_log_stream, THIRD_PASS_FRAME_INFO *frame_info_arr, int frame_info_count, struct aom_internal_error_info *error) { (void)second_pass_log_stream; (void)frame_info_arr; (void)frame_info_count; (void)error; } int av1_check_use_arf(THIRD_PASS_DEC_CTX *ctx) { (void)ctx; return 1; } void av1_get_third_pass_ratio(THIRD_PASS_DEC_CTX *ctx, int fidx, int fheight, int fwidth, double *ratio_h, double *ratio_w) { (void)ctx; (void)fidx; (void)fheight; (void)fwidth; (void)ratio_h; (void)ratio_w; } THIRD_PASS_MI_INFO *av1_get_third_pass_mi(THIRD_PASS_DEC_CTX *ctx, int fidx, int mi_row, int mi_col, double ratio_h, double ratio_w) { (void)ctx; (void)fidx; (void)mi_row; (void)mi_col; (void)ratio_h; (void)ratio_w; return NULL; } int_mv av1_get_third_pass_adjusted_mv(THIRD_PASS_MI_INFO *this_mi, double ratio_h, double ratio_w, MV_REFERENCE_FRAME frame) { (void)this_mi; (void)ratio_h; (void)ratio_w; (void)frame; int_mv mv; mv.as_int = INVALID_MV; return mv; } BLOCK_SIZE av1_get_third_pass_adjusted_blk_size(THIRD_PASS_MI_INFO *this_mi, double ratio_h, double ratio_w) { (void)this_mi; (void)ratio_h; (void)ratio_w; return BLOCK_INVALID; } void av1_third_pass_get_adjusted_mi(THIRD_PASS_MI_INFO *third_pass_mi, double ratio_h, double ratio_w, int *mi_row, int *mi_col) { (void)third_pass_mi; (void)ratio_h; (void)ratio_w; (void)mi_row; (void)mi_col; } PARTITION_TYPE av1_third_pass_get_sb_part_type(THIRD_PASS_DEC_CTX *ctx, THIRD_PASS_MI_INFO *this_mi) { (void)ctx; (void)this_mi; return PARTITION_INVALID; } #endif // CONFIG_THREE_PASS && CONFIG_AV1_DECODER #if CONFIG_BITRATE_ACCURACY static void fwrite_and_check(const void *ptr, size_t size, size_t nmemb, FILE *stream, struct aom_internal_error_info *error) { size_t count = fwrite(ptr, size, nmemb, stream); if (count < nmemb) { aom_internal_error(error, AOM_CODEC_ERROR, "fwrite_and_check failed\n"); } } static void fread_and_check(void *ptr, size_t size, size_t nmemb, FILE *stream, struct aom_internal_error_info *error) { size_t count = fread(ptr, size, nmemb, stream); if (count < nmemb) { aom_internal_error(error, AOM_CODEC_ERROR, "fread_and_check failed\n"); } } void av1_pack_tpl_info(TPL_INFO *tpl_info, const GF_GROUP *gf_group, const TplParams *tpl_data) { tpl_info->tpl_ready = tpl_data->ready; if (tpl_info->tpl_ready) { tpl_info->gf_length = gf_group->size; for (int i = 0; i < tpl_info->gf_length; ++i) { tpl_info->txfm_stats_list[i] = tpl_data->txfm_stats_list[i]; tpl_info->qstep_ratio_ls[i] = av1_tpl_get_qstep_ratio(tpl_data, i); tpl_info->update_type_list[i] = gf_group->update_type[i]; } } } void av1_write_tpl_info(const TPL_INFO *tpl_info, FILE *log_stream, struct aom_internal_error_info *error) { fwrite_and_check(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, log_stream, error); if (tpl_info->tpl_ready) { fwrite_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, log_stream, error); assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); fwrite_and_check(&tpl_info->txfm_stats_list, sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, log_stream, error); fwrite_and_check(&tpl_info->qstep_ratio_ls, sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, log_stream, error); fwrite_and_check(&tpl_info->update_type_list, sizeof(tpl_info->update_type_list[0]), tpl_info->gf_length, log_stream, error); } } void av1_read_tpl_info(TPL_INFO *tpl_info, FILE *log_stream, struct aom_internal_error_info *error) { av1_zero(*tpl_info); fread_and_check(&tpl_info->tpl_ready, sizeof(tpl_info->tpl_ready), 1, log_stream, error); if (tpl_info->tpl_ready) { fread_and_check(&tpl_info->gf_length, sizeof(tpl_info->gf_length), 1, log_stream, error); assert(tpl_info->gf_length <= MAX_LENGTH_TPL_FRAME_STATS); fread_and_check(&tpl_info->txfm_stats_list, sizeof(tpl_info->txfm_stats_list[0]), tpl_info->gf_length, log_stream, error); fread_and_check(&tpl_info->qstep_ratio_ls, sizeof(tpl_info->qstep_ratio_ls[0]), tpl_info->gf_length, log_stream, error); fread_and_check(&tpl_info->update_type_list, sizeof(tpl_info->update_type_list[0]), tpl_info->gf_length, log_stream, error); } } #endif // CONFIG_BITRATE_ACCURACY