/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "av1/encoder/tune_vmaf.h" #include "aom_dsp/psnr.h" #include "av1/encoder/extend.h" #include "av1/encoder/rdopt.h" #include "config/aom_scale_rtcd.h" static const double kBaselineVmaf = 97.42773; static double get_layer_value(const double *array, int layer) { while (array[layer] < 0.0 && layer > 0) layer--; return AOMMAX(array[layer], 0.0); } static void motion_search(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *ref, const BLOCK_SIZE block_size, const int mb_row, const int mb_col, FULLPEL_MV *ref_mv) { // Block information (ONLY Y-plane is used for motion search). const int mb_height = block_size_high[block_size]; const int mb_width = block_size_wide[block_size]; const int y_stride = src->y_stride; assert(y_stride == ref->y_stride); const int y_offset = mb_row * mb_height * y_stride + mb_col * mb_width; // Save input state. MACROBLOCK *const mb = &cpi->td.mb; MACROBLOCKD *const mbd = &mb->e_mbd; const struct buf_2d ori_src_buf = mb->plane[0].src; const struct buf_2d ori_pre_buf = mbd->plane[0].pre[0]; // Parameters used for motion search. FULLPEL_MOTION_SEARCH_PARAMS full_ms_params; FULLPEL_MV_STATS best_mv_stats; const SEARCH_METHODS search_method = NSTEP; const search_site_config *search_site_cfg = cpi->mv_search_params.search_site_cfg[SS_CFG_FPF]; const int step_param = av1_init_search_range(AOMMAX(src->y_crop_width, src->y_crop_height)); // Baseline position for motion search (used for rate distortion comparison). const MV baseline_mv = kZeroMv; // Setup. mb->plane[0].src.buf = src->y_buffer + y_offset; mb->plane[0].src.stride = y_stride; mbd->plane[0].pre[0].buf = ref->y_buffer + y_offset; mbd->plane[0].pre[0].stride = y_stride; // Unused intermediate results for motion search. int cost_list[5]; // Do motion search. // Only do full search on the entire block. av1_make_default_fullpel_ms_params(&full_ms_params, cpi, mb, block_size, &baseline_mv, *ref_mv, search_site_cfg, search_method, /*fine_search_interval=*/0); av1_full_pixel_search(*ref_mv, &full_ms_params, step_param, cond_cost_list(cpi, cost_list), ref_mv, &best_mv_stats, NULL); // Restore input state. mb->plane[0].src = ori_src_buf; mbd->plane[0].pre[0] = ori_pre_buf; } static unsigned int residual_variance(const AV1_COMP *cpi, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *ref, const BLOCK_SIZE block_size, const int mb_row, const int mb_col, FULLPEL_MV ref_mv, unsigned int *sse) { const int mb_height = block_size_high[block_size]; const int mb_width = block_size_wide[block_size]; const int y_stride = src->y_stride; assert(y_stride == ref->y_stride); const int y_offset = mb_row * mb_height * y_stride + mb_col * mb_width; const int mv_offset = ref_mv.row * y_stride + ref_mv.col; const unsigned int var = cpi->ppi->fn_ptr[block_size].vf( ref->y_buffer + y_offset + mv_offset, y_stride, src->y_buffer + y_offset, y_stride, sse); return var; } static double frame_average_variance(const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const frame) { const MACROBLOCKD *const xd = &cpi->td.mb.e_mbd; const uint8_t *const y_buffer = frame->y_buffer; const int y_stride = frame->y_stride; const BLOCK_SIZE block_size = BLOCK_64X64; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; int row, col; double var = 0.0, var_count = 0.0; const int use_hbd = frame->flags & YV12_FLAG_HIGHBITDEPTH; // Loop through each block. for (row = 0; row < frame->y_height / block_h; ++row) { for (col = 0; col < frame->y_width / block_w; ++col) { struct buf_2d buf; const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; buf.buf = (uint8_t *)y_buffer + row_offset_y * y_stride + col_offset_y; buf.stride = y_stride; var += av1_get_perpixel_variance(cpi, xd, &buf, block_size, AOM_PLANE_Y, use_hbd); var_count += 1.0; } } var /= var_count; return var; } static double residual_frame_average_variance(AV1_COMP *cpi, const YV12_BUFFER_CONFIG *src, const YV12_BUFFER_CONFIG *ref, FULLPEL_MV *mvs) { if (ref == NULL) return frame_average_variance(cpi, src); const BLOCK_SIZE block_size = BLOCK_16X16; const int frame_height = src->y_height; const int frame_width = src->y_width; const int mb_height = block_size_high[block_size]; const int mb_width = block_size_wide[block_size]; const int mb_rows = (frame_height + mb_height - 1) / mb_height; const int mb_cols = (frame_width + mb_width - 1) / mb_width; const int num_planes = av1_num_planes(&cpi->common); const int mi_h = mi_size_high_log2[block_size]; const int mi_w = mi_size_wide_log2[block_size]; assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); // Save input state. MACROBLOCK *const mb = &cpi->td.mb; MACROBLOCKD *const