/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "av1/encoder/thirdpass.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_codec.h" #include "aom_util/aom_pthread.h" #include "av1/common/av1_common_int.h" #include "av1/common/enums.h" #include "av1/common/idct.h" #include "av1/common/reconintra.h" #include "av1/encoder/encoder.h" #include "av1/encoder/ethread.h" #include "av1/encoder/encodeframe_utils.h" #include "av1/encoder/encode_strategy.h" #include "av1/encoder/hybrid_fwd_txfm.h" #include "av1/encoder/motion_search_facade.h" #include "av1/encoder/rd.h" #include "av1/encoder/rdopt.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/tpl_model.h" static INLINE double exp_bounded(double v) { // When v > 700 or <-700, the exp function will be close to overflow // For details, see the "Notes" in the following link. // https://en.cppreference.com/w/c/numeric/math/exp if (v > 700) { return DBL_MAX; } else if (v < -700) { return 0; } return exp(v); } void av1_init_tpl_txfm_stats(TplTxfmStats *tpl_txfm_stats) { tpl_txfm_stats->ready = 0; tpl_txfm_stats->coeff_num = 256; tpl_txfm_stats->txfm_block_count = 0; memset(tpl_txfm_stats->abs_coeff_sum, 0, sizeof(tpl_txfm_stats->abs_coeff_sum[0]) * tpl_txfm_stats->coeff_num); memset(tpl_txfm_stats->abs_coeff_mean, 0, sizeof(tpl_txfm_stats->abs_coeff_mean[0]) * tpl_txfm_stats->coeff_num); } #if CONFIG_BITRATE_ACCURACY void av1_accumulate_tpl_txfm_stats(const TplTxfmStats *sub_stats, TplTxfmStats *accumulated_stats) { accumulated_stats->txfm_block_count += sub_stats->txfm_block_count; for (int i = 0; i < accumulated_stats->coeff_num; ++i) { accumulated_stats->abs_coeff_sum[i] += sub_stats->abs_coeff_sum[i]; } } void av1_record_tpl_txfm_block(TplTxfmStats *tpl_txfm_stats, const tran_low_t *coeff) { // For transform larger than 16x16, the scale of coeff need to be adjusted. // It's not LOSSLESS_Q_STEP. assert(tpl_txfm_stats->coeff_num <= 256); for (int i = 0; i < tpl_txfm_stats->coeff_num; ++i) { tpl_txfm_stats->abs_coeff_sum[i] += abs(coeff[i]) / (double)LOSSLESS_Q_STEP; } ++tpl_txfm_stats->txfm_block_count; } void av1_tpl_txfm_stats_update_abs_coeff_mean(TplTxfmStats *txfm_stats) { if (txfm_stats->txfm_block_count > 0) { for (int j = 0; j < txfm_stats->coeff_num; j++) { txfm_stats->abs_coeff_mean[j] = txfm_stats->abs_coeff_sum[j] / txfm_stats->txfm_block_count; } txfm_stats->ready = 1; } else { txfm_stats->ready = 0; } } static AOM_INLINE void av1_tpl_store_txfm_stats( TplParams *tpl_data, const TplTxfmStats *tpl_txfm_stats, const int frame_index) { tpl_data->txfm_stats_list[frame_index] = *tpl_txfm_stats; } #endif // CONFIG_BITRATE_ACCURACY static AOM_INLINE void get_quantize_error(const MACROBLOCK *x, int plane, const tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, TX_SIZE tx_size, uint16_t *eob, int64_t *recon_error, int64_t *sse) { const struct macroblock_plane *const p = &x->plane[plane]; const MACROBLOCKD *xd = &x->e_mbd; const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; int pix_num = 1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]; const int shift = tx_size == TX_32X32 ? 0 : 2; QUANT_PARAM quant_param; av1_setup_quant(tx_size, 0, AV1_XFORM_QUANT_FP, 0, &quant_param); #if CONFIG_AV1_HIGHBITDEPTH if (is_cur_buf_hbd(xd)) { av1_highbd_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order, &quant_param); *recon_error = av1_highbd_block_error(coeff, dqcoeff, pix_num, sse, xd->bd) >> shift; } else { av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order, &quant_param); *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift; } #else (void)xd; av1_quantize_fp_facade(coeff, pix_num, p, qcoeff, dqcoeff, eob, scan_order, &quant_param); *recon_error = av1_block_error(coeff, dqcoeff, pix_num, sse) >> shift; #endif // CONFIG_AV1_HIGHBITDEPTH *recon_error = AOMMAX(*recon_error, 1); *sse = (*sse) >> shift; *sse = AOMMAX(*sse, 1); } static AOM_INLINE void set_tpl_stats_block_size(uint8_t *block_mis_log2, uint8_t *tpl_bsize_1d) { // tpl stats bsize: 2 means 16x16 *block_mis_log2 = 2; // Block size used in tpl motion estimation *tpl_bsize_1d = 16; // MIN_TPL_BSIZE_1D = 16; assert(*tpl_bsize_1d >= 16); } void av1_setup_tpl_buffers(AV1_PRIMARY *const ppi, CommonModeInfoParams *const mi_params, int width, int height, int byte_alignment, int lag_in_frames) { SequenceHeader *const seq_params = &ppi->seq_params; TplParams *const tpl_data = &ppi->tpl_data; set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2, &tpl_data->tpl_bsize_1d); const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; tpl_data->border_in_pixels = ALIGN_POWER_OF_TWO(tpl_data->tpl_bsize_1d + 2 * AOM_INTERP_EXTEND, 5); const int alloc_y_plane_only = ppi->cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : 0; for (int frame = 0; frame < MAX_LENGTH_TPL_FRAME_STATS; ++frame) { const int mi_cols = ALIGN_POWER_OF_TWO(mi_params->mi_cols, MAX_MIB_SIZE_LOG2); const int mi_rows = ALIGN_POWER_OF_TWO(mi_params->mi_rows, MAX_MIB_SIZE_LOG2); TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame]; tpl_frame->is_valid = 0; tpl_frame->width = mi_cols >> block_mis_log2; tpl_frame->height = mi_rows >> block_mis_log2; tpl_frame->stride = tpl_data->tpl_stats_buffer[frame].width; tpl_frame->mi_rows = mi_params->mi_rows; tpl_frame->mi_cols = mi_params->mi_cols; } tpl_data->tpl_frame = &tpl_data->tpl_stats_buffer[REF_FRAMES + 1]; // If lag_in_frames <= 1, TPL module is not invoked. Hence dynamic memory // allocations are avoided for buffers in tpl_data. if (lag_in_frames <= 1) return; AOM_CHECK_MEM_ERROR(&ppi->error, tpl_data->txfm_stats_list, aom_calloc(MAX_LENGTH_TPL_FRAME_STATS, sizeof(*tpl_data->txfm_stats_list))); for (int frame = 0; frame < lag_in_frames; ++frame) { AOM_CHECK_MEM_ERROR( &ppi->error, tpl_data->tpl_stats_pool[frame], aom_calloc(tpl_data->tpl_stats_buffer[frame].width * tpl_data->tpl_stats_buffer[frame].height, sizeof(*tpl_data->tpl_stats_buffer[frame].tpl_stats_ptr))); if (aom_alloc_frame_buffer( &tpl_data->tpl_rec_pool[frame], width, height, seq_params->subsampling_x, seq_params->subsampling_y, seq_params->use_highbitdepth, tpl_data->border_in_pixels, byte_alignment, false, alloc_y_plane_only)) aom_internal_error(&ppi->error, AOM_CODEC_MEM_ERROR, "Failed to allocate frame buffer"); } } static AOM_INLINE int32_t tpl_get_satd_cost(BitDepthInfo bd_info, int16_t *src_diff, int diff_stride, const uint8_t *src, int src_stride, const uint8_t *dst, int dst_stride, tran_low_t *coeff, int bw, int bh, TX_SIZE tx_size) { const int pix_num = bw * bh; av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride, dst, dst_stride); av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff); return aom_satd(coeff, pix_num); } static int rate_estimator(const tran_low_t *qcoeff, int eob, TX_SIZE tx_size) { const SCAN_ORDER *const scan_order = &av1_scan_orders[tx_size][DCT_DCT]; assert((1 << num_pels_log2_lookup[txsize_to_bsize[tx_size]]) >= eob); int rate_cost = 1; for (int idx = 0; idx < eob; ++idx) { unsigned int abs_level = abs(qcoeff[scan_order->scan[idx]]); rate_cost += get_msb(abs_level + 1) + 1 + (abs_level > 0); } return (rate_cost << AV1_PROB_COST_SHIFT); } static AOM_INLINE void txfm_quant_rdcost( const MACROBLOCK *x, int16_t *src_diff, int diff_stride, uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, int bw, int bh, TX_SIZE tx_size, int do_recon, int *rate_cost, int64_t *recon_error, int64_t *sse) { const MACROBLOCKD *xd = &x->e_mbd; const BitDepthInfo bd_info = get_bit_depth_info(xd); uint16_t eob; av1_subtract_block(bd_info, bh, bw, src_diff, diff_stride, src, src_stride, dst, dst_stride); av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, bw, coeff); get_quantize_error(x, 0, coeff, qcoeff, dqcoeff, tx_size, &eob, recon_error, sse); *rate_cost = rate_estimator(qcoeff, eob, tx_size); if (do_recon) av1_inverse_transform_block(xd, dqcoeff, 0, DCT_DCT, tx_size, dst, dst_stride, eob, 0); } static uint32_t motion_estimation(AV1_COMP *cpi, MACROBLOCK *x, uint8_t *cur_frame_buf, uint8_t *ref_frame_buf, int stride, int ref_stride, int width, int ref_width, BLOCK_SIZE bsize, MV center_mv, int_mv *best_mv) { AV1_COMMON *cm = &cpi->common; MACROBLOCKD *const xd = &x->e_mbd; TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf; int step_param; uint32_t bestsme = UINT_MAX; FULLPEL_MV_STATS best_mv_stats; int distortion; uint32_t sse; int cost_list[5]; FULLPEL_MV start_mv = get_fullmv_from_mv(¢er_mv); // Setup frame pointers x->plane[0].src.buf = cur_frame_buf; x->plane[0].src.stride = stride; x->plane[0].src.width = width; xd->plane[0].pre[0].buf = ref_frame_buf; xd->plane[0].pre[0].stride = ref_stride; xd->plane[0].pre[0].width = ref_width; step_param = tpl_sf->reduce_first_step_size; step_param = AOMMIN(step_param, MAX_MVSEARCH_STEPS - 2); const search_site_config *search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_SRC]; if (search_site_cfg->stride != ref_stride) search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_LOOKAHEAD]; assert(search_site_cfg->stride == ref_stride); FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; av1_make_default_fullpel_ms_params(&full_ms_params, cpi, x, bsize, ¢er_mv, start_mv, search_site_cfg, tpl_sf->search_method, /*fine_search_interval=*/0); bestsme = av1_full_pixel_search(start_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), &best_mv->as_fullmv, &best_mv_stats, NULL); // When sub-pel motion search is skipped, populate sub-pel precision MV and // return. if (tpl_sf->subpel_force_stop == FULL_PEL) { best_mv->as_mv = get_mv_from_fullmv(&best_mv->as_fullmv); return bestsme; } SUBPEL_MOTION_SEARCH_PARAMS ms_params; av1_make_default_subpel_ms_params(&ms_params, cpi, x, bsize, ¢er_mv, cost_list); ms_params.forced_stop = tpl_sf->subpel_force_stop; ms_params.var_params.subpel_search_type = USE_2_TAPS; ms_params.mv_cost_params.mv_cost_type = MV_COST_NONE; best_mv_stats.err_cost = 0; MV subpel_start_mv = get_mv_from_fullmv(&best_mv->as_fullmv); assert(av1_is_subpelmv_in_range(&ms_params.mv_limits, subpel_start_mv)); bestsme = cpi->mv_search_params.find_fractional_mv_step( xd, cm, &ms_params, subpel_start_mv, &best_mv_stats, &best_mv->as_mv, &distortion, &sse, NULL); return bestsme; } typedef struct { int_mv mv; int sad; } center_mv_t; static int compare_sad(const void *a, const void *b) { const int diff = ((center_mv_t *)a)->sad - ((center_mv_t *)b)->sad; if (diff < 0) return -1; else if (diff > 0) return 1; return 0; } static int is_alike_mv(int_mv candidate_mv, center_mv_t *center_mvs, int center_mvs_count, int skip_alike_starting_mv) { // MV difference threshold is in 1/8 precision. const int mv_diff_thr[3] = { 1, (8 << 3), (16 << 3) }; int thr = mv_diff_thr[skip_alike_starting_mv]; int i; for (i = 0; i < center_mvs_count; i++) { if (abs(center_mvs[i].mv.as_mv.col - candidate_mv.as_mv.col) < thr && abs(center_mvs[i].mv.as_mv.row - candidate_mv.as_mv.row) < thr) return 1; } return 0; } static void get_rate_distortion( int *rate_cost, int64_t *recon_error, int64_t *pred_error, int16_t *src_diff, tran_low_t *coeff, tran_low_t *qcoeff, tran_low_t *dqcoeff, AV1_COMMON *cm, MACROBLOCK *x, const YV12_BUFFER_CONFIG *ref_frame_ptr[2], uint8_t *rec_buffer_pool[3], const int rec_stride_pool[3], TX_SIZE tx_size, PREDICTION_MODE best_mode, int mi_row, int mi_col, int use_y_only_rate_distortion, int do_recon, TplTxfmStats *tpl_txfm_stats) { const SequenceHeader *seq_params = cm->seq_params; *rate_cost = 0; *recon_error = 1; *pred_error = 1; (void)tpl_txfm_stats; MACROBLOCKD *xd = &x->e_mbd; int is_compound = (best_mode == NEW_NEWMV); int num_planes = use_y_only_rate_distortion ? 