/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "aom_mem/aom_mem.h" #include "av1/common/entropy.h" #include "av1/common/pred_common.h" #include "av1/common/scan.h" #include "av1/common/seg_common.h" #include "av1/encoder/cost.h" #include "av1/encoder/encoder.h" #include "av1/encoder/encodetxb.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/tokenize.h" static AOM_INLINE int av1_fast_palette_color_index_context_on_edge( const uint8_t *color_map, int stride, int r, int c, int *color_idx) { const bool has_left = (c - 1 >= 0); const bool has_above = (r - 1 >= 0); assert(r > 0 || c > 0); assert(has_above ^ has_left); assert(color_idx); (void)has_left; const uint8_t color_neighbor = has_above ? color_map[(r - 1) * stride + (c - 0)] : color_map[(r - 0) * stride + (c - 1)]; // If the neighbor color has higher index than current color index, then we // move up by 1. const uint8_t current_color = *color_idx = color_map[r * stride + c]; if (color_neighbor > current_color) { (*color_idx)++; } else if (color_neighbor == current_color) { *color_idx = 0; } // Get hash value of context. // The non-diagonal neighbors get a weight of 2. const uint8_t color_score = 2; const uint8_t hash_multiplier = 1; const uint8_t color_index_ctx_hash = color_score * hash_multiplier; // Lookup context from hash. const int color_index_ctx = av1_palette_color_index_context_lookup[color_index_ctx_hash]; assert(color_index_ctx == 0); (void)color_index_ctx; return 0; } #define SWAP(i, j) \ do { \ const uint8_t tmp_score = score_rank[i]; \ const uint8_t tmp_color = color_rank[i]; \ score_rank[i] = score_rank[j]; \ color_rank[i] = color_rank[j]; \ score_rank[j] = tmp_score; \ color_rank[j] = tmp_color; \ } while (0) #define INVALID_COLOR_IDX (UINT8_MAX) // A faster version of av1_get_palette_color_index_context used by the encoder // exploiting the fact that the encoder does not need to maintain a color order. static AOM_INLINE int av1_fast_palette_color_index_context( const uint8_t *color_map, int stride, int r, int c, int *color_idx) { assert(r > 0 || c > 0); const bool has_above = (r - 1 >= 0); const bool has_left = (c - 1 >= 0); assert(has_above || has_left); if (has_above ^ has_left) { return av1_fast_palette_color_index_context_on_edge(color_map, stride, r, c, color_idx); } // This goes in the order of left, top, and top-left. This has the advantage // that unless anything here are not distinct or invalid, this will already // be in sorted order. Furthermore, if either of the first two is // invalid, we know the last one is also invalid. uint8_t color_neighbors[NUM_PALETTE_NEIGHBORS]; color_neighbors[0] = color_map[(r - 0) * stride + (c - 1)]; color_neighbors[1] = color_map[(r - 1) * stride + (c - 0)]; color_neighbors[2] = color_map[(r - 1) * stride + (c - 1)]; // Aggregate duplicated values. // Since our array is so small, using a couple if statements is faster uint8_t scores[NUM_PALETTE_NEIGHBORS] = { 2, 2, 1 }; uint8_t num_invalid_colors = 0; if (color_neighbors[0] == color_neighbors[1]) { scores[0] += scores[1]; color_neighbors[1] = INVALID_COLOR_IDX; num_invalid_colors += 1; if (color_neighbors[0] == color_neighbors[2]) { scores[0] += scores[2]; num_invalid_colors += 1; } } else if (color_neighbors[0] == color_neighbors[2]) { scores[0] += scores[2]; num_invalid_colors += 1; } else if (color_neighbors[1] == color_neighbors[2]) { scores[1] += scores[2]; num_invalid_colors += 1; } const uint8_t num_valid_colors = NUM_PALETTE_NEIGHBORS - num_invalid_colors; uint8_t *color_rank = color_neighbors; uint8_t *score_rank = scores; // Sort everything if (num_valid_colors > 1) { if (color_neighbors[1] == INVALID_COLOR_IDX) { scores[1] = scores[2]; color_neighbors[1] = color_neighbors[2]; } // We need to swap the first two elements if they have the same score but // the color indices are not in the right order if (score_rank[0] < score_rank[1] || (score_rank[0] == score_rank[1] && color_rank[0] > color_rank[1])) { SWAP(0, 1); } if (num_valid_colors > 2) { if (score_rank[0] < score_rank[2]) { SWAP(0, 2); } if (score_rank[1] < score_rank[2]) { SWAP(1, 2); } } } // If any of the neighbor