mbd = &mb->e_mbd; uint8_t *input_buffer[MAX_MB_PLANE]; for (int i = 0; i < num_planes; i++) { input_buffer[i] = mbd->plane[i].pre[0].buf; } MB_MODE_INFO **input_mb_mode_info = mbd->mi; bool do_motion_search = false; if (mvs == NULL) { do_motion_search = true; CHECK_MEM_ERROR(&cpi->common, mvs, (FULLPEL_MV *)aom_calloc(mb_rows * mb_cols, sizeof(*mvs))); } unsigned int variance = 0; // Perform temporal filtering block by block. for (int mb_row = 0; mb_row < mb_rows; mb_row++) { av1_set_mv_row_limits(&cpi->common.mi_params, &mb->mv_limits, (mb_row << mi_h), (mb_height >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels); for (int mb_col = 0; mb_col < mb_cols; mb_col++) { av1_set_mv_col_limits(&cpi->common.mi_params, &mb->mv_limits, (mb_col << mi_w), (mb_width >> MI_SIZE_LOG2), cpi->oxcf.border_in_pixels); FULLPEL_MV *ref_mv = &mvs[mb_col + mb_row * mb_cols]; if (do_motion_search) { motion_search(cpi, src, ref, block_size, mb_row, mb_col, ref_mv); } unsigned int mv_sse; const unsigned int blk_var = residual_variance( cpi, src, ref, block_size, mb_row, mb_col, *ref_mv, &mv_sse); variance += blk_var; } } // Restore input state for (int i = 0; i < num_planes; i++) { mbd->plane[i].pre[0].buf = input_buffer[i]; } mbd->mi = input_mb_mode_info; return (double)variance / (double)(mb_rows * mb_cols); } // TODO(sdeng): Add the SIMD implementation. static AOM_INLINE void highbd_unsharp_rect(const uint16_t *source, int source_stride, const uint16_t *blurred, int blurred_stride, uint16_t *dst, int dst_stride, int w, int h, double amount, int bit_depth) { const int max_value = (1 << bit_depth) - 1; for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const double val = (double)source[j] + amount * ((double)source[j] - (double)blurred[j]); dst[j] = (uint16_t)clamp((int)(val + 0.5), 0, max_value); } source += source_stride; blurred += blurred_stride; dst += dst_stride; } } static AOM_INLINE void unsharp_rect(const uint8_t *source, int source_stride, const uint8_t *blurred, int blurred_stride, uint8_t *dst, int dst_stride, int w, int h, double amount) { for (int i = 0; i < h; ++i) { for (int j = 0; j < w; ++j) { const double val = (double)source[j] + amount * ((double)source[j] - (double)blurred[j]); dst[j] = (uint8_t)clamp((int)(val + 0.5), 0, 255); } source += source_stride; blurred += blurred_stride; dst += dst_stride; } } static AOM_INLINE void unsharp(const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *blurred, const YV12_BUFFER_CONFIG *dst, double amount) { const int bit_depth = cpi->td.mb.e_mbd.bd; if (cpi->common.seq_params->use_highbitdepth) { assert(source->flags & YV12_FLAG_HIGHBITDEPTH); assert(blurred->flags & YV12_FLAG_HIGHBITDEPTH); assert(dst->flags & YV12_FLAG_HIGHBITDEPTH); highbd_unsharp_rect(CONVERT_TO_SHORTPTR(source->y_buffer), source->y_stride, CONVERT_TO_SHORTPTR(blurred->y_buffer), blurred->y_stride, CONVERT_TO_SHORTPTR(dst->y_buffer), dst->y_stride, source->y_width, source->y_height, amount, bit_depth); } else { unsharp_rect(source->y_buffer, source->y_stride, blurred->y_buffer, blurred->y_stride, dst->y_buffer, dst->y_stride, source->y_width, source->y_height, amount); } } // 8-tap Gaussian convolution filter with sigma = 1.0, sums to 128, // all co-efficients must be even. DECLARE_ALIGNED(16, static const int16_t, gauss_filter[8]) = { 0, 8, 30, 52, 30, 8, 0, 0 }; static AOM_INLINE void gaussian_blur(const int bit_depth, const YV12_BUFFER_CONFIG *source, const YV12_BUFFER_CONFIG *dst) { const int block_size = BLOCK_128X128; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; const int num_cols = (source->y_width + block_w - 1) / block_w; const int num_rows = (source->y_height + block_h - 1) / block_h; int row, col; ConvolveParams conv_params = get_conv_params(0, 0, bit_depth); InterpFilterParams filter = { .filter_ptr = gauss_filter, .taps = 8, .interp_filter = EIGHTTAP_REGULAR }; for (row = 0; row < num_rows; ++row) { for (col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; uint8_t *src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *dst_buf = dst->y_buffer + row_offset_y * dst->y_stride + col_offset_y; if (source->flags & YV12_FLAG_HIGHBITDEPTH) { av1_highbd_convolve_2d_sr( CONVERT_TO_SHORTPTR(src_buf), source->y_stride, CONVERT_TO_SHORTPTR(dst_buf), dst->y_stride, block_w, block_h, &filter, &filter, 0, 0, &conv_params, bit_depth); } else { av1_convolve_2d_sr(src_buf, source->y_stride, dst_buf, dst->y_stride, block_w, block_h, &filter, &filter, 0, 0, &conv_params); } } } } static AOM_INLINE double cal_approx_vmaf( const AV1_COMP *const cpi, double source_variance, const YV12_BUFFER_CONFIG *const source, const YV12_BUFFER_CONFIG *const sharpened) { const int bit_depth = cpi->td.mb.e_mbd.bd; const bool cal_vmaf_neg = cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN; double new_vmaf; aom_calc_vmaf(cpi->vmaf_info.vmaf_model, source, sharpened, bit_depth, cal_vmaf_neg, &new_vmaf); const double sharpened_var = frame_average_variance(cpi, sharpened); return source_variance / sharpened_var * (new_vmaf - kBaselineVmaf); } static double find_best_frame_unsharp_amount_loop( const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source, const YV12_BUFFER_CONFIG *const blurred, const YV12_BUFFER_CONFIG *const sharpened, double best_vmaf, const double baseline_variance, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_amount) { const double min_amount = 0.0; int loop_count = 0; double approx_vmaf = best_vmaf; double unsharp_amount = unsharp_amount_start; do { best_vmaf = approx_vmaf; unsharp_amount += step_size; if (unsharp_amount > max_amount || unsharp_amount < min_amount) break; unsharp(cpi, source, blurred, sharpened, unsharp_amount); approx_vmaf = cal_approx_vmaf(cpi, baseline_variance, source, sharpened); loop_count++; } while (approx_vmaf > best_vmaf && loop_count < max_loop_count); unsharp_amount = approx_vmaf > best_vmaf ? unsharp_amount : unsharp_amount - step_size; return AOMMIN(max_amount, AOMMAX(unsharp_amount, min_amount)); } static double find_best_frame_unsharp_amount( const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source, const YV12_BUFFER_CONFIG *const blurred, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_filter_amount) { const AV1_COMMON *const cm = &cpi->common; const int width = source->y_width; const int height = source->y_height; YV12_BUFFER_CONFIG sharpened; memset(&sharpened, 0, sizeof(sharpened)); aom_alloc_frame_buffer( &sharpened, width, height, source->subsampling_x, source->subsampling_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); const double baseline_variance = frame_average_variance(cpi, source); double unsharp_amount; if (unsharp_amount_start <= step_size) { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, 0.0, baseline_variance, 0.0, step_size, max_loop_count, max_filter_amount); } else { double a0 = unsharp_amount_start - step_size, a1 = unsharp_amount_start; double v0, v1; unsharp(cpi, source, blurred, &sharpened, a0); v0 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened); unsharp(cpi, source, blurred, &sharpened, a1); v1 = cal_approx_vmaf(cpi, baseline_variance, source, &sharpened); if (fabs(v0 - v1) < 0.01) { unsharp_amount = a0; } else if (v0 > v1) { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, v0, baseline_variance, a0, -step_size, max_loop_count, max_filter_amount); } else { unsharp_amount = find_best_frame_unsharp_amount_loop( cpi, source, blurred, &sharpened, v1, baseline_variance, a1, step_size, max_loop_count, max_filter_amount); } } aom_free_frame_buffer(&sharpened); return unsharp_amount; } void av1_vmaf_neg_preprocessing(AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source) { const AV1_COMMON *const cm = &cpi->common; const int bit_depth = cpi->td.mb.e_mbd.bd; const int width = source->y_width; const int height = source->y_height; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], MAX_ARF_LAYERS - 1); const double best_frame_unsharp_amount = get_layer_value(cpi->vmaf_info.last_frame_unsharp_amount, layer_depth); if (best_frame_unsharp_amount <= 0.0) return; YV12_BUFFER_CONFIG blurred; memset(&blurred, 0, sizeof(blurred)); aom_alloc_frame_buffer( &blurred, width, height, source->subsampling_x, source->subsampling_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); gaussian_blur(bit_depth, source, &blurred); unsharp(cpi, source, &blurred, source, best_frame_unsharp_amount); aom_free_frame_buffer(&blurred); } void av1_vmaf_frame_preprocessing(AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source) { const AV1_COMMON *const cm = &cpi->common; const int bit_depth = cpi->td.mb.e_mbd.bd; const int width = source->y_width; const int height = source->y_height; YV12_BUFFER_CONFIG source_extended, blurred; memset(&source_extended, 0, sizeof(source_extended)); memset(&blurred, 0, sizeof(blurred)); aom_alloc_frame_buffer( &source_extended, width, height, source->subsampling_x, source->subsampling_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer( &blurred, width, height, source->subsampling_x, source->subsampling_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); av1_copy_and_extend_frame(source, &source_extended); gaussian_blur(bit_depth, &source_extended, &blurred); aom_free_frame_buffer(&source_extended); const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], MAX_ARF_LAYERS - 1); const double last_frame_unsharp_amount = get_layer_value(cpi->vmaf_info.last_frame_unsharp_amount, layer_depth); const double best_frame_unsharp_amount = find_best_frame_unsharp_amount( cpi, source, &blurred, last_frame_unsharp_amount, 0.05, 20, 1.01); cpi->vmaf_info.last_frame_unsharp_amount[layer_depth] = best_frame_unsharp_amount; unsharp(cpi, source, &blurred, source, best_frame_unsharp_amount); aom_free_frame_buffer(&blurred); } void av1_vmaf_blk_preprocessing(AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const source) { const AV1_COMMON *const cm = &cpi->common; const int width = source->y_width; const int height = source->y_height; const int bit_depth = cpi->td.mb.e_mbd.bd; const int ss_x = source->subsampling_x; const int ss_y = source->subsampling_y; YV12_BUFFER_CONFIG source_extended, blurred; memset(&blurred, 0, sizeof(blurred)); memset(&source_extended, 0, sizeof(source_extended)); aom_alloc_frame_buffer( &blurred, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&source_extended, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); av1_copy_and_extend_frame(source, &source_extended); gaussian_blur(bit_depth, &source_extended, &blurred); aom_free_frame_buffer(&source_extended); const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], MAX_ARF_LAYERS - 1); const double last_frame_unsharp_amount = get_layer_value(cpi->vmaf_info.last_frame_unsharp_amount, layer_depth); const double best_frame_unsharp_amount = find_best_frame_unsharp_amount( cpi, source, &blurred, last_frame_unsharp_amount, 0.05, 20, 1.01); cpi->vmaf_info.last_frame_unsharp_amount[layer_depth] = best_frame_unsharp_amount; const int block_size = BLOCK_64X64; const int block_w = mi_size_wide[block_size] * 4; const int block_h = mi_size_high[block_size] * 4; const int num_cols = (source->y_width + block_w - 1) / block_w; const int num_rows = (source->y_height + block_h - 1) / block_h; double *best_unsharp_amounts = aom_calloc(num_cols * num_rows, sizeof(*best_unsharp_amounts)); if (!best_unsharp_amounts) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating vmaf data"); } YV12_BUFFER_CONFIG source_block, blurred_block; memset(&source_block, 0, sizeof(source_block)); memset(&blurred_block, 0, sizeof(blurred_block)); aom_alloc_frame_buffer(&source_block, block_w, block_h, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&blurred_block, block_w, block_h, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; const int block_width = AOMMIN(width - col_offset_y, block_w); const int block_height = AOMMIN(height - row_offset_y, block_h); const int index = col + row * num_cols; if (cm->seq_params->use_highbitdepth) { assert(source->flags & YV12_FLAG_HIGHBITDEPTH); assert(blurred.flags & YV12_FLAG_HIGHBITDEPTH); uint16_t *frame_src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) + row_offset_y * source->y_stride + col_offset_y; uint16_t *frame_blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) + row_offset_y * blurred.y_stride + col_offset_y; uint16_t *blurred_dst = CONVERT_TO_SHORTPTR(blurred_block.y_buffer); uint16_t *src_dst = CONVERT_TO_SHORTPTR(source_block.y_buffer); // Copy block from source frame. for (int i = 0; i < block_h; ++i) { for (int j = 0; j < block_w; ++j) { if (i >= block_height || j >= block_width) { src_dst[j] = 0; blurred_dst[j] = 0; } else { src_dst[j] = frame_src_buf[j]; blurred_dst[j] = frame_blurred_buf[j]; } } frame_src_buf += source->y_stride; frame_blurred_buf += blurred.y_stride; src_dst += source_block.y_stride; blurred_dst += blurred_block.y_stride; } } else { uint8_t *frame_src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *frame_blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; uint8_t *blurred_dst = blurred_block.y_buffer; uint8_t *src_dst = source_block.y_buffer; // Copy block from source frame. for (int i = 0; i < block_h; ++i) { for (int j = 0; j < block_w; ++j) { if (i >= block_height || j >= block_width) { src_dst[j] = 0; blurred_dst[j] = 0; } else { src_dst[j] = frame_src_buf[j]; blurred_dst[j] = frame_blurred_buf[j]; } } frame_src_buf += source->y_stride; frame_blurred_buf += blurred.y_stride; src_dst += source_block.y_stride; blurred_dst += blurred_block.y_stride; } } best_unsharp_amounts[index] = find_best_frame_unsharp_amount( cpi, &source_block, &blurred_block, best_frame_unsharp_amount, 0.1, 3, 1.5); } } // Apply best blur amounts for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int row_offset_y = row * block_h; const int col_offset_y = col * block_w; const int block_width = AOMMIN(source->y_width - col_offset_y, block_w); const int block_height = AOMMIN(source->y_height - row_offset_y, block_h); const int index = col + row * num_cols; if (cm->seq_params->use_highbitdepth) { assert(source->flags & YV12_FLAG_HIGHBITDEPTH); assert(blurred.flags & YV12_FLAG_HIGHBITDEPTH); uint16_t *src_buf = CONVERT_TO_SHORTPTR(source->y_buffer) + row_offset_y * source->y_stride + col_offset_y; uint16_t *blurred_buf = CONVERT_TO_SHORTPTR(blurred.y_buffer) + row_offset_y * blurred.y_stride + col_offset_y; highbd_unsharp_rect(src_buf, source->y_stride, blurred_buf, blurred.y_stride, src_buf, source->y_stride, block_width, block_height, best_unsharp_amounts[index], bit_depth); } else { uint8_t *src_buf = source->y_buffer + row_offset_y * source->y_stride + col_offset_y; uint8_t *blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; unsharp_rect(src_buf, source->y_stride, blurred_buf, blurred.y_stride, src_buf, source->y_stride, block_width, block_height, best_unsharp_amounts[index]); } } } aom_free_frame_buffer(&source_block); aom_free_frame_buffer(&blurred_block); aom_free_frame_buffer(&blurred); aom_free(best_unsharp_amounts); } void av1_set_mb_vmaf_rdmult_scaling(AV1_COMP *cpi) { AV1_COMMON *cm = &cpi->common; const int y_width = cpi->source->y_width; const int y_height = cpi->source->y_height; const int resized_block_size = BLOCK_32X32; const int resize_factor = 2; const int bit_depth = cpi->td.mb.e_mbd.bd; const int ss_x = cpi->source->subsampling_x; const int ss_y = cpi->source->subsampling_y; YV12_BUFFER_CONFIG resized_source; memset(&resized_source, 0, sizeof(resized_source)); aom_alloc_frame_buffer( &resized_source, y_width / resize_factor, y_height / resize_factor, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); if (!av1_resize_and_extend_frame_nonnormative( cpi->source, &resized_source, bit_depth, av1_num_planes(cm))) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating buffers during resize"); } const int resized_y_width = resized_source.y_width; const int resized_y_height = resized_source.y_height; const int resized_block_w = mi_size_wide[resized_block_size] * 4; const int resized_block_h = mi_size_high[resized_block_size] * 4; const int num_cols = (resized_y_width + resized_block_w - 1) / resized_block_w; const int num_rows = (resized_y_height + resized_block_h - 1) / resized_block_h; YV12_BUFFER_CONFIG blurred; memset(&blurred, 0, sizeof(blurred)); aom_alloc_frame_buffer(&blurred, resized_y_width, resized_y_height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); gaussian_blur(bit_depth, &resized_source, &blurred); YV12_BUFFER_CONFIG recon; memset(&recon, 0, sizeof(recon)); aom_alloc_frame_buffer(&recon, resized_y_width, resized_y_height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_yv12_copy_frame(&resized_source, &recon, 1); VmafContext *vmaf_context; const bool cal_vmaf_neg = cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN; aom_init_vmaf_context(&vmaf_context, cpi->vmaf_info.vmaf_model, cal_vmaf_neg); unsigned int *sses = aom_calloc(num_rows * num_cols, sizeof(*sses)); if (!sses) { aom_internal_error(cm->error, AOM_CODEC_MEM_ERROR, "Error allocating vmaf data"); } // Loop through each 'block_size' block. for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; const int row_offset_y = row * resized_block_h; const int col_offset_y = col * resized_block_w; uint8_t *const orig_buf = resized_source.y_buffer + row_offset_y * resized_source.y_stride + col_offset_y; uint8_t *const blurred_buf = blurred.y_buffer + row_offset_y * blurred.y_stride + col_offset_y; cpi->ppi->fn_ptr[resized_block_size].vf(orig_buf, resized_source.y_stride, blurred_buf, blurred.y_stride, &sses[index]); uint8_t *const recon_buf = recon.y_buffer + row_offset_y * recon.y_stride + col_offset_y; // Set recon buf if (cpi->common.seq_params->use_highbitdepth) { highbd_unsharp_rect(CONVERT_TO_SHORTPTR(blurred_buf), blurred.y_stride, CONVERT_TO_SHORTPTR(blurred_buf), blurred.y_stride, CONVERT_TO_SHORTPTR(recon_buf), recon.y_stride, resized_block_w, resized_block_h, 0.0, bit_depth); } else { unsharp_rect(blurred_buf, blurred.y_stride, blurred_buf, blurred.y_stride, recon_buf, recon.y_stride, resized_block_w, resized_block_h, 0.0); } aom_read_vmaf_image(vmaf_context, &resized_source, &recon, bit_depth, index); // Restore recon buf if (cpi->common.seq_params->use_highbitdepth) { highbd_unsharp_rect( CONVERT_TO_SHORTPTR(orig_buf), resized_source.y_stride, CONVERT_TO_SHORTPTR(orig_buf), resized_source.y_stride, CONVERT_TO_SHORTPTR(recon_buf), recon.y_stride, resized_block_w, resized_block_h, 0.0, bit_depth); } else { unsharp_rect(orig_buf, resized_source.y_stride, orig_buf, resized_source.y_stride, recon_buf, recon.y_stride, resized_block_w, resized_block_h, 