/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "av1/encoder/tune_butteraugli.h" #include "aom_dsp/butteraugli.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/encoder_utils.h" #include "av1/encoder/extend.h" #include "av1/encoder/var_based_part.h" static const int resize_factor = 2; static void set_mb_butteraugli_rdmult_scaling(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *recon, const double K) { AV1_COMMON *const cm = &cpi->common; SequenceHeader *const seq_params = cm->seq_params; const CommonModeInfoParams *const mi_params = &cm->mi_params; const aom_color_range_t color_range = seq_params->color_range != 0 ? AOM_CR_FULL_RANGE : AOM_CR_STUDIO_RANGE; const int bit_depth = cpi->td.mb.e_mbd.bd; const int width = source->y_crop_width; const int height = source->y_crop_height; const int ss_x = source->subsampling_x; const int ss_y = source->subsampling_y; float *diffmap; CHECK_MEM_ERROR(cm, diffmap, aom_malloc(width * height * sizeof(*diffmap))); if (!aom_calc_butteraugli(source, recon, bit_depth, seq_params->matrix_coefficients, color_range, diffmap)) { aom_internal_error(cm->error, AOM_CODEC_ERROR, "Failed to calculate Butteraugli distances."); } const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize] / resize_factor; const int num_mi_h = mi_size_high[butteraugli_rdo_bsize] / resize_factor; const int num_cols = (mi_params->mi_cols / resize_factor + num_mi_w - 1) / num_mi_w; const int num_rows = (mi_params->mi_rows / resize_factor + num_mi_h - 1) / num_mi_h; const int block_w = num_mi_w << 2; const int block_h = num_mi_h << 2; double log_sum = 0.0; double blk_count = 0.0; // Loop through each block. for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; const int y_start = row * block_h; const int x_start = col * block_w; float dbutteraugli = 0.0f; float dmse = 0.0f; float px_count = 0.0f; // Loop through each pixel. for (int y = y_start; y < y_start + block_h && y < height; y++) { for (int x = x_start; x < x_start + block_w && x < width; x++) { dbutteraugli += powf(diffmap[y * width + x], 12.0f); float px_diff = source->y_buffer[y * source->y_stride + x] - recon->y_buffer[y * recon->y_stride + x]; dmse += px_diff * px_diff; px_count += 1.0f; } } const int y_end = AOMMIN((y_start >> ss_y) + (block_h >> ss_y), (height + ss_y) >> ss_y); for (int y = y_start >> ss_y; y < y_end; y++) { const int x_end = AOMMIN((x_start >> ss_x) + (block_w >> ss_x), (width + ss_x) >> ss_x); for (int x = x_start >> ss_x; x < x_end; x++) { const int src_px_index = y * source->uv_stride + x; const int recon_px_index = y * recon->uv_stride + x; const float px_diff_u = (float)(source->u_buffer[src_px_index] - recon->u_buffer[recon_px_index]); const float px_diff_v = (float)(source->v_buffer[src_px_index] - recon->v_buffer[recon_px_index]); dmse += px_diff_u * px_diff_u + px_diff_v * px_diff_v; px_count += 2.0f; } } dbutteraugli = powf(dbutteraugli, 1.0f / 12.0f); dmse = dmse / px_count; const float eps = 0.01f; double weight; if (dbutteraugli < eps || dmse < eps) { weight = -1.0; } else { blk_count += 1.0; weight = dmse / dbutteraugli; weight = AOMMIN(weight, 5.0); weight += K; log_sum += log(weight); } cpi->butteraugli_info.rdmult_scaling_factors[index] = weight; } } // Geometric average of the weights. log_sum = exp(log_sum / blk_count); for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; double *weight = &cpi->butteraugli_info.rdmult_scaling_factors[index]; if (*weight <= 0.0) { *weight = 1.0; } else { *weight /= log_sum; } *weight = AOMMIN(*weight, 2.5); *weight = AOMMAX(*weight, 0.4); } } aom_free(diffmap); } void av1_set_butteraugli_rdmult(const AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, int mi_row, int mi_col, int *rdmult) { assert(cpi->oxcf.tune_cfg.tuning == AOM_TUNE_BUTTERAUGLI); if (!cpi->butteraugli_info.recon_set) { return; } const AV1_COMMON *const cm = &cpi->common; const int num_mi_w = mi_size_wide[butteraugli_rdo_bsize]; const int num_mi_h = mi_size_high[butteraugli_rdo_bsize]; const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; double num_of_mi = 0.0; double geom_mean_of_scale = 0.0; for (int row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (int col = mi_col / num_mi_h; col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; geom_mean_of_scale += log(cpi->butteraugli_info.rdmult_scaling_factors[index]); num_of_mi += 1.0; } } geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); *rdmult = AOMMAX(*rdmult, 0); av1_set_error_per_bit(&x->errorperbit, *rdmult); } static void copy_plane(const uint8_t *src, int src_stride, uint8_t *dst, int dst_stride, int w, int h) { for (int row = 0; row < h; row++) { memcpy(dst, src, w); src += src_stride; dst += dst_stride; } } static void copy_img(const YV12_BUFFER_CONFIG *src, YV12_BUFFER_CONFIG *dst, int width, int height) { copy_plane(src->y_buffer, src->y_stride, dst->y_buffer, dst->y_stride, width, height); const