1 : MAX_MB_PLANE; uint8_t *src_buffer_pool[MAX_MB_PLANE] = { xd->cur_buf->y_buffer, xd->cur_buf->u_buffer, xd->cur_buf->v_buffer, }; const int src_stride_pool[MAX_MB_PLANE] = { xd->cur_buf->y_stride, xd->cur_buf->uv_stride, xd->cur_buf->uv_stride, }; const int_interpfilters kernel = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); for (int plane = 0; plane < num_planes; ++plane) { struct macroblockd_plane *pd = &xd->plane[plane]; BLOCK_SIZE bsize_plane = av1_ss_size_lookup[txsize_to_bsize[tx_size]][pd->subsampling_x] [pd->subsampling_y]; int dst_buffer_stride = rec_stride_pool[plane]; int dst_mb_offset = ((mi_row * MI_SIZE * dst_buffer_stride) >> pd->subsampling_y) + ((mi_col * MI_SIZE) >> pd->subsampling_x); uint8_t *dst_buffer = rec_buffer_pool[plane] + dst_mb_offset; for (int ref = 0; ref < 1 + is_compound; ++ref) { if (!is_inter_mode(best_mode)) { av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize_plane], block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane], best_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, dst_buffer, dst_buffer_stride, 0, 0, plane); } else { int_mv best_mv = xd->mi[0]->mv[ref]; uint8_t *ref_buffer_pool[MAX_MB_PLANE] = { ref_frame_ptr[ref]->y_buffer, ref_frame_ptr[ref]->u_buffer, ref_frame_ptr[ref]->v_buffer, }; InterPredParams inter_pred_params; struct buf_2d ref_buf = { NULL, ref_buffer_pool[plane], plane ? ref_frame_ptr[ref]->uv_width : ref_frame_ptr[ref]->y_width, plane ? ref_frame_ptr[ref]->uv_height : ref_frame_ptr[ref]->y_height, plane ? ref_frame_ptr[ref]->uv_stride : ref_frame_ptr[ref]->y_stride }; av1_init_inter_params(&inter_pred_params, block_size_wide[bsize_plane], block_size_high[bsize_plane], (mi_row * MI_SIZE) >> pd->subsampling_y, (mi_col * MI_SIZE) >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), 0, xd->block_ref_scale_factors[0], &ref_buf, kernel); if (is_compound) av1_init_comp_mode(&inter_pred_params); inter_pred_params.conv_params = get_conv_params_no_round( ref, plane, xd->tmp_conv_dst, MAX_SB_SIZE, is_compound, xd->bd); av1_enc_build_one_inter_predictor(dst_buffer, dst_buffer_stride, &best_mv.as_mv, &inter_pred_params); } } int src_stride = src_stride_pool[plane]; int src_mb_offset = ((mi_row * MI_SIZE * src_stride) >> pd->subsampling_y) + ((mi_col * MI_SIZE) >> pd->subsampling_x); int this_rate = 1; int64_t this_recon_error = 1; int64_t sse; txfm_quant_rdcost( x, src_diff, block_size_wide[bsize_plane], src_buffer_pool[plane] + src_mb_offset, src_stride, dst_buffer, dst_buffer_stride, coeff, qcoeff, dqcoeff, block_size_wide[bsize_plane], block_size_high[bsize_plane], max_txsize_rect_lookup[bsize_plane], do_recon, &this_rate, &this_recon_error, &sse); #if CONFIG_BITRATE_ACCURACY if (plane == 0 && tpl_txfm_stats) { // We only collect Y plane's transform coefficient av1_record_tpl_txfm_block(tpl_txfm_stats, coeff); } #endif // CONFIG_BITRATE_ACCURACY *recon_error += this_recon_error; *pred_error += sse; *rate_cost += this_rate; } } static AOM_INLINE int32_t get_inter_cost(const AV1_COMP *cpi, MACROBLOCKD *xd, const uint8_t *src_mb_buffer, int src_stride, TplBuffers *tpl_tmp_buffers, BLOCK_SIZE bsize, TX_SIZE tx_size, int mi_row, int mi_col, int rf_idx, MV *rfidx_mv, int use_pred_sad) { const BitDepthInfo bd_info = get_bit_depth_info(xd); TplParams *tpl_data = &cpi->ppi->tpl_data; const YV12_BUFFER_CONFIG *const ref_frame_ptr = tpl_data->src_ref_frame[rf_idx]; int16_t *src_diff = tpl_tmp_buffers->src_diff; tran_low_t *coeff = tpl_tmp_buffers->coeff; const int bw = 4 << mi_size_wide_log2[bsize]; const int bh = 4 << mi_size_high_log2[bsize]; int32_t inter_cost; if (cpi->sf.tpl_sf.subpel_force_stop != FULL_PEL) { const int_interpfilters kernel = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); uint8_t *predictor8 = tpl_tmp_buffers->predictor8; uint8_t *predictor = is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8; struct buf_2d ref_buf = { NULL, ref_frame_ptr->y_buffer, ref_frame_ptr->y_width, ref_frame_ptr->y_height, ref_frame_ptr->y_stride }; InterPredParams inter_pred_params; av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE, mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0, &tpl_data->sf, &ref_buf, kernel); inter_pred_params.conv_params = get_conv_params(0, 0, xd->bd); av1_enc_build_one_inter_predictor(predictor, bw, rfidx_mv, &inter_pred_params); if (use_pred_sad) { inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf(src_mb_buffer, src_stride, predictor, bw); } else { inter_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, predictor, bw, coeff, bw, bh, tx_size); } } else { int ref_mb_offset = mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE; uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset; int ref_stride = ref_frame_ptr->y_stride; const FULLPEL_MV fullmv = get_fullmv_from_mv(rfidx_mv); // Since sub-pel motion search is not performed, use the prediction pixels // directly from the reference block ref_mb if (use_pred_sad) { inter_cost = (int)cpi->ppi->fn_ptr[bsize].sdf( src_mb_buffer, src_stride, &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride); } else { inter_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, &ref_mb[fullmv.row * ref_stride + fullmv.col], ref_stride, coeff, bw, bh, tx_size); } } return inter_cost; } static AOM_INLINE void mode_estimation(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats, TplBuffers *tpl_tmp_buffers, MACROBLOCK *x, int mi_row, int mi_col, BLOCK_SIZE bsize, TX_SIZE tx_size, TplDepStats *tpl_stats) { AV1_COMMON *cm = &cpi->common; const GF_GROUP *gf_group = &cpi->ppi->gf_group; TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf; (void)gf_group; MACROBLOCKD *xd = &x->e_mbd; const BitDepthInfo bd_info = get_bit_depth_info(xd); TplParams *tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx]; const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; const int bw = 4 << mi_size_wide_log2[bsize]; const int bh = 4 << mi_size_high_log2[bsize]; int frame_offset = tpl_data->frame_idx - cpi->gf_frame_index; int32_t best_intra_cost = INT32_MAX; int32_t intra_cost; PREDICTION_MODE best_mode = DC_PRED; const int mb_y_offset = mi_row * MI_SIZE * xd->cur_buf->y_stride + mi_col * MI_SIZE; uint8_t *src_mb_buffer = xd->cur_buf->y_buffer + mb_y_offset; const int src_stride = xd->cur_buf->y_stride; const int src_width = xd->cur_buf->y_width; int dst_mb_offset = mi_row * MI_SIZE * tpl_frame->rec_picture->y_stride + mi_col * MI_SIZE; uint8_t *dst_buffer = tpl_frame->rec_picture->y_buffer + dst_mb_offset; int dst_buffer_stride = tpl_frame->rec_picture->y_stride; int use_y_only_rate_distortion = tpl_sf->use_y_only_rate_distortion; uint8_t *rec_buffer_pool[3] = { tpl_frame->rec_picture->y_buffer, tpl_frame->rec_picture->u_buffer, tpl_frame->rec_picture->v_buffer, }; const int rec_stride_pool[3] = { tpl_frame->rec_picture->y_stride, tpl_frame->rec_picture->uv_stride, tpl_frame->rec_picture->uv_stride, }; for (int plane = 1; plane < MAX_MB_PLANE; ++plane) { struct macroblockd_plane *pd = &xd->plane[plane]; pd->subsampling_x = xd->cur_buf->subsampling_x; pd->subsampling_y = xd->cur_buf->subsampling_y; } uint8_t *predictor8 = tpl_tmp_buffers->predictor8; int16_t *src_diff = tpl_tmp_buffers->src_diff; tran_low_t *coeff = tpl_tmp_buffers->coeff; tran_low_t *qcoeff = tpl_tmp_buffers->qcoeff; tran_low_t *dqcoeff = tpl_tmp_buffers->dqcoeff; uint8_t *predictor = is_cur_buf_hbd(xd) ? CONVERT_TO_BYTEPTR(predictor8) : predictor8; int64_t recon_error = 1; int64_t pred_error = 1; memset(tpl_stats, 0, sizeof(*tpl_stats)); tpl_stats->ref_frame_index[0] = -1; tpl_stats->ref_frame_index[1] = -1; const int mi_width = mi_size_wide[bsize]; const int mi_height = mi_size_high[bsize]; set_mode_info_offsets(&cpi->common.mi_params, &cpi->mbmi_ext_info, x, xd, mi_row, mi_col); set_mi_row_col(xd, &xd->tile, mi_row, mi_height, mi_col, mi_width, cm->mi_params.mi_rows, cm->mi_params.mi_cols); set_plane_n4(xd, mi_size_wide[bsize], mi_size_high[bsize], av1_num_planes(cm)); xd->mi[0]->bsize = bsize; xd->mi[0]->motion_mode = SIMPLE_TRANSLATION; // Intra prediction search xd->mi[0]->ref_frame[0] = INTRA_FRAME; // Pre-load the bottom left line. if (xd->left_available && mi_row + tx_size_high_unit[tx_size] < xd->tile.mi_row_end) { if (is_cur_buf_hbd(xd)) { uint16_t *dst = CONVERT_TO_SHORTPTR(dst_buffer); for (int i = 0; i < bw; ++i) dst[(bw + i) * dst_buffer_stride - 1] = dst[(bw - 1) * dst_buffer_stride - 1]; } else { for (int i = 0; i < bw; ++i) dst_buffer[(bw + i) * dst_buffer_stride - 1] = dst_buffer[(bw - 1) * dst_buffer_stride - 1]; } } // if cpi->sf.tpl_sf.prune_intra_modes is on, then search only DC_PRED, // H_PRED, and V_PRED const PREDICTION_MODE last_intra_mode = tpl_sf->prune_intra_modes ? D45_PRED : INTRA_MODE_END; const SequenceHeader *seq_params = cm->seq_params; for (PREDICTION_MODE mode = INTRA_MODE_START; mode < last_intra_mode; ++mode) { av1_predict_intra_block(xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize], block_size_high[bsize], tx_size, mode, 0, 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0, 0, 0); if (tpl_frame->use_pred_sad) { intra_cost = (int32_t)cpi->ppi->fn_ptr[bsize].sdf( src_mb_buffer, src_stride, predictor, bw); } else { intra_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, predictor, bw, coeff, bw, bh, tx_size); } if (intra_cost < best_intra_cost) { best_intra_cost = intra_cost; best_mode = mode; } } // Calculate SATD of the best intra mode if SAD was used for mode decision // as best_intra_cost is used in ML model to skip intra mode evaluation. if (tpl_frame->use_pred_sad) { av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize], block_size_high[bsize], tx_size, best_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0, 0, 0); best_intra_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, predictor, bw, coeff, bw, bh, tx_size); } int rate_cost = 1; if (cpi->use_ducky_encode) { get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff, qcoeff, dqcoeff, cm, x, NULL, rec_buffer_pool, rec_stride_pool, tx_size, best_mode, mi_row, mi_col, use_y_only_rate_distortion, 1 /*do_recon*/, NULL); tpl_stats->intra_dist = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->intra_sse = pred_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->intra_rate = rate_cost; } if (cpi->third_pass_ctx && frame_offset < cpi->third_pass_ctx->frame_info_count && tpl_data->frame_idx < gf_group->size) { double ratio_h, ratio_w; av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height, cm->width, &ratio_h, &ratio_w); THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi( cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w); PREDICTION_MODE third_pass_mode = this_mi->pred_mode; if (third_pass_mode >= last_intra_mode && third_pass_mode < INTRA_MODE_END) { av1_predict_intra_block( xd, seq_params->sb_size, seq_params->enable_intra_edge_filter, block_size_wide[bsize], block_size_high[bsize], tx_size, third_pass_mode, 0, 0, FILTER_INTRA_MODES, dst_buffer, dst_buffer_stride, predictor, bw, 0, 0, 0); intra_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, predictor, bw, coeff, bw, bh, tx_size); if (intra_cost < best_intra_cost) { best_intra_cost = intra_cost; best_mode = third_pass_mode; } } } // Motion compensated prediction xd->mi[0]->ref_frame[0] = INTRA_FRAME; xd->mi[0]->ref_frame[1] = NONE_FRAME; xd->mi[0]->compound_idx = 1; int best_rf_idx = -1; int_mv best_mv[2]; int32_t inter_cost; int32_t best_inter_cost = INT32_MAX; int rf_idx; int_mv single_mv[INTER_REFS_PER_FRAME]; best_mv[0].as_int = INVALID_MV; best_mv[1].as_int = INVALID_MV; for (rf_idx = 0; rf_idx < INTER_REFS_PER_FRAME; ++rf_idx) { single_mv[rf_idx].as_int = INVALID_MV; if (tpl_data->ref_frame[rf_idx] == NULL || tpl_data->src_ref_frame[rf_idx] == NULL) { tpl_stats->mv[rf_idx].as_int = INVALID_MV; continue; } const YV12_BUFFER_CONFIG *ref_frame_ptr = tpl_data->src_ref_frame[rf_idx]; const int ref_mb_offset = mi_row * MI_SIZE * ref_frame_ptr->y_stride + mi_col * MI_SIZE; uint8_t *ref_mb = ref_frame_ptr->y_buffer + ref_mb_offset; const int ref_stride = ref_frame_ptr->y_stride; const int ref_width = ref_frame_ptr->y_width; int_mv best_rfidx_mv = { 0 }; uint32_t bestsme = UINT32_MAX; center_mv_t center_mvs[4] = { { { 0 }, INT_MAX }, { { 0 }, INT_MAX }, { { 0 }, INT_MAX }, { { 0 }, INT_MAX } }; int refmv_count = 1; int idx; if (xd->up_available) { TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos( mi_row - mi_height, mi_col, tpl_frame->stride, block_mis_log2)]; if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count, tpl_sf->skip_alike_starting_mv)) { center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int; ++refmv_count; } } if (xd->left_available) { TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos( mi_row, mi_col - mi_width, tpl_frame->stride, block_mis_log2)]; if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count, tpl_sf->skip_alike_starting_mv)) { center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int; ++refmv_count; } } if (xd->up_available && mi_col + mi_width < xd->tile.mi_col_end) { TplDepStats *ref_tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos( mi_row - mi_height, mi_col + mi_width, tpl_frame->stride, block_mis_log2)]; if (!is_alike_mv(ref_tpl_stats->mv[rf_idx], center_mvs, refmv_count, tpl_sf->skip_alike_starting_mv)) { center_mvs[refmv_count].mv.as_int = ref_tpl_stats->mv[rf_idx].as_int; ++refmv_count; } } if (cpi->third_pass_ctx && frame_offset < cpi->third_pass_ctx->frame_info_count && tpl_data->frame_idx < gf_group->size) { double ratio_h, ratio_w; av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height, cm->width, &ratio_h, &ratio_w); THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi( cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w); int_mv tp_mv = av1_get_third_pass_adjusted_mv(this_mi, ratio_h, ratio_w, rf_idx + LAST_FRAME); if (tp_mv.as_int != INVALID_MV && !is_alike_mv(tp_mv, center_mvs + 1, refmv_count - 1, tpl_sf->skip_alike_starting_mv)) { center_mvs[0].mv = tp_mv; } } // Prune starting mvs if (tpl_sf->prune_starting_mv && refmv_count > 1) { // Get each center mv's sad. for (idx = 0; idx < refmv_count; ++idx) { FULLPEL_MV mv = get_fullmv_from_mv(¢er_mvs[idx].mv.as_mv); clamp_fullmv(&mv, &x->mv_limits); center_mvs[idx].sad = (int)cpi->ppi->fn_ptr[bsize].sdf( src_mb_buffer, src_stride, &ref_mb[mv.row * ref_stride + mv.col], ref_stride); } // Rank center_mv using sad. qsort(center_mvs, refmv_count, sizeof(center_mvs[0]), compare_sad); refmv_count = AOMMIN(4 - tpl_sf->prune_starting_mv, refmv_count); // Further reduce number of refmv based on sad difference. if (refmv_count > 1) { int last_sad = center_mvs[refmv_count - 1].sad; int second_to_last_sad = center_mvs[refmv_count - 2].sad; if ((last_sad - second_to_last_sad) * 5 > second_to_last_sad) refmv_count--; } } for (idx = 0; idx < refmv_count; ++idx) { int_mv this_mv; uint32_t thissme = motion_estimation( cpi, x, src_mb_buffer, ref_mb, src_stride, ref_stride, src_width, ref_width, bsize, center_mvs[idx].mv.as_mv, &this_mv); if (thissme < bestsme) { bestsme = thissme; best_rfidx_mv = this_mv; } } tpl_stats->mv[rf_idx].as_int = best_rfidx_mv.as_int; single_mv[rf_idx] = best_rfidx_mv; inter_cost = get_inter_cost( cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size, mi_row, mi_col, rf_idx, &best_rfidx_mv.as_mv, tpl_frame->use_pred_sad); // Store inter cost for each ref frame. This is used to prune inter modes. tpl_stats->pred_error[rf_idx] = AOMMAX(1, inter_cost); if (inter_cost < best_inter_cost) { best_rf_idx = rf_idx; best_inter_cost = inter_cost; best_mv[0].as_int = best_rfidx_mv.as_int; } } // Calculate SATD of the best inter mode if SAD was used for mode decision // as best_inter_cost is used in ML model to skip intra mode evaluation. if (best_inter_cost < INT32_MAX && tpl_frame->use_pred_sad) { assert(best_rf_idx != -1); best_inter_cost = get_inter_cost( cpi, xd, src_mb_buffer, src_stride, tpl_tmp_buffers, bsize, tx_size, mi_row, mi_col, best_rf_idx, &best_mv[0].as_mv, 0 /* use_pred_sad */); } if (best_rf_idx != -1 && best_inter_cost < best_intra_cost) { best_mode = NEWMV; xd->mi[0]->ref_frame[0] = best_rf_idx + LAST_FRAME; xd->mi[0]->mv[0].as_int = best_mv[0].as_int; } // Start compound predition search. int comp_ref_frames[3][2] = { { 0, 4 }, { 0, 6 }, { 3, 6 }, }; int start_rf = 0; int end_rf = 3; if (!tpl_sf->allow_compound_pred) end_rf = 0; if (cpi->third_pass_ctx && frame_offset < cpi->third_pass_ctx->frame_info_count && tpl_data->frame_idx < gf_group->size) { double ratio_h, ratio_w; av1_get_third_pass_ratio(cpi->third_pass_ctx, frame_offset, cm->height, cm->width, &ratio_h, &ratio_w); THIRD_PASS_MI_INFO *this_mi = av1_get_third_pass_mi( cpi->third_pass_ctx, frame_offset, mi_row, mi_col, ratio_h, ratio_w); if (this_mi->ref_frame[0] >= LAST_FRAME && this_mi->ref_frame[1] >= LAST_FRAME) { int found = 0; for (int i = 0; i < 3; i++) { if (comp_ref_frames[i][0] + LAST_FRAME == this_mi->ref_frame[0] && comp_ref_frames[i][1] + LAST_FRAME == this_mi->ref_frame[1]) { found = 1; break; } } if (!found || !tpl_sf->allow_compound_pred) { comp_ref_frames[2][0] = this_mi->ref_frame[0] - LAST_FRAME; comp_ref_frames[2][1] = this_mi->ref_frame[1] - LAST_FRAME; if (!tpl_sf->allow_compound_pred) { start_rf = 2; end_rf = 3; } } } } xd->mi_row = mi_row; xd->mi_col = mi_col; int best_cmp_rf_idx = -1; const int_interpfilters kernel = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); for (int cmp_rf_idx = start_rf; cmp_rf_idx < end_rf; ++cmp_rf_idx) { int rf_idx0 = comp_ref_frames[cmp_rf_idx][0]; int rf_idx1 = comp_ref_frames[cmp_rf_idx][1]; if (tpl_data->ref_frame[rf_idx0] == NULL || tpl_data->src_ref_frame[rf_idx0] == NULL || tpl_data->ref_frame[rf_idx1] == NULL || tpl_data->src_ref_frame[rf_idx1] == NULL) { continue; } const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = { tpl_data->src_ref_frame[rf_idx0], tpl_data->src_ref_frame[rf_idx1], }; xd->mi[0]->ref_frame[0] = rf_idx0 + LAST_FRAME; xd->mi[0]->ref_frame[1] = rf_idx1 + LAST_FRAME; xd->mi[0]->mode = NEW_NEWMV; const int8_t ref_frame_type = av1_ref_frame_type(xd->mi[0]->ref_frame); // Set up ref_mv for av1_joint_motion_search(). CANDIDATE_MV *this_ref_mv_stack = x->mbmi_ext.ref_mv_stack[ref_frame_type]; this_ref_mv_stack[xd->mi[0]->ref_mv_idx].this_mv = single_mv[rf_idx0]; this_ref_mv_stack[xd->mi[0]->ref_mv_idx].comp_mv = single_mv[rf_idx1]; struct buf_2d yv12_mb[2][MAX_MB_PLANE]; for (int i = 0; i < 2; ++i) { av1_setup_pred_block(xd, yv12_mb[i], ref_frame_ptr[i], xd->block_ref_scale_factors[i], xd->block_ref_scale_factors[i], MAX_MB_PLANE); for (int plane = 0; plane < MAX_MB_PLANE; ++plane) { xd->plane[plane].pre[i] = yv12_mb[i][plane]; } } int_mv tmp_mv[2] = { single_mv[rf_idx0], single_mv[rf_idx1] }; int rate_mv; av1_joint_motion_search(cpi, x, bsize, tmp_mv, NULL, 0, &rate_mv, !cpi->sf.mv_sf.disable_second_mv, NUM_JOINT_ME_REFINE_ITER); for (int ref = 0; ref < 2; ++ref) { struct buf_2d ref_buf = { NULL, ref_frame_ptr[ref]->y_buffer, ref_frame_ptr[ref]->y_width, ref_frame_ptr[ref]->y_height, ref_frame_ptr[ref]->y_stride }; InterPredParams inter_pred_params; av1_init_inter_params(&inter_pred_params, bw, bh, mi_row * MI_SIZE, mi_col * MI_SIZE, 0, 0, xd->bd, is_cur_buf_hbd(xd), 0, &tpl_data->sf, &ref_buf, kernel); av1_init_comp_mode(&inter_pred_params); inter_pred_params.conv_params = get_conv_params_no_round( ref, 0, xd->tmp_conv_dst, MAX_SB_SIZE, 1, xd->bd); av1_enc_build_one_inter_predictor(predictor, bw, &tmp_mv[ref].as_mv, &inter_pred_params); } inter_cost = tpl_get_satd_cost(bd_info, src_diff, bw, src_mb_buffer, src_stride, predictor, bw, coeff, bw, bh, tx_size); if (inter_cost < best_inter_cost) { best_cmp_rf_idx = cmp_rf_idx; best_inter_cost = inter_cost; best_mv[0] = tmp_mv[0]; best_mv[1] = tmp_mv[1]; } } if (best_cmp_rf_idx != -1 && best_inter_cost < best_intra_cost) { best_mode = NEW_NEWMV; const int best_rf_idx0 = comp_ref_frames[best_cmp_rf_idx][0]; const int best_rf_idx1 = comp_ref_frames[best_cmp_rf_idx][1]; xd->mi[0]->ref_frame[0] = best_rf_idx0 + LAST_FRAME; xd->mi[0]->ref_frame[1] = best_rf_idx1 + LAST_FRAME; } if (best_inter_cost < INT32_MAX && is_inter_mode(best_mode)) { xd->mi[0]->mv[0].as_int = best_mv[0].as_int; xd->mi[0]->mv[1].as_int = best_mv[1].as_int; const YV12_BUFFER_CONFIG *ref_frame_ptr[2] = { best_cmp_rf_idx >= 0 ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]] : tpl_data->src_ref_frame[best_rf_idx], best_cmp_rf_idx >= 0 ? tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]] : NULL, }; rate_cost = 1; get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff, qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool, rec_stride_pool, tx_size, best_mode, mi_row, mi_col, use_y_only_rate_distortion, 0 /*do_recon*/, NULL); tpl_stats->srcrf_rate = rate_cost; } best_intra_cost = AOMMAX(best_intra_cost, 1); best_inter_cost = AOMMIN(best_intra_cost, best_inter_cost); tpl_stats->inter_cost = best_inter_cost; tpl_stats->intra_cost = best_intra_cost; tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2; // Final encode rate_cost = 0; const YV12_BUFFER_CONFIG *ref_frame_ptr[2]; ref_frame_ptr[0] = best_mode == NEW_NEWMV ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]] : best_rf_idx >= 0 ? tpl_data->ref_frame[best_rf_idx] : NULL; ref_frame_ptr[1] = best_mode == NEW_NEWMV ? tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]] : NULL; get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff, qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool, rec_stride_pool, tx_size, best_mode, mi_row, mi_col, use_y_only_rate_distortion, 1 /*do_recon*/, tpl_txfm_stats); tpl_stats->recrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->recrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->recrf_rate = rate_cost; if (!is_inter_mode(best_mode)) { tpl_stats->srcrf_dist = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->srcrf_rate = rate_cost; tpl_stats->srcrf_sse = pred_error << TPL_DEP_COST_SCALE_LOG2; } tpl_stats->recrf_dist = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->recrf_dist); tpl_stats->recrf_rate = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->recrf_rate); if (best_mode == NEW_NEWMV) { ref_frame_ptr[0] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]; ref_frame_ptr[1] = tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]; get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff, qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool, rec_stride_pool, tx_size, best_mode, mi_row, mi_col, use_y_only_rate_distortion, 1 /*do_recon*/, NULL); tpl_stats->cmp_recrf_dist[0] = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->cmp_recrf_rate[0] = rate_cost; tpl_stats->cmp_recrf_dist[0] = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[0]); tpl_stats->cmp_recrf_rate[0] = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[0]); tpl_stats->cmp_recrf_dist[0] = AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[0]); tpl_stats->cmp_recrf_rate[0] = AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[0]); rate_cost = 0; ref_frame_ptr[0] = tpl_data->src_ref_frame[comp_ref_frames[best_cmp_rf_idx][0]]; ref_frame_ptr[1] = tpl_data->ref_frame[comp_ref_frames[best_cmp_rf_idx][1]]; get_rate_distortion(&rate_cost, &recon_error, &pred_error, src_diff, coeff, qcoeff, dqcoeff, cm, x, ref_frame_ptr, rec_buffer_pool, rec_stride_pool, tx_size, best_mode, mi_row, mi_col, use_y_only_rate_distortion, 1 /*do_recon*/, NULL); tpl_stats->cmp_recrf_dist[1] = recon_error << TPL_DEP_COST_SCALE_LOG2; tpl_stats->cmp_recrf_rate[1] = rate_cost; tpl_stats->cmp_recrf_dist[1] = AOMMAX(tpl_stats->srcrf_dist, tpl_stats->cmp_recrf_dist[1]); tpl_stats->cmp_recrf_rate[1] = AOMMAX(tpl_stats->srcrf_rate, tpl_stats->cmp_recrf_rate[1]); tpl_stats->cmp_recrf_dist[1] = AOMMIN(tpl_stats->recrf_dist, tpl_stats->cmp_recrf_dist[1]); tpl_stats->cmp_recrf_rate[1] = AOMMIN(tpl_stats->recrf_rate, tpl_stats->cmp_recrf_rate[1]); } if (best_mode == NEWMV) { tpl_stats->mv[best_rf_idx] = best_mv[0]; tpl_stats->ref_frame_index[0] = best_rf_idx; tpl_stats->ref_frame_index[1] = NONE_FRAME; } else if (best_mode == NEW_NEWMV) { tpl_stats->ref_frame_index[0] = comp_ref_frames[best_cmp_rf_idx][0]; tpl_stats->ref_frame_index[1] = comp_ref_frames[best_cmp_rf_idx][1]; tpl_stats->mv[tpl_stats->ref_frame_index[0]] = best_mv[0]; tpl_stats->mv[tpl_stats->ref_frame_index[1]] = best_mv[1]; } for (int idy = 0; idy < mi_height; ++idy) { for (int idx = 0; idx < mi_width; ++idx) { if ((xd->mb_to_right_edge >> (3 + MI_SIZE_LOG2)) + mi_width > idx && (xd->mb_to_bottom_edge >> (3 + MI_SIZE_LOG2)) + mi_height > idy) { xd->mi[idx + idy * cm->mi_params.mi_stride] = xd->mi[0]; } } } } static int round_floor(int ref_pos, int bsize_pix) { int round; if (ref_pos < 0) round = -(1 + (-ref_pos - 1) / bsize_pix); else round = ref_pos / bsize_pix; return round; } int av1_get_overlap_area(int row_a, int col_a, int row_b, int col_b, int width, int height) { int min_row = AOMMAX(row_a, row_b); int max_row = AOMMIN(row_a + height, row_b + height); int min_col = AOMMAX(col_a, col_b); int max_col = AOMMIN(col_a + width, col_b + width); if (min_row < max_row && min_col < max_col) { return (max_row - min_row) * (max_col - min_col); } return 0; } int av1_tpl_ptr_pos(int mi_row, int mi_col, int stride, uint8_t right_shift) { return (mi_row >> right_shift) * stride + (mi_col >> right_shift); } int64_t av1_delta_rate_cost(int64_t delta_rate, int64_t recrf_dist, int64_t srcrf_dist, int pix_num) { double beta = (double)srcrf_dist / recrf_dist; int64_t rate_cost = delta_rate; if (srcrf_dist <= 128) return rate_cost; double dr = (double)(delta_rate >> (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT)) / pix_num; double log_den = log(beta) / log(2.0) + 2.0 * dr; if (log_den > log(10.0) / log(2.0)) { rate_cost = (int64_t)((log(1.0 / beta) * pix_num) / log(2.0) / 2.0); rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT); return rate_cost; } double num = pow(2.0, log_den); double den = num * beta + (1 - beta) * beta; rate_cost = (int64_t)((pix_num * log(num / den)) / log(2.0) / 2.0); rate_cost <<= (TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT); return rate_cost; } static AOM_INLINE void tpl_model_update_b(TplParams *const tpl_data, int mi_row, int mi_col, const BLOCK_SIZE bsize, int frame_idx, int ref) { TplDepFrame *tpl_frame_ptr = &tpl_data->tpl_frame[frame_idx]; TplDepStats *tpl_ptr = tpl_frame_ptr->tpl_stats_ptr; TplDepFrame *tpl_frame = tpl_data->tpl_frame; const uint8_t block_mis_log2 = tpl_data->tpl_stats_block_mis_log2; TplDepStats *tpl_stats_ptr = &tpl_ptr[av1_tpl_ptr_pos( mi_row, mi_col, tpl_frame->stride, block_mis_log2)]; int is_compound = tpl_stats_ptr->ref_frame_index[1] >= 0; if (tpl_stats_ptr->ref_frame_index[ref] < 0) return; const int ref_frame_index = tpl_stats_ptr->ref_frame_index[ref]; TplDepFrame *ref_tpl_frame = &tpl_frame[tpl_frame[frame_idx].ref_map_index[ref_frame_index]]; TplDepStats *ref_stats_ptr = ref_tpl_frame->tpl_stats_ptr; if (tpl_frame[frame_idx].ref_map_index[ref_frame_index] < 0) return; const FULLPEL_MV full_mv = get_fullmv_from_mv(&tpl_stats_ptr->mv[ref_frame_index].as_mv); const int ref_pos_row = mi_row * MI_SIZE + full_mv.row; const int ref_pos_col = mi_col * MI_SIZE + full_mv.col; const int bw = 4 << mi_size_wide_log2[bsize]; const int bh = 4 << mi_size_high_log2[bsize]; const int mi_height = mi_size_high[bsize]; const int mi_width = mi_size_wide[bsize]; const int pix_num = bw * bh; // top-left on grid block location in pixel int grid_pos_row_base = round_floor(ref_pos_row, bh) * bh; int grid_pos_col_base = round_floor(ref_pos_col, bw) * bw; int block; int64_t srcrf_dist = is_compound ? tpl_stats_ptr->cmp_recrf_dist[!ref] : tpl_stats_ptr->srcrf_dist; int64_t srcrf_rate = is_compound ? (tpl_stats_ptr->cmp_recrf_rate[!ref] << TPL_DEP_COST_SCALE_LOG2) : (tpl_stats_ptr->srcrf_rate << TPL_DEP_COST_SCALE_LOG2); int64_t cur_dep_dist = tpl_stats_ptr->recrf_dist - srcrf_dist; int64_t mc_dep_dist = (int64_t)(tpl_stats_ptr->mc_dep_dist * ((double)(tpl_stats_ptr->recrf_dist - srcrf_dist) / tpl_stats_ptr->recrf_dist)); int64_t delta_rate = (tpl_stats_ptr->recrf_rate << TPL_DEP_COST_SCALE_LOG2) - srcrf_rate; int64_t mc_dep_rate = av1_delta_rate_cost(tpl_stats_ptr->mc_dep_rate, tpl_stats_ptr->recrf_dist, srcrf_dist, pix_num); for (block = 0; block < 4; ++block) { int grid_pos_row = grid_pos_row_base + bh * (block >> 1); int grid_pos_col = grid_pos_col_base + bw * (block & 0x01); if (grid_pos_row >= 0 && grid_pos_row < ref_tpl_frame->mi_rows * MI_SIZE && grid_pos_col >= 0 && grid_pos_col < ref_tpl_frame->mi_cols * MI_SIZE) { int overlap_area = av1_get_overlap_area(grid_pos_row, grid_pos_col, ref_pos_row, ref_pos_col, bw, bh); int ref_mi_row = round_floor(grid_pos_row, bh) * mi_height; int ref_mi_col = round_floor(grid_pos_col, bw) * mi_width; assert((1 << block_mis_log2) == mi_height); assert((1 << block_mis_log2) == mi_width); TplDepStats *des_stats = &ref_stats_ptr[av1_tpl_ptr_pos( ref_mi_row, ref_mi_col, ref_tpl_frame->stride, block_mis_log2)]; des_stats->mc_dep_dist += ((cur_dep_dist + mc_dep_dist) * overlap_area) / pix_num; des_stats->mc_dep_rate += ((delta_rate + mc_dep_rate) * overlap_area) / pix_num; } } } static AOM_INLINE void tpl_model_update(TplParams *const tpl_data, int mi_row, int mi_col, int frame_idx) { const BLOCK_SIZE tpl_stats_block_size = convert_length_to_bsize(MI_SIZE << tpl_data->tpl_stats_block_mis_log2); tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx, 0); tpl_model_update_b(tpl_data, mi_row, mi_col, tpl_stats_block_size, frame_idx, 1); } static AOM_INLINE void tpl_model_store(TplDepStats *tpl_stats_ptr, int mi_row, int mi_col, int stride, const TplDepStats *src_stats, uint8_t block_mis_log2) { int index = av1_tpl_ptr_pos(mi_row, mi_col, stride, block_mis_log2); TplDepStats *tpl_ptr = &tpl_stats_ptr[index]; *tpl_ptr = *src_stats; tpl_ptr->intra_cost = AOMMAX(1, tpl_ptr->intra_cost); tpl_ptr->inter_cost = AOMMAX(1, tpl_ptr->inter_cost); tpl_ptr->srcrf_dist = AOMMAX(1, tpl_ptr->srcrf_dist); tpl_ptr->srcrf_sse = AOMMAX(1, tpl_ptr->srcrf_sse); tpl_ptr->recrf_dist = AOMMAX(1, tpl_ptr->recrf_dist); tpl_ptr->srcrf_rate = AOMMAX(1, tpl_ptr->srcrf_rate); tpl_ptr->recrf_rate = AOMMAX(1, tpl_ptr->recrf_rate); tpl_ptr->cmp_recrf_dist[0] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[0]); tpl_ptr->cmp_recrf_dist[1] = AOMMAX(1, tpl_ptr->cmp_recrf_dist[1]); tpl_ptr->cmp_recrf_rate[0] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[0]); tpl_ptr->cmp_recrf_rate[1] = AOMMAX(1, tpl_ptr->cmp_recrf_rate[1]); } // Reset the ref and source frame pointers of tpl_data. static AOM_INLINE void tpl_reset_src_ref_frames(TplParams *tpl_data) { for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { tpl_data->ref_frame[i] = NULL; tpl_data->src_ref_frame[i] = NULL; } } static AOM_INLINE int get_gop_length(const GF_GROUP *gf_group) { int gop_length = AOMMIN(gf_group->size, MAX_TPL_FRAME_IDX - 1); return gop_length; } // Initialize the mc_flow parameters used in computing tpl data. static AOM_INLINE void init_mc_flow_dispenser(AV1_COMP *cpi, int frame_idx, int pframe_qindex) { TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[frame_idx]; const YV12_BUFFER_CONFIG *this_frame = tpl_frame->gf_picture; const YV12_BUFFER_CONFIG *ref_frames_ordered[INTER_REFS_PER_FRAME]; uint32_t ref_frame_display_indices[INTER_REFS_PER_FRAME]; const GF_GROUP *gf_group = &cpi->ppi->gf_group; TPL_SPEED_FEATURES *tpl_sf = &cpi->sf.tpl_sf; int ref_pruning_enabled = is_frame_eligible_for_ref_pruning( gf_group, cpi->sf.inter_sf.selective_ref_frame, tpl_sf->prune_ref_frames_in_tpl, frame_idx); int gop_length = get_gop_length(gf_group); int ref_frame_flags; AV1_COMMON *cm = &cpi->common; int rdmult, idx; ThreadData *td = &cpi->td; MACROBLOCK *x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; TplTxfmStats *tpl_txfm_stats = &td->tpl_txfm_stats; tpl_data->frame_idx = frame_idx; tpl_reset_src_ref_frames(tpl_data); av1_tile_init(&xd->tile, cm, 0, 0); const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); const FRAME_TYPE frame_type = cm->current_frame.frame_type; // Setup scaling factor av1_setup_scale_factors_for_frame( &tpl_data->sf, this_frame->y_crop_width, this_frame->y_crop_height, this_frame->y_crop_width, this_frame->y_crop_height); xd->cur_buf = this_frame; for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) { TplDepFrame *tpl_ref_frame = &tpl_data->tpl_frame[tpl_frame->ref_map_index[idx]]; tpl_data->ref_frame[idx] = tpl_ref_frame->rec_picture; tpl_data->src_ref_frame[idx] = tpl_ref_frame->gf_picture; ref_frame_display_indices[idx] = tpl_ref_frame->frame_display_index; } // Store the reference frames based on priority order for (int i = 0; i < INTER_REFS_PER_FRAME; ++i) { ref_frames_ordered[i] = tpl_data->ref_frame[ref_frame_priority_order[i] - 1]; } // Work out which reference frame slots may be used. ref_frame_flags = get_ref_frame_flags(&cpi->sf, is_one_pass_rt_params(cpi), ref_frames_ordered, cpi->ext_flags.ref_frame_flags); enforce_max_ref_frames(cpi, &ref_frame_flags, ref_frame_display_indices, tpl_frame->frame_display_index); // Prune reference frames for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) { if ((ref_frame_flags & (1 << idx)) == 0) { tpl_data->ref_frame[idx] = NULL; } } // Skip motion estimation w.r.t. reference frames which are not // considered in RD search, using "selective_ref_frame" speed feature. // The reference frame pruning is not enabled for frames beyond the gop // length, as there are fewer reference frames and the reference frames // differ from the frames considered during RD search. if (ref_pruning_enabled && (frame_idx < gop_length)) { for (idx = 0; idx < INTER_REFS_PER_FRAME; ++idx) { const MV_REFERENCE_FRAME refs[2] = { idx + 1, NONE_FRAME }; if (prune_ref_by_selective_ref_frame(cpi, NULL, refs, ref_frame_display_indices)) { tpl_data->ref_frame[idx] = NULL; } } } // Make a temporary mbmi for tpl model MB_MODE_INFO mbmi; memset(&mbmi, 0, sizeof(mbmi)); MB_MODE_INFO *mbmi_ptr = &mbmi; xd->mi = &mbmi_ptr; xd->block_ref_scale_factors[0] = &tpl_data->sf; xd->block_ref_scale_factors[1] = &tpl_data->sf; const int base_qindex = cpi->use_ducky_encode ? gf_group->q_val[frame_idx] : pframe_qindex; // Get rd multiplier set up. rdmult = (int)av1_compute_rd_mult( base_qindex, cm->seq_params->bit_depth, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); if (rdmult < 1) rdmult = 1; av1_set_error_per_bit(&x->errorperbit, rdmult); av1_set_sad_per_bit(cpi, &x->sadperbit, base_qindex); tpl_frame->is_valid = 1; cm->quant_params.base_qindex = base_qindex; av1_frame_init_quantizer(cpi); const BitDepthInfo bd_info = get_bit_depth_info(xd); const FRAME_UPDATE_TYPE update_type = gf_group->update_type[cpi->gf_frame_index]; tpl_frame->base_rdmult = av1_compute_rd_mult_based_on_qindex( bd_info.bit_depth, update_type, base_qindex) / 6; if (cpi->use_ducky_encode) tpl_frame->base_rdmult = gf_group->rdmult_val[frame_idx]; av1_init_tpl_txfm_stats(tpl_txfm_stats); // Initialize x->mbmi_ext when compound predictions are enabled. if (tpl_sf->allow_compound_pred) av1_zero(x->mbmi_ext); // Set the pointer to null since mbmi is only allocated inside this function. assert(xd->mi == &mbmi_ptr); xd->mi = NULL; // Tpl module is called before the setting of speed features at frame level. // Thus, turning off this speed feature for key frame is done here and not // integrated into the speed feature setting itself. const int layer_depth_th = (tpl_sf->use_sad_for_mode_decision == 1) ? 5 : 0; tpl_frame->use_pred_sad = tpl_sf->use_sad_for_mode_decision && gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE && gf_group->layer_depth[frame_idx] >= layer_depth_th; } // This function stores the motion estimation dependencies of all the blocks in // a row void av1_mc_flow_dispenser_row(AV1_COMP *cpi, TplTxfmStats *tpl_txfm_stats, TplBuffers *tpl_tmp_buffers, MACROBLOCK *x, int mi_row, BLOCK_SIZE bsize, TX_SIZE tx_size) { AV1_COMMON *const cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt; const CommonModeInfoParams *const mi_params = &cm->mi_params; const int mi_width = mi_size_wide[bsize]; TplParams *const tpl_data = &cpi->ppi->tpl_data; TplDepFrame *tpl_frame = &tpl_data->tpl_frame[tpl_data->frame_idx]; MACROBLOCKD *xd = &x->e_mbd; const int tplb_cols_in_tile = ROUND_POWER_OF_TWO(mi_params->mi_cols, mi_size_wide_log2[bsize]); const int tplb_row = ROUND_POWER_OF_TWO(mi_row, mi_size_high_log2[bsize]); assert(mi_size_high[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2)); assert(mi_size_wide[bsize] == (1 << tpl_data->tpl_stats_block_mis_log2)); for (int mi_col = 0, tplb_col_in_tile = 0; mi_col < mi_params->mi_cols; mi_col += mi_width, tplb_col_in_tile++) { (*tpl_row_mt->sync_read_ptr)(&tpl_data->tpl_mt_sync, tplb_row, tplb_col_in_tile); #if CONFIG_MULTITHREAD if (mt_info->num_workers > 1) { pthread_mutex_lock(tpl_row_mt->mutex_); const bool tpl_mt_exit = tpl_row_mt->tpl_mt_exit; pthread_mutex_unlock(tpl_row_mt->mutex_); // Exit in case any worker has encountered an error. if (tpl_mt_exit) return; } #endif TplDepStats tpl_stats; // Motion estimation column boundary av1_set_mv_col_limits(mi_params, &x->mv_limits, mi_col, mi_width, tpl_data->border_in_pixels); xd->mb_to_left_edge = -GET_MV_SUBPEL(mi_col * MI_SIZE); xd->mb_to_right_edge = GET_MV_SUBPEL(mi_params->mi_cols - mi_width - mi_col); mode_estimation(cpi, tpl_txfm_stats, tpl_tmp_buffers, x, mi_row, mi_col, bsize, tx_size, &tpl_stats); // Motion flow dependency dispenser. tpl_model_store(tpl_frame->tpl_stats_ptr, mi_row, mi_col, tpl_frame->stride, &tpl_stats, tpl_data->tpl_stats_block_mis_log2); (*tpl_row_mt->sync_write_ptr)(&tpl_data->tpl_mt_sync, tplb_row, tplb_col_in_tile, tplb_cols_in_tile); } } static AOM_INLINE void mc_flow_dispenser(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const CommonModeInfoParams *const mi_params = &cm->mi_params; ThreadData *td = &cpi->td; MACROBLOCK *x = &td->mb; MACROBLOCKD *xd = &x->e_mbd; const BLOCK_SIZE bsize = convert_length_to_bsize(cpi->ppi->tpl_data.tpl_bsize_1d); const TX_SIZE tx_size = max_txsize_lookup[bsize]; const int mi_height = mi_size_high[bsize]; for (int mi_row = 0; mi_row < mi_params->mi_rows; mi_row += mi_height) { // Motion estimation row boundary av1_set_mv_row_limits(mi_params, &x->mv_limits, mi_row, mi_height, cpi->ppi->tpl_data.border_in_pixels); xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE); xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_params->mi_rows - mi_height - mi_row) * MI_SIZE); av1_mc_flow_dispenser_row(cpi, &td->tpl_txfm_stats, &td->tpl_tmp_buffers, x, mi_row, bsize, tx_size); } } static void mc_flow_synthesizer(TplParams *tpl_data, int frame_idx, int mi_rows, int mi_cols) { if (!frame_idx) { return; } const BLOCK_SIZE bsize = convert_length_to_bsize(tpl_data->tpl_bsize_1d); const int mi_height = mi_size_high[bsize]; const int mi_width = mi_size_wide[bsize]; assert(mi_height == (1 << tpl_data->tpl_stats_block_mis_log2)); assert(mi_width == (1 << tpl_data->tpl_stats_block_mis_log2)); for (int mi_row = 0; mi_row < mi_rows; mi_row += mi_height) { for (int mi_col = 0; mi_col < mi_cols; mi_col += mi_width) { tpl_model_update(tpl_data, mi_row, mi_col, frame_idx); } } } static AOM_INLINE void init_gop_frames_for_tpl( AV1_COMP *cpi, const EncodeFrameParams *const init_frame_params, GF_GROUP *gf_group, int *tpl_group_frames, int *pframe_qindex) { AV1_COMMON *cm = &cpi->common; assert(cpi->gf_frame_index == 0); *pframe_qindex = 0; RefFrameMapPair ref_frame_map_pairs[REF_FRAMES]; init_ref_map_pair(cpi, ref_frame_map_pairs); int remapped_ref_idx[REF_FRAMES]; EncodeFrameParams frame_params = *init_frame_params; TplParams *const tpl_data = &cpi->ppi->tpl_data; int ref_picture_map[REF_FRAMES]; for (int i = 0; i < REF_FRAMES; ++i) { if (frame_params.frame_type == KEY_FRAME) { tpl_data->tpl_frame[-i - 1].gf_picture = NULL; tpl_data->tpl_frame[-i - 1].rec_picture = NULL; tpl_data->tpl_frame[-i - 1].frame_display_index = 0; } else { tpl_data->tpl_frame[-i - 1].gf_picture = &cm->ref_frame_map[i]->buf; tpl_data->tpl_frame[-i - 1].rec_picture = &cm->ref_frame_map[i]->buf; tpl_data->tpl_frame[-i - 1].frame_display_index = cm->ref_frame_map[i]->display_order_hint; } ref_picture_map[i] = -i - 1; } *tpl_group_frames = 0; int gf_index; int process_frame_count = 0; const int gop_length = get_gop_length(gf_group); for (gf_index = 0; gf_index < gop_length; ++gf_index) { TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index]; FRAME_UPDATE_TYPE frame_update_type = gf_group->update_type[gf_index]; int lookahead_index = gf_group->cur_frame_idx[gf_index] + gf_group->arf_src_offset[gf_index]; frame_params.show_frame = frame_update_type != ARF_UPDATE && frame_update_type != INTNL_ARF_UPDATE; frame_params.show_existing_frame = frame_update_type == INTNL_OVERLAY_UPDATE || frame_update_type == OVERLAY_UPDATE; frame_params.frame_type = gf_group->frame_type[gf_index]; if (frame_update_type == LF_UPDATE) *pframe_qindex = gf_group->q_val[gf_index]; const struct lookahead_entry *buf = av1_lookahead_peek( cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage); if (buf == NULL) break; tpl_frame->gf_picture = &buf->img; // Use filtered frame buffer if available. This will make tpl stats more // precise. FRAME_DIFF frame_diff; const YV12_BUFFER_CONFIG *tf_buf = av1_tf_info_get_filtered_buf(&cpi->ppi->tf_info, gf_index, &frame_diff); if (tf_buf != NULL) { tpl_frame->gf_picture = tf_buf; } // 