0.0); } } } aom_flush_vmaf_context(vmaf_context); for (int row = 0; row < num_rows; ++row) { for (int col = 0; col < num_cols; ++col) { const int index = row * num_cols + col; const double vmaf = aom_calc_vmaf_at_index( vmaf_context, cpi->vmaf_info.vmaf_model, index); const double dvmaf = kBaselineVmaf - vmaf; const double mse = (double)sses[index] / (double)(resized_y_width * resized_y_height); double weight; const double eps = 0.01 / (num_rows * num_cols); if (dvmaf < eps || mse < eps) { weight = 1.0; } else { weight = mse / dvmaf; } // Normalize it with a data fitted model. weight = 6.0 * (1.0 - exp(-0.05 * weight)) + 0.8; cpi->vmaf_info.rdmult_scaling_factors[index] = weight; } } aom_free_frame_buffer(&resized_source); aom_free_frame_buffer(&blurred); aom_close_vmaf_context(vmaf_context); aom_free(sses); } void av1_set_vmaf_rdmult(const AV1_COMP *const cpi, MACROBLOCK *const x, const BLOCK_SIZE bsize, const int mi_row, const int mi_col, int *const rdmult) { const AV1_COMMON *const cm = &cpi->common; const int bsize_base = BLOCK_64X64; const int num_mi_w = mi_size_wide[bsize_base]; const int num_mi_h = mi_size_high[bsize_base]; const int num_cols = (cm->mi_params.mi_cols + num_mi_w - 1) / num_mi_w; const int num_rows = (cm->mi_params.mi_rows + num_mi_h - 1) / num_mi_h; const int num_bcols = (mi_size_wide[bsize] + num_mi_w - 1) / num_mi_w; const int num_brows = (mi_size_high[bsize] + num_mi_h - 1) / num_mi_h; int row, col; double num_of_mi = 0.0; double geom_mean_of_scale = 0.0; for (row = mi_row / num_mi_w; row < num_rows && row < mi_row / num_mi_w + num_brows; ++row) { for (col = mi_col / num_mi_h; col < num_cols && col < mi_col / num_mi_h + num_bcols; ++col) { const int index = row * num_cols + col; geom_mean_of_scale += log(cpi->vmaf_info.rdmult_scaling_factors[index]); num_of_mi += 1.0; } } geom_mean_of_scale = exp(geom_mean_of_scale / num_of_mi); *rdmult = (int)((double)(*rdmult) * geom_mean_of_scale + 0.5); *rdmult = AOMMAX(*rdmult, 0); av1_set_error_per_bit(&x->errorperbit, *rdmult); } // TODO(sdeng): replace them with the SIMD versions. static AOM_INLINE double highbd_image_sad_c(const uint16_t *src, int src_stride, const uint16_t *ref, int ref_stride, int w, int h) { double accum = 0.0; int i, j; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { double img1px = src[i * src_stride + j]; double img2px = ref[i * ref_stride + j]; accum += fabs(img1px - img2px); } } return accum / (double)(h * w); } static AOM_INLINE double image_sad_c(const uint8_t *src, int src_stride, const uint8_t *ref, int ref_stride, int w, int h) { double accum = 0.0; int i, j; for (i = 0; i < h; ++i) { for (j = 0; j < w; ++j) { double img1px = src[i * src_stride + j]; double img2px = ref[i * ref_stride + j]; accum += fabs(img1px - img2px); } } return accum / (double)(h * w); } static double calc_vmaf_motion_score(const AV1_COMP *const cpi, const AV1_COMMON *const cm, const YV12_BUFFER_CONFIG *const cur, const YV12_BUFFER_CONFIG *const last, const YV12_BUFFER_CONFIG *const next) { const int y_width = cur->y_width; const int y_height = cur->y_height; YV12_BUFFER_CONFIG blurred_cur, blurred_last, blurred_next; const int bit_depth = cpi->td.mb.e_mbd.bd; const int ss_x = cur->subsampling_x; const int ss_y = cur->subsampling_y; memset(&blurred_cur, 0, sizeof(blurred_cur)); memset(&blurred_last, 0, sizeof(blurred_last)); memset(&blurred_next, 0, sizeof(blurred_next)); aom_alloc_frame_buffer(&blurred_cur, y_width, y_height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&blurred_last, y_width, y_height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&blurred_next, y_width, y_height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); gaussian_blur(bit_depth, cur, &blurred_cur); gaussian_blur(bit_depth, last, &blurred_last); if (next) gaussian_blur(bit_depth, next, &blurred_next); double motion1, motion2 = 65536.0; if (cm->seq_params->use_highbitdepth) { assert(blurred_cur.flags & YV12_FLAG_HIGHBITDEPTH); assert(blurred_last.flags & YV12_FLAG_HIGHBITDEPTH); const float scale_factor = 1.0f / (float)(1 << (bit_depth - 8)); motion1 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer), blurred_cur.y_stride, CONVERT_TO_SHORTPTR(blurred_last.y_buffer), blurred_last.y_stride, y_width, y_height) * scale_factor; if (next) { assert(blurred_next.flags & YV12_FLAG_HIGHBITDEPTH); motion2 = highbd_image_sad_c(CONVERT_TO_SHORTPTR(blurred_cur.y_buffer), blurred_cur.y_stride, CONVERT_TO_SHORTPTR(blurred_next.y_buffer), blurred_next.y_stride, y_width, y_height) * scale_factor; } } else { motion1 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride, blurred_last.y_buffer, blurred_last.y_stride, y_width, y_height); if (next) { motion2 = image_sad_c(blurred_cur.y_buffer, blurred_cur.y_stride, blurred_next.y_buffer, blurred_next.y_stride, y_width, y_height); } } aom_free_frame_buffer(&blurred_cur); aom_free_frame_buffer(&blurred_last); aom_free_frame_buffer(&blurred_next); return AOMMIN(motion1, motion2); } static AOM_INLINE void get_neighbor_frames(const AV1_COMP *const cpi, const YV12_BUFFER_CONFIG **last, const YV12_BUFFER_CONFIG **next) { const AV1_COMMON *const cm = &cpi->common; const GF_GROUP *gf_group = &cpi->ppi->gf_group; const int src_index = cm->show_frame != 0 ? 