colors has higher index than current color index, // then we move up by 1 unless the current color is the same as one of the // neighbors. const uint8_t current_color = *color_idx = color_map[r * stride + c]; for (int idx = 0; idx < num_valid_colors; idx++) { if (color_rank[idx] > current_color) { (*color_idx)++; } else if (color_rank[idx] == current_color) { *color_idx = idx; break; } } // Get hash value of context. uint8_t color_index_ctx_hash = 0; static const uint8_t hash_multipliers[NUM_PALETTE_NEIGHBORS] = { 1, 2, 2 }; for (int idx = 0; idx < num_valid_colors; ++idx) { color_index_ctx_hash += score_rank[idx] * hash_multipliers[idx]; } assert(color_index_ctx_hash > 0); assert(color_index_ctx_hash <= MAX_COLOR_CONTEXT_HASH); // Lookup context from hash. const int color_index_ctx = 9 - color_index_ctx_hash; assert(color_index_ctx == av1_palette_color_index_context_lookup[color_index_ctx_hash]); assert(color_index_ctx >= 0); assert(color_index_ctx < PALETTE_COLOR_INDEX_CONTEXTS); return color_index_ctx; } #undef INVALID_COLOR_IDX #undef SWAP static int cost_and_tokenize_map(Av1ColorMapParam *param, TokenExtra **t, int plane, int calc_rate, int allow_update_cdf, FRAME_COUNTS *counts) { const uint8_t *const color_map = param->color_map; MapCdf map_cdf = param->map_cdf; ColorCost color_cost = param->color_cost; const int plane_block_width = param->plane_width; const int rows = param->rows; const int cols = param->cols; const int n = param->n_colors; const int palette_size_idx = n - PALETTE_MIN_SIZE; int this_rate = 0; (void)plane; (void)counts; for (int k = 1; k < rows + cols - 1; ++k) { for (int j = AOMMIN(k, cols - 1); j >= AOMMAX(0, k - rows + 1); --j) { int i = k - j; int color_new_idx; const int color_ctx = av1_fast_palette_color_index_context( color_map, plane_block_width, i, j, &color_new_idx); assert(color_new_idx >= 0 && color_new_idx < n); if (calc_rate) { this_rate += color_cost[palette_size_idx][color_ctx][color_new_idx]; } else { (*t)->token = color_new_idx; (*t)->color_ctx = color_ctx; ++(*t); if (allow_update_cdf) update_cdf(map_cdf[palette_size_idx][color_ctx], color_new_idx, n); #if CONFIG_ENTROPY_STATS if (plane) { ++counts->palette_uv_color_index[palette_size_idx][color_ctx] [color_new_idx]; } else { ++counts->palette_y_color_index[palette_size_idx][color_ctx] [color_new_idx]; } #endif } } } if (calc_rate) return this_rate; return 0; } static void get_palette_params(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize, Av1ColorMapParam *params) { const MACROBLOCKD *const xd = &x->e_mbd; const MB_MODE_INFO *const mbmi = xd->mi[0]; const PALETTE_MODE_INFO *const pmi = &mbmi->palette_mode_info; params->color_map = xd->plane[plane].color_index_map; params->map_cdf = plane ? xd->tile_ctx->palette_uv_color_index_cdf : xd->tile_ctx->palette_y_color_index_cdf; params->color_cost = plane ? x->mode_costs.palette_uv_color_cost : x->mode_costs.palette_y_color_cost; params->n_colors = pmi->palette_size[plane]; av1_get_block_dimensions(bsize, plane, xd, ¶ms->plane_width, NULL, ¶ms->rows, ¶ms->cols); } // TODO(any): Remove this function static void get_color_map_params(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size, COLOR_MAP_TYPE type, Av1ColorMapParam *params) { (void)tx_size; memset(params, 0, sizeof(*params)); switch (type) { case PALETTE_MAP: get_palette_params(x, plane, bsize, params); break; default: assert(0 && "Invalid color map type"); return; } } int av1_cost_color_map(const MACROBLOCK *const x, int plane, BLOCK_SIZE bsize, TX_SIZE tx_size, COLOR_MAP_TYPE type) { assert(plane == 0 || plane == 1); Av1ColorMapParam color_map_params; get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params); return cost_and_tokenize_map(&color_map_params, NULL, plane, 1, 0, NULL); } void av1_tokenize_color_map(const MACROBLOCK *const x, int plane, TokenExtra **t, BLOCK_SIZE bsize, TX_SIZE tx_size, COLOR_MAP_TYPE type, int allow_update_cdf, FRAME_COUNTS *counts) { assert(plane == 0 || plane == 1); Av1ColorMapParam color_map_params; get_color_map_params(x, plane, bsize, tx_size, type, &color_map_params); // The first color index does