'cm->current_frame.frame_number' is the display number // of the current frame. // 'lookahead_index' is frame offset within the gf group. // 'lookahead_index + cm->current_frame.frame_number' // is the display index of the frame. tpl_frame->frame_display_index = lookahead_index + cm->current_frame.frame_number; assert(buf->display_idx == cpi->frame_index_set.show_frame_count + lookahead_index); if (frame_update_type != OVERLAY_UPDATE && frame_update_type != INTNL_OVERLAY_UPDATE) { tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count]; tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count]; ++process_frame_count; } const int true_disp = (int)(tpl_frame->frame_display_index); av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0, remapped_ref_idx); int refresh_mask = av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type, gf_index, true_disp, ref_frame_map_pairs); // Make the frames marked as is_frame_non_ref to non-reference frames. if (cpi->ppi->gf_group.is_frame_non_ref[gf_index]) refresh_mask = 0; int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask); if (refresh_frame_map_index < REF_FRAMES && refresh_frame_map_index != INVALID_IDX) { ref_frame_map_pairs[refresh_frame_map_index].disp_order = AOMMAX(0, true_disp); ref_frame_map_pairs[refresh_frame_map_index].pyr_level = get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp, cpi->ppi->gf_group.max_layer_depth); } for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) tpl_frame->ref_map_index[i - LAST_FRAME] = ref_picture_map[remapped_ref_idx[i - LAST_FRAME]]; if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index; ++*tpl_group_frames; } const int tpl_extend = cpi->oxcf.gf_cfg.lag_in_frames - MAX_GF_INTERVAL; int extend_frame_count = 0; int extend_frame_length = AOMMIN( tpl_extend, cpi->rc.frames_to_key - cpi->ppi->p_rc.baseline_gf_interval); int frame_display_index = gf_group->cur_frame_idx[gop_length - 1] + gf_group->arf_src_offset[gop_length - 1] + 1; for (; gf_index < MAX_TPL_FRAME_IDX && extend_frame_count < extend_frame_length; ++gf_index) { TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_index]; FRAME_UPDATE_TYPE frame_update_type = LF_UPDATE; frame_params.show_frame = frame_update_type != ARF_UPDATE && frame_update_type != INTNL_ARF_UPDATE; frame_params.show_existing_frame = frame_update_type == INTNL_OVERLAY_UPDATE; frame_params.frame_type = INTER_FRAME; int lookahead_index = frame_display_index; struct lookahead_entry *buf = av1_lookahead_peek( cpi->ppi->lookahead, lookahead_index, cpi->compressor_stage); if (buf == NULL) break; tpl_frame->gf_picture = &buf->img; tpl_frame->rec_picture = &tpl_data->tpl_rec_pool[process_frame_count]; tpl_frame->tpl_stats_ptr = tpl_data->tpl_stats_pool[process_frame_count]; // 'cm->current_frame.frame_number' is the display number // of the current frame. // 'frame_display_index' is frame offset within the gf group. // 'frame_display_index + cm->current_frame.frame_number' // is the display index of the frame. tpl_frame->frame_display_index = frame_display_index + cm->current_frame.frame_number; ++process_frame_count; gf_group->update_type[gf_index] = LF_UPDATE; #if CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS if (cpi->oxcf.pass == AOM_RC_SECOND_PASS) { if (cpi->oxcf.rc_cfg.mode == AOM_Q) { *pframe_qindex = cpi->oxcf.rc_cfg.cq_level; } else if (cpi->oxcf.rc_cfg.mode == AOM_VBR) { // TODO(angiebird): Find a more adaptive method to decide pframe_qindex // override the pframe_qindex in the second pass when bitrate accuracy // is on. We found that setting this pframe_qindex make the tpl stats // more stable. *pframe_qindex = 128; } } #endif // CONFIG_BITRATE_ACCURACY && CONFIG_THREE_PASS gf_group->q_val[gf_index] = *pframe_qindex; const int true_disp = (int)(tpl_frame->frame_display_index); av1_get_ref_frames(ref_frame_map_pairs, true_disp, cpi, gf_index, 0, remapped_ref_idx); int refresh_mask = av1_get_refresh_frame_flags(cpi, &frame_params, frame_update_type, gf_index, true_disp, ref_frame_map_pairs); int refresh_frame_map_index = av1_get_refresh_ref_frame_map(refresh_mask); if (refresh_frame_map_index < REF_FRAMES && refresh_frame_map_index != INVALID_IDX) { ref_frame_map_pairs[refresh_frame_map_index].disp_order = AOMMAX(0, true_disp); ref_frame_map_pairs[refresh_frame_map_index].pyr_level = get_true_pyr_level(gf_group->layer_depth[gf_index], true_disp, cpi->ppi->gf_group.max_layer_depth); } for (int i = LAST_FRAME; i <= ALTREF_FRAME; ++i) tpl_frame->ref_map_index[i - LAST_FRAME] = ref_picture_map[remapped_ref_idx[i - LAST_FRAME]]; tpl_frame->ref_map_index[ALTREF_FRAME - LAST_FRAME] = -1; tpl_frame->ref_map_index[LAST3_FRAME - LAST_FRAME] = -1; tpl_frame->ref_map_index[BWDREF_FRAME - LAST_FRAME] = -1; tpl_frame->ref_map_index[ALTREF2_FRAME - LAST_FRAME] = -1; if (refresh_mask) ref_picture_map[refresh_frame_map_index] = gf_index; ++*tpl_group_frames; ++extend_frame_count; ++frame_display_index; } } void av1_init_tpl_stats(TplParams *const tpl_data) { tpl_data->ready = 0; set_tpl_stats_block_size(&tpl_data->tpl_stats_block_mis_log2, &tpl_data->tpl_bsize_1d); for (int frame_idx = 0; frame_idx < MAX_LENGTH_TPL_FRAME_STATS; ++frame_idx) { TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx]; tpl_frame->is_valid = 0; } for (int frame_idx = 0; frame_idx < MAX_LAG_BUFFERS; ++frame_idx) { TplDepFrame *tpl_frame = &tpl_data->tpl_stats_buffer[frame_idx]; if (tpl_data->tpl_stats_pool[frame_idx] == NULL) continue; memset(tpl_data->tpl_stats_pool[frame_idx], 0, tpl_frame->height * tpl_frame->width * sizeof(*tpl_frame->tpl_stats_ptr)); } } int av1_tpl_stats_ready(const TplParams *tpl_data, int gf_frame_index) { if (tpl_data->ready == 0) { return 0; } if (gf_frame_index >= MAX_TPL_FRAME_IDX) { // The sub-GOP length exceeds the TPL buffer capacity. // Hence the TPL related functions are disabled hereafter. return 0; } return tpl_data->tpl_frame[gf_frame_index].is_valid; } static AOM_INLINE int eval_gop_length(double *beta, int gop_eval) { switch (gop_eval) { case 1: // Allow larger GOP size if the base layer ARF has higher dependency // factor than the intermediate ARF and both ARFs have reasonably high // dependency factors. return (beta[0] >= beta[1] + 0.7) && beta[0] > 3.0; case 2: if ((beta[0] >= beta[1] + 0.4) && beta[0] > 1.6) return 1; // Don't shorten the gf interval else if ((beta[0] < beta[1] + 0.1) || beta[0] <= 1.4) return 0; // Shorten the gf interval else return 2; // Cannot decide the gf interval, so redo the // tpl stats calculation. case 3: return beta[0] > 1.1; default: return 2; } } // TODO(jingning): Restructure av1_rc_pick_q_and_bounds() to narrow down // the scope of input arguments. void av1_tpl_preload_rc_estimate(AV1_COMP *cpi, const EncodeFrameParams *const frame_params) { AV1_COMMON *cm = &cpi->common; GF_GROUP *gf_group = &cpi->ppi->gf_group; int bottom_index, top_index; if (cpi->use_ducky_encode) return; cm->current_frame.frame_type = frame_params->frame_type; for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size; ++gf_index) { cm->current_frame.frame_type = gf_group->frame_type[gf_index]; cm->show_frame = gf_group->update_type[gf_index] != ARF_UPDATE && gf_group->update_type[gf_index] != INTNL_ARF_UPDATE; gf_group->q_val[gf_index] = av1_rc_pick_q_and_bounds( cpi, cm->width, cm->height, gf_index, &bottom_index, &top_index); } } static AOM_INLINE int skip_tpl_for_frame(const GF_GROUP *gf_group, int frame_idx, int gop_eval, int approx_gop_eval, int reduce_num_frames) { // When gop_eval is set to 2, tpl stats calculation is done for ARFs from base // layer, (base+1) layer and (base+2) layer. When gop_eval is set to 3, // tpl stats calculation is limited to ARFs from base layer and (base+1) // layer. const int num_arf_layers = (gop_eval == 2) ? 3 : 2; const int gop_length = get_gop_length(gf_group); if (gf_group->update_type[frame_idx] == INTNL_OVERLAY_UPDATE || gf_group->update_type[frame_idx] == OVERLAY_UPDATE) return 1; // When approx_gop_eval = 1, skip tpl stats calculation for higher layer // frames and for frames beyond gop length. if (approx_gop_eval && (gf_group->layer_depth[frame_idx] > num_arf_layers || frame_idx >= gop_length)) return 1; if (reduce_num_frames && gf_group->update_type[frame_idx] == LF_UPDATE && frame_idx < gop_length) return 1; return 0; } int av1_tpl_setup_stats(AV1_COMP *cpi, int gop_eval, const EncodeFrameParams *const frame_params) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, av1_tpl_setup_stats_time); #endif assert(cpi->gf_frame_index == 0); AV1_COMMON *cm = &cpi->common; MultiThreadInfo *const mt_info = &cpi->mt_info; AV1TplRowMultiThreadInfo *const tpl_row_mt = &mt_info->tpl_row_mt; GF_GROUP *gf_group = &cpi->ppi->gf_group; EncodeFrameParams this_frame_params = *frame_params; TplParams *const tpl_data = &cpi->ppi->tpl_data; int approx_gop_eval = (gop_eval > 1); if (cpi->superres_mode != AOM_SUPERRES_NONE) { assert(cpi->superres_mode != AOM_SUPERRES_AUTO); av1_init_tpl_stats(tpl_data); return 0; } cm->current_frame.frame_type = frame_params->frame_type; for (int gf_index = cpi->gf_frame_index; gf_index < gf_group->size; ++gf_index) { cm->current_frame.frame_type = gf_group->frame_type[gf_index]; av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame, gf_group->update_type[gf_index], gf_group->refbuf_state[gf_index], 0); memcpy(&cpi->refresh_frame, &this_frame_params.refresh_frame, sizeof(cpi->refresh_frame)); } int pframe_qindex; int tpl_gf_group_frames; init_gop_frames_for_tpl(cpi, frame_params, gf_group, &tpl_gf_group_frames, &pframe_qindex); cpi->ppi->p_rc.base_layer_qp = pframe_qindex; av1_init_tpl_stats(tpl_data); TplBuffers *tpl_tmp_buffers = &cpi->td.tpl_tmp_buffers; if (!tpl_alloc_temp_buffers(tpl_tmp_buffers, tpl_data->tpl_bsize_1d)) { aom_internal_error(cpi->common.error, AOM_CODEC_MEM_ERROR, "Error allocating tpl data"); } tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read_dummy; tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write_dummy; av1_setup_scale_factors_for_frame(&cm->sf_identity, cm->width, cm->height, cm->width, cm->height); if (frame_params->frame_type == KEY_FRAME) { av1_init_mv_probs(cm); } av1_fill_mv_costs(&cm->fc->nmvc, cm->features.cur_frame_force_integer_mv, cm->features.allow_high_precision_mv, cpi->td.mb.mv_costs); const int num_planes = cpi->sf.tpl_sf.use_y_only_rate_distortion ? 