0 : gf_group->arf_src_offset[cpi->gf_frame_index]; struct lookahead_entry *last_entry = av1_lookahead_peek( cpi->ppi->lookahead, src_index - 1, cpi->compressor_stage); struct lookahead_entry *next_entry = av1_lookahead_peek( cpi->ppi->lookahead, src_index + 1, cpi->compressor_stage); *next = &next_entry->img; *last = cm->show_frame ? cpi->last_source : &last_entry->img; } // Calculates the new qindex from the VMAF motion score. This is based on the // observation: when the motion score becomes higher, the VMAF score of the // same source and distorted frames would become higher. int av1_get_vmaf_base_qindex(const AV1_COMP *const cpi, int current_qindex) { const AV1_COMMON *const cm = &cpi->common; if (cm->current_frame.frame_number == 0 || cpi->oxcf.pass == 1) { return current_qindex; } const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], MAX_ARF_LAYERS - 1); const double last_frame_ysse = get_layer_value(cpi->vmaf_info.last_frame_ysse, layer_depth); const double last_frame_vmaf = get_layer_value(cpi->vmaf_info.last_frame_vmaf, layer_depth); const int bit_depth = cpi->td.mb.e_mbd.bd; const double approx_sse = last_frame_ysse / (double)((1 << (bit_depth - 8)) * (1 << (bit_depth - 8))); const double approx_dvmaf = kBaselineVmaf - last_frame_vmaf; const double sse_threshold = 0.01 * cpi->source->y_width * cpi->source->y_height; const double vmaf_threshold = 0.01; if (approx_sse < sse_threshold || approx_dvmaf < vmaf_threshold) { return current_qindex; } const YV12_BUFFER_CONFIG *cur_buf = cpi->source; if (cm->show_frame == 0) { const int src_index = gf_group->arf_src_offset[cpi->gf_frame_index]; struct lookahead_entry *cur_entry = av1_lookahead_peek( cpi->ppi->lookahead, src_index, cpi->compressor_stage); cur_buf = &cur_entry->img; } assert(cur_buf); const YV12_BUFFER_CONFIG *next_buf, *last_buf; get_neighbor_frames(cpi, &last_buf, &next_buf); assert(last_buf); const double motion = calc_vmaf_motion_score(cpi, cm, cur_buf, last_buf, next_buf); // Get dVMAF through a data fitted model. const double dvmaf = 26.11 * (1.0 - exp(-0.06 * motion)); const double dsse = dvmaf * approx_sse / approx_dvmaf; // Clamping beta to address VQ issue (aomedia:3170). const double beta = AOMMAX(approx_sse / (dsse + approx_sse), 0.5); const int offset = av1_get_deltaq_offset(cm->seq_params->bit_depth, current_qindex, beta); int qindex = current_qindex + offset; qindex = AOMMIN(qindex, MAXQ); qindex = AOMMAX(qindex, MINQ); return qindex; } static AOM_INLINE double cal_approx_score( AV1_COMP *const cpi, double src_variance, double new_variance, double src_score, const YV12_BUFFER_CONFIG *const src, const YV12_BUFFER_CONFIG *const recon_sharpened) { double score; const uint32_t bit_depth = cpi->td.mb.e_mbd.bd; const bool cal_vmaf_neg = cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN; aom_calc_vmaf(cpi->vmaf_info.vmaf_model, src, recon_sharpened, bit_depth, cal_vmaf_neg, &score); return src_variance / new_variance * (score - src_score); } static double find_best_frame_unsharp_amount_loop_neg( AV1_COMP *const cpi, double src_variance, double base_score, const YV12_BUFFER_CONFIG *const src, const YV12_BUFFER_CONFIG *const recon, const YV12_BUFFER_CONFIG *const ref, const YV12_BUFFER_CONFIG *const src_blurred, const YV12_BUFFER_CONFIG *const recon_blurred, const YV12_BUFFER_CONFIG *const src_sharpened, const YV12_BUFFER_CONFIG *const recon_sharpened, FULLPEL_MV *mvs, double best_score, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_amount) { const double min_amount = 0.0; int loop_count = 0; double approx_score = best_score; double unsharp_amount = unsharp_amount_start; do { best_score = approx_score; unsharp_amount += step_size; if (unsharp_amount > max_amount || unsharp_amount < min_amount) break; unsharp(cpi, recon, recon_blurred, recon_sharpened, unsharp_amount); unsharp(cpi, src, src_blurred, src_sharpened, unsharp_amount); const double new_variance = residual_frame_average_variance(cpi, src_sharpened, ref, mvs); approx_score = cal_approx_score(cpi, src_variance, new_variance, base_score, src, recon_sharpened); loop_count++; } while (approx_score > best_score && loop_count < max_loop_count); unsharp_amount = approx_score > best_score ? unsharp_amount : unsharp_amount - step_size; return AOMMIN(max_amount, AOMMAX(unsharp_amount, min_amount)); } static double find_best_frame_unsharp_amount_neg( AV1_COMP *const cpi, const YV12_BUFFER_CONFIG *const src, const YV12_BUFFER_CONFIG *const recon, const YV12_BUFFER_CONFIG *const ref, double base_score, const double unsharp_amount_start, const double step_size, const int max_loop_count, const double max_filter_amount) { FULLPEL_MV *mvs = NULL; const double src_variance = residual_frame_average_variance(cpi, src, ref, mvs); const AV1_COMMON *const cm = &cpi->common; const int width = recon->y_width; const int height = recon->y_height; const int bit_depth = cpi->td.mb.e_mbd.bd; const int ss_x = recon->subsampling_x; const int ss_y = recon->subsampling_y; YV12_BUFFER_CONFIG src_blurred, recon_blurred, src_sharpened, recon_sharpened; memset(&recon_sharpened, 0, sizeof(recon_sharpened)); memset(&src_sharpened, 0, sizeof(src_sharpened)); memset(&recon_blurred, 0, sizeof(recon_blurred)); memset(&src_blurred, 0, sizeof(src_blurred)); aom_alloc_frame_buffer(&recon_sharpened, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&src_sharpened, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer(&recon_blurred, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); aom_alloc_frame_buffer( &src_blurred, width, height, ss_x, ss_y, cm->seq_params->use_highbitdepth, cpi->oxcf.border_in_pixels, cm->features.byte_alignment, false, 0); gaussian_blur(bit_depth, recon, &recon_blurred); gaussian_blur(bit_depth, src, &src_blurred); unsharp(cpi, recon, &recon_blurred, &recon_sharpened, unsharp_amount_start); unsharp(cpi, src, &src_blurred, &src_sharpened, unsharp_amount_start); const double variance_start = residual_frame_average_variance(cpi, &src_sharpened, ref, mvs); const double score_start = cal_approx_score( cpi, src_variance, variance_start, base_score, src, &recon_sharpened); const double unsharp_amount_next = unsharp_amount_start + step_size; unsharp(cpi, recon, &recon_blurred, &recon_sharpened, unsharp_amount_next); unsharp(cpi, src, &src_blurred, &src_sharpened, unsharp_amount_next); const double variance_next = residual_frame_average_variance(cpi, &src_sharpened, ref, mvs); const double score_next = cal_approx_score(cpi, src_variance, variance_next, base_score, src, &recon_sharpened); double unsharp_amount; if (score_next > score_start) { unsharp_amount = find_best_frame_unsharp_amount_loop_neg( cpi, src_variance, base_score, src, recon, ref, &src_blurred, &recon_blurred, &src_sharpened, &recon_sharpened, mvs, score_next, unsharp_amount_next, step_size, max_loop_count, max_filter_amount); } else { unsharp_amount = find_best_frame_unsharp_amount_loop_neg( cpi, src_variance, base_score, src, recon, ref, &src_blurred, &recon_blurred, &src_sharpened, &recon_sharpened, mvs, score_start, unsharp_amount_start, -step_size, max_loop_count, max_filter_amount); } aom_free_frame_buffer(&recon_sharpened); aom_free_frame_buffer(&src_sharpened); aom_free_frame_buffer(&recon_blurred); aom_free_frame_buffer(&src_blurred); aom_free(mvs); return unsharp_amount; } void av1_update_vmaf_curve(AV1_COMP *cpi) { const YV12_BUFFER_CONFIG *source = cpi->source; const YV12_BUFFER_CONFIG *recon = &cpi->common.cur_frame->buf; const int bit_depth = cpi->td.mb.e_mbd.bd; const GF_GROUP *const gf_group = &cpi->ppi->gf_group; const int layer_depth = AOMMIN(gf_group->layer_depth[cpi->gf_frame_index], MAX_ARF_LAYERS - 1); double base_score; const bool cal_vmaf_neg = cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN; aom_calc_vmaf(cpi->vmaf_info.vmaf_model, source, recon, bit_depth, cal_vmaf_neg, &base_score); cpi->vmaf_info.last_frame_vmaf[layer_depth] = base_score; if (cpi->common.seq_params->use_highbitdepth) { assert(source->flags & YV12_FLAG_HIGHBITDEPTH); assert(recon->flags & YV12_FLAG_HIGHBITDEPTH); cpi->vmaf_info.last_frame_ysse[layer_depth] = (double)aom_highbd_get_y_sse(source, recon); } else { cpi->vmaf_info.last_frame_ysse[layer_depth] = (double)aom_get_y_sse(source, recon); } if (cpi->oxcf.tune_cfg.tuning == AOM_TUNE_VMAF_NEG_MAX_GAIN) { const YV12_BUFFER_CONFIG *last, *next; get_neighbor_frames(cpi, &last, &next); double best_unsharp_amount_start = get_layer_value(cpi->vmaf_info.last_frame_unsharp_amount, layer_depth); const int max_loop_count = 5; cpi->vmaf_info.last_frame_unsharp_amount[layer_depth] = find_best_frame_unsharp_amount_neg(cpi, source, recon, last, base_score, best_unsharp_amount_start, 0.025, max_loop_count, 1.01); } }