not use context or entropy. (*t)->token = color_map_params.color_map[0]; (*t)->color_ctx = -1; ++(*t); cost_and_tokenize_map(&color_map_params, t, plane, 0, allow_update_cdf, counts); } static void tokenize_vartx(ThreadData *td, TX_SIZE tx_size, BLOCK_SIZE plane_bsize, int blk_row, int blk_col, int block, int plane, void *arg) { MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; MB_MODE_INFO *const mbmi = xd->mi[0]; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int max_blocks_high = max_block_high(xd, plane_bsize, plane); const int max_blocks_wide = max_block_wide(xd, plane_bsize, plane); if (blk_row >= max_blocks_high || blk_col >= max_blocks_wide) return; const TX_SIZE plane_tx_size = plane ? av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x, pd->subsampling_y) : mbmi->inter_tx_size[av1_get_txb_size_index(plane_bsize, blk_row, blk_col)]; if (tx_size == plane_tx_size || plane) { plane_bsize = get_plane_block_size(mbmi->bsize, pd->subsampling_x, pd->subsampling_y); struct tokenize_b_args *args = arg; if (args->allow_update_cdf) av1_update_and_record_txb_context(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); else av1_record_txb_context(plane, block, blk_row, blk_col, plane_bsize, tx_size, arg); } else { // Half the block size in transform block unit. const TX_SIZE sub_txs = sub_tx_size_map[tx_size]; const int bsw = tx_size_wide_unit[sub_txs]; const int bsh = tx_size_high_unit[sub_txs]; const int step = bsw * bsh; const int row_end = AOMMIN(tx_size_high_unit[tx_size], max_blocks_high - blk_row); const int col_end = AOMMIN(tx_size_wide_unit[tx_size], max_blocks_wide - blk_col); assert(bsw > 0 && bsh > 0); for (int row = 0; row < row_end; row += bsh) { const int offsetr = blk_row + row; for (int col = 0; col < col_end; col += bsw) { const int offsetc = blk_col + col; tokenize_vartx(td, sub_txs, plane_bsize, offsetr, offsetc, block, plane, arg); block += step; } } } } void av1_tokenize_sb_vartx(const AV1_COMP *cpi, ThreadData *td, RUN_TYPE dry_run, BLOCK_SIZE bsize, int *rate, uint8_t allow_update_cdf) { assert(bsize < BLOCK_SIZES_ALL); const AV1_COMMON *const cm = &cpi->common; MACROBLOCK *const x = &td->mb; MACROBLOCKD *const xd = &x->e_mbd; const int mi_row = xd->mi_row; const int mi_col = xd->mi_col; if (mi_row >= cm->mi_params.mi_rows || mi_col >= cm->mi_params.mi_cols) return; const int num_planes = av1_num_planes(cm); MB_MODE_INFO *const mbmi = xd->mi[0]; struct tokenize_b_args arg = { cpi, td, 0, allow_update_cdf, dry_run }; if (mbmi->skip_txfm) { av1_reset_entropy_context(xd, bsize, num_planes); return; } for (int plane = 0; plane < num_planes; ++plane) { if (plane && !xd->is_chroma_ref) break; const struct macroblockd_plane *const pd = &xd->plane[plane]; const int ss_x = pd->subsampling_x; const int ss_y = pd->subsampling_y; const BLOCK_SIZE plane_bsize = get_plane_block_size(bsize, ss_x, ss_y); assert(plane_bsize < BLOCK_SIZES_ALL); const int mi_width = mi_size_wide[plane_bsize]; const int mi_height = mi_size_high[plane_bsize]; const TX_SIZE max_tx_size = get_vartx_max_txsize(xd, plane_bsize, plane); const BLOCK_SIZE txb_size = txsize_to_bsize[max_tx_size]; const int bw = mi_size_wide[txb_size]; const int bh = mi_size_high[txb_size]; int block = 0; const int step = tx_size_wide_unit[max_tx_size] * tx_size_high_unit[max_tx_size]; const BLOCK_SIZE max_unit_bsize = get_plane_block_size(BLOCK_64X64, ss_x, ss_y); int mu_blocks_wide = mi_size_wide[max_unit_bsize]; int mu_blocks_high = mi_size_high[max_unit_bsize]; mu_blocks_wide = AOMMIN(mi_width, mu_blocks_wide); mu_blocks_high = AOMMIN(mi_height, mu_blocks_high); for (int idy = 0; idy < mi_height; idy += mu_blocks_high) { for (int idx = 0; idx < mi_width; idx += mu_blocks_wide) { const int unit_height = AOMMIN(mu_blocks_high + idy, mi_height); const int unit_width = AOMMIN(mu_blocks_wide + idx, mi_width); for (int blk_row = idy; blk_row < unit_height; blk_row += bh) { for (int blk_col = idx; blk_col < unit_width; blk_col += bw) { tokenize_vartx(td, max_tx_size, plane_bsize, blk_row, blk_col, block, plane, &arg); block += step; } } } } } if (rate) *rate += arg.this_rate; }