1 : av1_num_planes(cm); // As tpl module is called before the setting of speed features at frame // level, turning off this speed feature for the first GF group of the // key-frame interval is done here. int reduce_num_frames = cpi->sf.tpl_sf.reduce_num_frames && gf_group->update_type[cpi->gf_frame_index] != KF_UPDATE && gf_group->max_layer_depth > 2; // TPL processing is skipped for frames of type LF_UPDATE when // 'reduce_num_frames' is 1, which affects the r0 calcuation. Thus, a factor // to adjust r0 is used. The value of 1.6 corresponds to using ~60% of the // frames in the gf group on an average. tpl_data->r0_adjust_factor = reduce_num_frames ? 1.6 : 1.0; // Backward propagation from tpl_group_frames to 1. for (int frame_idx = cpi->gf_frame_index; frame_idx < tpl_gf_group_frames; ++frame_idx) { if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval, reduce_num_frames)) continue; init_mc_flow_dispenser(cpi, frame_idx, pframe_qindex); if (mt_info->num_workers > 1) { tpl_row_mt->sync_read_ptr = av1_tpl_row_mt_sync_read; tpl_row_mt->sync_write_ptr = av1_tpl_row_mt_sync_write; av1_mc_flow_dispenser_mt(cpi); } else { mc_flow_dispenser(cpi); } #if CONFIG_BITRATE_ACCURACY av1_tpl_txfm_stats_update_abs_coeff_mean(&cpi->td.tpl_txfm_stats); av1_tpl_store_txfm_stats(tpl_data, &cpi->td.tpl_txfm_stats, frame_idx); #endif // CONFIG_BITRATE_ACCURACY #if CONFIG_RATECTRL_LOG && CONFIG_THREE_PASS && CONFIG_BITRATE_ACCURACY if (cpi->oxcf.pass == AOM_RC_THIRD_PASS) { int frame_coding_idx = av1_vbr_rc_frame_coding_idx(&cpi->vbr_rc_info, frame_idx); rc_log_frame_stats(&cpi->rc_log, frame_coding_idx, &cpi->td.tpl_txfm_stats); } #endif // CONFIG_RATECTRL_LOG aom_extend_frame_borders(tpl_data->tpl_frame[frame_idx].rec_picture, num_planes); } for (int frame_idx = tpl_gf_group_frames - 1; frame_idx >= cpi->gf_frame_index; --frame_idx) { if (skip_tpl_for_frame(gf_group, frame_idx, gop_eval, approx_gop_eval, reduce_num_frames)) continue; mc_flow_synthesizer(tpl_data, frame_idx, cm->mi_params.mi_rows, cm->mi_params.mi_cols); } av1_configure_buffer_updates(cpi, &this_frame_params.refresh_frame, gf_group->update_type[cpi->gf_frame_index], gf_group->update_type[cpi->gf_frame_index], 0); cm->current_frame.frame_type = frame_params->frame_type; cm->show_frame = frame_params->show_frame; #if CONFIG_COLLECT_COMPONENT_TIMING // Record the time if the function returns. if (cpi->common.tiles.large_scale || gf_group->max_layer_depth_allowed == 0 || !gop_eval) end_timing(cpi, av1_tpl_setup_stats_time); #endif tpl_dealloc_temp_buffers(tpl_tmp_buffers); if (!approx_gop_eval) { tpl_data->ready = 1; } if (cpi->common.tiles.large_scale) return 0; if (gf_group->max_layer_depth_allowed == 0) return 1; if (!gop_eval) return 0; assert(gf_group->arf_index >= 0); double beta[2] = { 0.0 }; const int frame_idx_0 = gf_group->arf_index; const int frame_idx_1 = AOMMIN(tpl_gf_group_frames - 1, gf_group->arf_index + 1); beta[0] = av1_tpl_get_frame_importance(tpl_data, frame_idx_0); beta[1] = av1_tpl_get_frame_importance(tpl_data, frame_idx_1); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, av1_tpl_setup_stats_time); #endif return eval_gop_length(beta, gop_eval); } void av1_tpl_rdmult_setup(AV1_COMP *cpi) { const AV1_COMMON *const cm = &cpi->common; const int tpl_idx = cpi->gf_frame_index; assert( IMPLIES(cpi->ppi->gf_group.size > 0, tpl_idx < cpi->ppi->gf_group.size)); TplParams *const tpl_data = &cpi->ppi->tpl_data; const TplDepFrame *const tpl_frame = &tpl_data->tpl_frame[tpl_idx]; if (!tpl_frame->is_valid) return; const TplDepStats *const tpl_stats = tpl_frame->tpl_stats_ptr; const int tpl_stride = tpl_frame->stride; const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int block_size = BLOCK_16X16; const int num_mi_w = mi_size_wide[block_size]; const int num_mi_h = mi_size_high[block_size]; const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const double c = 1.2; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; // Loop through each 'block_size' X 'block_size' block. for (int row = 0; row < num_rows; row++) { for (int col = 0; col < num_cols; col++) { double intra_cost = 0.0, mc_dep_cost = 0.0; // Loop through each mi block. for (int mi_row = row * num_mi_h; mi_row < (row + 1) * num_mi_h; mi_row += step) { for (int mi_col = col * num_mi_w; mi_col < (col + 1) * num_mi_w; mi_col += step) { if (mi_row >= cm->mi_params.mi_rows || mi_col >= mi_cols_sr) continue; const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( mi_row, mi_col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); intra_cost += (double)(this_stats->recrf_dist << RDDIV_BITS); mc_dep_cost += (double)(this_stats->recrf_dist << RDDIV_BITS) + mc_dep_delta; } } const double rk = intra_cost / mc_dep_cost; const int index = row * num_cols + col; cpi->tpl_rdmult_scaling_factors[index] = rk / cpi->rd.r0 + c; } } } void av1_tpl_rdmult_setup_sb(AV1_COMP *cpi, MACROBLOCK *const x, BLOCK_SIZE sb_size, int mi_row, int mi_col) { AV1_COMMON *const cm = &cpi->common; GF_GROUP *gf_group = &cpi->ppi->gf_group; assert(IMPLIES(cpi->ppi->gf_group.size > 0, cpi->gf_frame_index < cpi->ppi->gf_group.size)); const int tpl_idx = cpi->gf_frame_index; const int boost_index = AOMMIN(15, (cpi->ppi->p_rc.gfu_boost / 100)); const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], 6); const FRAME_TYPE frame_type = cm->current_frame.frame_type; if (tpl_idx >= MAX_TPL_FRAME_IDX) return; TplDepFrame *tpl_frame = &cpi->ppi->tpl_data.tpl_frame[tpl_idx]; if (!tpl_frame->is_valid) return; if (!is_frame_tpl_eligible(gf_group, cpi->gf_frame_index)) return; if (cpi->oxcf.q_cfg.aq_mode != NO_AQ) return; const int mi_col_sr = coded_to_superres_mi(mi_col, cm->superres_scale_denominator); const int mi_cols_sr = av1_pixels_to_mi(cm->superres_upscaled_width); const int sb_mi_width_sr = coded_to_superres_mi( mi_size_wide[sb_size], cm->superres_scale_denominator); const int bsize_base = BLOCK_16X16; const int num_mi_w = mi_size_wide[bsize_base]; const int num_mi_h = mi_size_high[bsize_base]; const int num_cols = (mi_cols_sr + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (sb_mi_width_sr + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[sb_size] + num_mi_h - 1) / num_mi_h; int row, col; double base_block_count = 0.0; double log_sum = 0.0; for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col_sr / num_mi_h; col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; log_sum += log(cpi->tpl_rdmult_scaling_factors[index]); base_block_count += 1.0; } } const CommonQuantParams *quant_params = &cm->quant_params; const int orig_qindex_rdmult = quant_params->base_qindex + quant_params->y_dc_delta_q; const int orig_rdmult = av1_compute_rd_mult( orig_qindex_rdmult, cm->seq_params->bit_depth, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); const int new_qindex_rdmult = quant_params->base_qindex + x->rdmult_delta_qindex + quant_params->y_dc_delta_q; const int new_rdmult = av1_compute_rd_mult( new_qindex_rdmult, cm->seq_params->bit_depth, cpi->ppi->gf_group.update_type[cpi->gf_frame_index], layer_depth, boost_index, frame_type, cpi->oxcf.q_cfg.use_fixed_qp_offsets, is_stat_consumption_stage(cpi)); const double scaling_factor = (double)new_rdmult / (double)orig_rdmult; double scale_adj = log(scaling_factor) - log_sum / base_block_count; scale_adj = exp_bounded(scale_adj); for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col_sr / num_mi_h; col < num_cols && col < mi_col_sr / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; cpi->ppi->tpl_sb_rdmult_scaling_factors[index] = scale_adj * cpi->tpl_rdmult_scaling_factors[index]; } } } double av1_exponential_entropy(double q_step, double b) { b = AOMMAX(b, TPL_EPSILON); double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON); return -log2(1 - z) - z * log2(z) / (1 - z); } double av1_laplace_entropy(double q_step, double b, double zero_bin_ratio) { // zero bin's size is zero_bin_ratio * q_step // non-zero bin's size is q_step b = AOMMAX(b, TPL_EPSILON); double z = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON); double h = av1_exponential_entropy(q_step, b); double r = -(1 - z) * log2(1 - z) - z * log2(z) + z * (h + 1); return r; } double av1_laplace_estimate_frame_rate(int q_index, int block_count, const double *abs_coeff_mean, int coeff_num) { double zero_bin_ratio = 2; double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.; double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.; double est_rate = 0; // dc coeff est_rate += av1_laplace_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio); // ac coeff for (int i = 1; i < coeff_num; ++i) { est_rate += av1_laplace_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio); } est_rate *= block_count; return est_rate; } double av1_estimate_coeff_entropy(double q_step, double b, double zero_bin_ratio, int qcoeff) { b = AOMMAX(b, TPL_EPSILON); int abs_qcoeff = abs(qcoeff); double z0 = fmax(exp_bounded(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON); if (abs_qcoeff == 0) { double r = -log2(1 - z0); return r; } else { double z = fmax(exp_bounded(-q_step / b), TPL_EPSILON); double r = 1 - log2(z0) - log2(1 - z) - (abs_qcoeff - 1) * log2(z); return r; } } double av1_estimate_txfm_block_entropy(int q_index, const double *abs_coeff_mean, int *qcoeff_arr, int coeff_num) { double zero_bin_ratio = 2; double dc_q_step = av1_dc_quant_QTX(q_index, 0, AOM_BITS_8) / 4.; double ac_q_step = av1_ac_quant_QTX(q_index, 0, AOM_BITS_8) / 4.; double est_rate = 0; // dc coeff est_rate += av1_estimate_coeff_entropy(dc_q_step, abs_coeff_mean[0], zero_bin_ratio, qcoeff_arr[0]); // ac coeff for (int i = 1; i < coeff_num; ++i) { est_rate += av1_estimate_coeff_entropy(ac_q_step, abs_coeff_mean[i], zero_bin_ratio, qcoeff_arr[i]); } return est_rate; } #if CONFIG_RD_COMMAND void av1_read_rd_command(const char *filepath, RD_COMMAND *rd_command) { FILE *fptr = fopen(filepath, "r"); fscanf(fptr, "%d", &rd_command->frame_count); rd_command->frame_index = 0; for (int i = 0; i < rd_command->frame_count; ++i) { int option; fscanf(fptr, "%d", &option); rd_command->option_ls[i] = (RD_OPTION)option; if (option == RD_OPTION_SET_Q) { fscanf(fptr, "%d", &rd_command->q_index_ls[i]); } else if (option == RD_OPTION_SET_Q_RDMULT) { fscanf(fptr, "%d", &rd_command->q_index_ls[i]); fscanf(fptr, "%d", &rd_command->rdmult_ls[i]); } } fclose(fptr); } #endif // CONFIG_RD_COMMAND double av1_tpl_get_frame_importance(const TplParams *tpl_data, int gf_frame_index) { const TplDepFrame *tpl_frame = &tpl_data->tpl_frame[gf_frame_index]; const TplDepStats *tpl_stats = tpl_frame->tpl_stats_ptr; const int tpl_stride = tpl_frame->stride; double intra_cost_base = 0; double mc_dep_cost_base = 0; double cbcmp_base = 1; const int step = 1 << tpl_data->tpl_stats_block_mis_log2; for (int row = 0; row < tpl_frame->mi_rows; row += step) { for (int col = 0; col < tpl_frame->mi_cols; col += step) { const