int width_uv = (width + src->subsampling_x) >> src->subsampling_x; const int height_uv = (height + src->subsampling_y) >> src->subsampling_y; copy_plane(src->u_buffer, src->uv_stride, dst->u_buffer, dst->uv_stride, width_uv, height_uv); copy_plane(src->v_buffer, src->uv_stride, dst->v_buffer, dst->uv_stride, width_uv, height_uv); } static void zero_plane(uint8_t *dst, int dst_stride, int h) { for (int row = 0; row < h; row++) { memset(dst, 0, dst_stride); dst += dst_stride; } } static void zero_img(YV12_BUFFER_CONFIG *dst) { zero_plane(dst->y_buffer, dst->y_stride, dst->y_height); zero_plane(dst->u_buffer, dst->uv_stride, dst->uv_height); zero_plane(dst->v_buffer, dst->uv_stride, dst->uv_height); } void av1_setup_butteraugli_source(AV1_COMP *cpi) { YV12_BUFFER_CONFIG *const dst = &cpi->butteraugli_info.source; AV1_COMMON *const cm = &cpi->common; const int width = cpi->source->y_crop_width; const int height = cpi->source->y_crop_height; const int bit_depth = cpi->td.mb.e_mbd.bd; const int ss_x = cpi->source->subsampling_x; const int ss_y = cpi->source->subsampling_y; if (dst->buffer_alloc_sz == 0) { aom_alloc_frame_buffer( dst, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); } av1_copy_and_extend_frame(cpi->source, dst); YV12_BUFFER_CONFIG *const resized_dst = &cpi->butteraugli_info.resized_source; if (resized_dst->buffer_alloc_sz == 0) { aom_alloc_frame_buffer( resized_dst, width / resize_factor, height / resize_factor, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); } if (!av1_resize_and_extend_frame_nonnormative( cpi->source, resized_dst, bit_depth, av1_num_planes(cm))) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating buffers during resize"); } zero_img(cpi->source); copy_img(resized_dst, cpi->source, width / resize_factor, height / resize_factor); } void av1_setup_butteraugli_rdmult_and_restore_source(AV1_COMP *cpi, double K) { av1_copy_and_extend_frame(&cpi->butteraugli_info.source, cpi->source); AV1_COMMON *const cm = &cpi->common; const int width = cpi->source->y_crop_width; const int height = cpi->source->y_crop_height; const int ss_x = cpi->source->subsampling_x; const int ss_y = cpi->source->subsampling_y; YV12_BUFFER_CONFIG resized_recon; memset(&resized_recon, 0, sizeof(resized_recon)); aom_alloc_frame_buffer( &resized_recon, width / resize_factor, height / resize_factor, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); copy_img(&cpi->common.cur_frame->buf, &resized_recon, width / resize_factor, height / resize_factor); set_mb_butteraugli_rdmult_scaling(cpi, &cpi->butteraugli_info.resized_source, &resized_recon, K); cpi->butteraugli_info.recon_set = true; aom_free_frame_buffer(&resized_recon); } void av1_setup_butteraugli_rdmult(AV1_COMP *cpi) { AV1_COMMON *const cm = &cpi->common; const AV1EncoderConfig *const oxcf = &cpi->oxcf; const QuantizationCfg *const q_cfg = &oxcf->q_cfg; const int q_index = 96; // Setup necessary params for encoding, including frame source, etc. if (cm->current_frame.frame_type == KEY_FRAME) copy_frame_prob_info(cpi); av1_set_frame_size(cpi, cm->superres_upscaled_width, cm->superres_upscaled_height); cpi->source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_source, &cpi->scaled_source, cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); if (cpi->unscaled_last_source != NULL) { cpi->last_source = av1_realloc_and_scale_if_required( cm, cpi->unscaled_last_source, &cpi->scaled_last_source, cm->features.interp_filter, 0, false, false, cpi->oxcf.border_in_pixels, cpi->alloc_pyramid); } av1_setup_butteraugli_source(cpi); av1_setup_frame(cpi); if (cm->seg.enabled) { if (!cm->seg.update_data && cm->prev_frame) { segfeatures_copy(&cm->seg, &cm->prev_frame->seg); cm->seg.enabled = cm->prev_frame->seg.enabled; } else { av1_calculate_segdata(&cm->seg); } } else { memset(&cm->seg, 0, sizeof(cm->seg)); } segfeatures_copy(&cm->cur_frame->seg, &cm->seg); cm->cur_frame->seg.enabled = cm->seg.enabled; const PARTITION_SEARCH_TYPE partition_search_type = cpi->sf.part_sf.partition_search_type; const BLOCK_SIZE fixed_partition_size = cpi->sf.part_sf.fixed_partition_size; // Enable a quicker pass by uncommenting the following lines: // cpi->sf.part_sf.partition_search_type = FIXED_PARTITION; // cpi->sf.part_sf.fixed_partition_size = BLOCK_32X32; av1_set_quantizer(cm, q_cfg->qm_minlevel, q_cfg->qm_maxlevel, q_index, q_cfg->enable_chroma_deltaq, q_cfg->enable_hdr_deltaq); av1_set_speed_features_qindex_dependent(cpi, oxcf->speed); av1_init_quantizer(&cpi->enc_quant_dequant_params, &cm->quant_params, cm->seq_params->bit_depth); av1_set_variance_partition_thresholds(cpi, q_index, 0); av1_encode_frame(cpi); av1_setup_butteraugli_rdmult_and_restore_source(cpi, 0.3); cpi->sf.part_sf.partition_search_type = partition_search_type; cpi->sf.part_sf.fixed_partition_size = fixed_partition_size; }