TplDepStats *this_stats = &tpl_stats[av1_tpl_ptr_pos( row, col, tpl_stride, tpl_data->tpl_stats_block_mis_log2)]; double cbcmp = (double)this_stats->srcrf_dist; const int64_t mc_dep_delta = RDCOST(tpl_frame->base_rdmult, this_stats->mc_dep_rate, this_stats->mc_dep_dist); double dist_scaled = (double)(this_stats->recrf_dist << RDDIV_BITS); dist_scaled = AOMMAX(dist_scaled, 1); intra_cost_base += log(dist_scaled) * cbcmp; mc_dep_cost_base += log(dist_scaled + mc_dep_delta) * cbcmp; cbcmp_base += cbcmp; } } return exp((mc_dep_cost_base - intra_cost_base) / cbcmp_base); } double av1_tpl_get_qstep_ratio(const TplParams *tpl_data, int gf_frame_index) { if (!av1_tpl_stats_ready(tpl_data, gf_frame_index)) { return 1; } const double frame_importance = av1_tpl_get_frame_importance(tpl_data, gf_frame_index); return sqrt(1 / frame_importance); } int av1_get_q_index_from_qstep_ratio(int leaf_qindex, double qstep_ratio, aom_bit_depth_t bit_depth) { const double leaf_qstep = av1_dc_quant_QTX(leaf_qindex, 0, bit_depth); const double target_qstep = leaf_qstep * qstep_ratio; int qindex = leaf_qindex; if (qstep_ratio < 1.0) { for (qindex = leaf_qindex; qindex > 0; --qindex) { const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth); if (qstep <= target_qstep) break; } } else { for (qindex = leaf_qindex; qindex <= MAXQ; ++qindex) { const double qstep = av1_dc_quant_QTX(qindex, 0, bit_depth); if (qstep >= target_qstep) break; } } return qindex; } int av1_tpl_get_q_index(const TplParams *tpl_data, int gf_frame_index, int leaf_qindex, aom_bit_depth_t bit_depth) { const double qstep_ratio = av1_tpl_get_qstep_ratio(tpl_data, gf_frame_index); return av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth); } #if CONFIG_BITRATE_ACCURACY void av1_vbr_rc_init(VBR_RATECTRL_INFO *vbr_rc_info, double total_bit_budget, int show_frame_count) { av1_zero(*vbr_rc_info); vbr_rc_info->ready = 0; vbr_rc_info->total_bit_budget = total_bit_budget; vbr_rc_info->show_frame_count = show_frame_count; const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.94559, 1, 0.94559, 1, 1, 0.94559 }; // TODO(angiebird): Based on the previous code, only the scale factor 0.94559 // will be used in most of the cases with --limi=17. Figure out if the // following scale factors works better. // const double scale_factors[FRAME_UPDATE_TYPES] = { 0.94559, 0.12040, 1, // 1.10199, 1, 1, // 0.16393 }; const double mv_scale_factors[FRAME_UPDATE_TYPES] = { 3, 3, 3, 3, 3, 3, 3 }; memcpy(vbr_rc_info->scale_factors, scale_factors, sizeof(scale_factors[0]) * FRAME_UPDATE_TYPES); memcpy(vbr_rc_info->mv_scale_factors, mv_scale_factors, sizeof(mv_scale_factors[0]) * FRAME_UPDATE_TYPES); vbr_rc_reset_gop_data(vbr_rc_info); #if CONFIG_THREE_PASS // TODO(angiebird): Explain why we use -1 here vbr_rc_info->cur_gop_idx = -1; vbr_rc_info->gop_count = 0; vbr_rc_info->total_frame_count = 0; #endif // CONFIG_THREE_PASS } #if CONFIG_THREE_PASS int av1_vbr_rc_frame_coding_idx(const VBR_RATECTRL_INFO *vbr_rc_info, int gf_frame_index) { int gop_idx = vbr_rc_info->cur_gop_idx; int gop_start_idx = vbr_rc_info->gop_start_idx_list[gop_idx]; return gop_start_idx + gf_frame_index; } void av1_vbr_rc_append_tpl_info(VBR_RATECTRL_INFO *vbr_rc_info, const TPL_INFO *tpl_info) { int gop_start_idx = vbr_rc_info->total_frame_count; vbr_rc_info->gop_start_idx_list[vbr_rc_info->gop_count] = gop_start_idx; vbr_rc_info->gop_length_list[vbr_rc_info->gop_count] = tpl_info->gf_length; assert(gop_start_idx + tpl_info->gf_length <= VBR_RC_INFO_MAX_FRAMES); for (int i = 0; i < tpl_info->gf_length; ++i) { vbr_rc_info->txfm_stats_list[gop_start_idx + i] = tpl_info->txfm_stats_list[i]; vbr_rc_info->qstep_ratio_list[gop_start_idx + i] = tpl_info->qstep_ratio_ls[i]; vbr_rc_info->update_type_list[gop_start_idx + i] = tpl_info->update_type_list[i]; } vbr_rc_info->total_frame_count += tpl_info->gf_length; vbr_rc_info->gop_count++; } #endif // CONFIG_THREE_PASS void av1_vbr_rc_set_gop_bit_budget(VBR_RATECTRL_INFO *vbr_rc_info, int gop_showframe_count) { vbr_rc_info->gop_showframe_count = gop_showframe_count; vbr_rc_info->gop_bit_budget = vbr_rc_info->total_bit_budget * gop_showframe_count / vbr_rc_info->show_frame_count; } void av1_vbr_rc_compute_q_indices(int base_q_index, int frame_count, const double *qstep_ratio_list, aom_bit_depth_t bit_depth, int *q_index_list) { for (int i = 0; i < frame_count; ++i) { q_index_list[i] = av1_get_q_index_from_qstep_ratio( base_q_index, qstep_ratio_list[i], bit_depth); } } double av1_vbr_rc_info_estimate_gop_bitrate( int base_q_index, aom_bit_depth_t bit_depth, const double *update_type_scale_factors, int frame_count, const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list, const TplTxfmStats *stats_list, int *q_index_list, double *estimated_bitrate_byframe) { av1_vbr_rc_compute_q_indices(base_q_index, frame_count, qstep_ratio_list, bit_depth, q_index_list); double estimated_gop_bitrate = 0; for (int frame_index = 0; frame_index < frame_count; frame_index++) { const TplTxfmStats *frame_stats = &stats_list[frame_index]; double frame_bitrate = 0; if (frame_stats->ready) { int q_index = q_index_list[frame_index]; frame_bitrate = av1_laplace_estimate_frame_rate( q_index, frame_stats->txfm_block_count, frame_stats->abs_coeff_mean, frame_stats->coeff_num); } FRAME_UPDATE_TYPE update_type = update_type_list[frame_index]; estimated_gop_bitrate += frame_bitrate * update_type_scale_factors[update_type]; if (estimated_bitrate_byframe != NULL) { estimated_bitrate_byframe[frame_index] = frame_bitrate; } } return estimated_gop_bitrate; } int av1_vbr_rc_info_estimate_base_q( double bit_budget, aom_bit_depth_t bit_depth, const double *update_type_scale_factors, int frame_count, const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list, const TplTxfmStats *stats_list, int *q_index_list, double *estimated_bitrate_byframe) { int q_max = 255; // Maximum q value. int q_min = 0; // Minimum q value. int q = (q_max + q_min) / 2; double q_max_estimate = av1_vbr_rc_info_estimate_gop_bitrate( q_max, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); double q_min_estimate = av1_vbr_rc_info_estimate_gop_bitrate( q_min, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); while (q_min + 1 < q_max) { double estimate = av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); if (estimate > bit_budget) { q_min = q; q_min_estimate = estimate; } else { q_max = q; q_max_estimate = estimate; } q = (q_max + q_min) / 2; } // Pick the estimate that lands closest to the budget. if (fabs(q_max_estimate - bit_budget) < fabs(q_min_estimate - bit_budget)) { q = q_max; } else { q = q_min; } // Update q_index_list and vbr_rc_info. av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); return q; } void av1_vbr_rc_update_q_index_list(VBR_RATECTRL_INFO *vbr_rc_info, const TplParams *tpl_data, const GF_GROUP *gf_group, aom_bit_depth_t bit_depth) { vbr_rc_info->q_index_list_ready = 1; double gop_bit_budget = vbr_rc_info->gop_bit_budget; for (int i = 0; i < gf_group->size; i++) { vbr_rc_info->qstep_ratio_list[i] = av1_tpl_get_qstep_ratio(tpl_data, i); } double mv_bits = 0; for (int i = 0; i < gf_group->size; i++) { double frame_mv_bits = 0; if (av1_tpl_stats_ready(tpl_data, i)) { TplDepFrame *tpl_frame = &tpl_data->tpl_frame[i]; frame_mv_bits = av1_tpl_compute_frame_mv_entropy( tpl_frame, tpl_data->tpl_stats_block_mis_log2); FRAME_UPDATE_TYPE updae_type = gf_group->update_type[i]; mv_bits += frame_mv_bits * vbr_rc_info->mv_scale_factors[updae_type]; } } mv_bits = AOMMIN(mv_bits, 0.6 * gop_bit_budget); gop_bit_budget -= mv_bits; vbr_rc_info->base_q_index = av1_vbr_rc_info_estimate_base_q( gop_bit_budget, bit_depth, vbr_rc_info->scale_factors, gf_group->size, gf_group->update_type, vbr_rc_info->qstep_ratio_list, tpl_data->txfm_stats_list, vbr_rc_info->q_index_list, NULL); } #endif // CONFIG_BITRATE_ACCURACY // Use upper and left neighbor block as the reference MVs. // Compute the minimum difference between current MV and reference MV. int_mv av1_compute_mv_difference(const TplDepFrame *tpl_frame, int row, int col, int step, int tpl_stride, int right_shift) { const TplDepStats *tpl_stats = &tpl_frame ->tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_stride, right_shift)]; int_mv current_mv = tpl_stats->mv[tpl_stats->ref_frame_index[0]]; int current_mv_magnitude = abs(current_mv.as_mv.row) + abs(current_mv.as_mv.col); // Retrieve the up and left neighbors. int up_error = INT_MAX; int_mv up_mv_diff; if (row - step >= 0) { tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos( row - step, col, tpl_stride, right_shift)]; up_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]]; up_mv_diff.as_mv.row = current_mv.as_mv.row - up_mv_diff.as_mv.row; up_mv_diff.as_mv.col = current_mv.as_mv.col - up_mv_diff.as_mv.col; up_error = abs(up_mv_diff.as_mv.row) + abs(up_mv_diff.as_mv.col); } int left_error = INT_MAX; int_mv left_mv_diff; if (col - step >= 0) { tpl_stats = &tpl_frame->tpl_stats_ptr[av1_tpl_ptr_pos( row, col - step, tpl_stride, right_shift)]; left_mv_diff = tpl_stats->mv[tpl_stats->ref_frame_index[0]]; left_mv_diff.as_mv.row = current_mv.as_mv.row - left_mv_diff.as_mv.row; left_mv_diff.as_mv.col = current_mv.as_mv.col - left_mv_diff.as_mv.col; left_error = abs(left_mv_diff.as_mv.row) + abs(left_mv_diff.as_mv.col); } // Return the MV with the minimum distance from current. if (up_error < left_error && up_error < current_mv_magnitude) { return up_mv_diff; } else if (left_error < up_error && left_error < current_mv_magnitude) { return left_mv_diff; } return current_mv; } /* Compute the entropy of motion vectors for a single frame. */ double av1_tpl_compute_frame_mv_entropy(const TplDepFrame *tpl_frame, uint8_t right_shift) { if (!tpl_frame->is_valid) { return 0; } int count_row[500] = { 0 }; int count_col[500] = { 0 }; int n = 0; // number of MVs to process const int tpl_stride = tpl_frame->stride; const int step = 1 << right_shift; for (int row = 0; row < tpl_frame->mi_rows; row += step) { for (int col = 0; col < tpl_frame->mi_cols; col += step) { int_mv mv = av1_compute_mv_difference(tpl_frame, row, col, step, tpl_stride, right_shift); count_row[clamp(mv.as_mv.row, 0, 499)] += 1; count_col[clamp(mv.as_mv.row, 0, 499)] += 1; n += 1; } } // Estimate the bits used using the entropy formula. double rate_row = 0; double rate_col = 0; for (int i = 0; i < 500; i++) { if (count_row[i] != 0) { double p = count_row[i] / (double)n; rate_row += count_row[i] * -log2(p); } if (count_col[i] != 0) { double p = count_col[i] / (double)n; rate_col += count_col[i] * -log2(p); } } return rate_row + rate_col; }