/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_dsp/binary_codes_writer.h" #include "aom_ports/mem.h" #include "aom_ports/aom_timer.h" #include "av1/common/reconinter.h" #include "av1/common/blockd.h" #include "av1/encoder/encodeframe.h" #include "av1/encoder/var_based_part.h" #include "av1/encoder/reconinter_enc.h" #include "av1/encoder/rdopt_utils.h" // Possible values for the force_split variable while evaluating variance based // partitioning. enum { // Evaluate all partition types PART_EVAL_ALL = 0, // Force PARTITION_SPLIT PART_EVAL_ONLY_SPLIT = 1, // Force PARTITION_NONE PART_EVAL_ONLY_NONE = 2 } UENUM1BYTE(PART_EVAL_STATUS); typedef struct { VPVariance *part_variances; VPartVar *split[4]; } variance_node; static AOM_INLINE void tree_to_node(void *data, BLOCK_SIZE bsize, variance_node *node) { node->part_variances = NULL; switch (bsize) { case BLOCK_128X128: { VP128x128 *vt = (VP128x128 *)data; node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx].part_variances.none; break; } case BLOCK_64X64: { VP64x64 *vt = (VP64x64 *)data; node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx].part_variances.none; break; } case BLOCK_32X32: { VP32x32 *vt = (VP32x32 *)data; node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx].part_variances.none; break; } case BLOCK_16X16: { VP16x16 *vt = (VP16x16 *)data; node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx].part_variances.none; break; } case BLOCK_8X8: { VP8x8 *vt = (VP8x8 *)data; node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx].part_variances.none; break; } default: { VP4x4 *vt = (VP4x4 *)data; assert(bsize == BLOCK_4X4); node->part_variances = &vt->part_variances; for (int split_idx = 0; split_idx < 4; split_idx++) node->split[split_idx] = &vt->split[split_idx]; break; } } } // Set variance values given sum square error, sum error, count. static AOM_INLINE void fill_variance(uint32_t s2, int32_t s, int c, VPartVar *v) { v->sum_square_error = s2; v->sum_error = s; v->log2_count = c; } static AOM_INLINE void get_variance(VPartVar *v) { v->variance = (int)(256 * (v->sum_square_error - (uint32_t)(((int64_t)v->sum_error * v->sum_error) >> v->log2_count)) >> v->log2_count); } static AOM_INLINE void sum_2_variances(const VPartVar *a, const VPartVar *b, VPartVar *r) { assert(a->log2_count == b->log2_count); fill_variance(a->sum_square_error + b->sum_square_error, a->sum_error + b->sum_error, a->log2_count + 1, r); } static AOM_INLINE void fill_variance_tree(void *data, BLOCK_SIZE bsize) { variance_node node; memset(&node, 0, sizeof(node)); tree_to_node(data, bsize, &node); sum_2_variances(node.split[0], node.split[1], &node.part_variances->horz[0]); sum_2_variances(node.split[2], node.split[3], &node.part_variances->horz[1]); sum_2_variances(node.split[0], node.split[2], &node.part_variances->vert[0]); sum_2_variances(node.split[1], node.split[3], &node.part_variances->vert[1]); sum_2_variances(&node.part_variances->vert[0], &node.part_variances->vert[1], &node.part_variances->none); } static AOM_INLINE void set_block_size(AV1_COMP *const cpi, int mi_row, int mi_col, BLOCK_SIZE bsize) { if (cpi->common.mi_params.mi_cols > mi_col && cpi->common.mi_params.mi_rows > mi_row) { CommonModeInfoParams *mi_params = &cpi->common.mi_params; const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col); const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col); MB_MODE_INFO *mi = mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx]; mi->bsize = bsize; } } static int set_vt_partitioning(AV1_COMP *cpi, MACROBLOCKD *const xd, const TileInfo *const tile, void *data, BLOCK_SIZE bsize, int mi_row, int mi_col, int64_t threshold, BLOCK_SIZE bsize_min, PART_EVAL_STATUS force_split) { AV1_COMMON *const cm = &cpi->common; variance_node vt; const int block_width = mi_size_wide[bsize]; const int block_height = mi_size_high[bsize]; int bs_width_check = block_width; int bs_height_check = block_height; int bs_width_vert_check = block_width >> 1; int bs_height_horiz_check = block_height >> 1; // On the right and bottom boundary we only need to check // if half the bsize fits, because boundary is extended // up to 64. So do this check only for sb_size = 64X64. if (cm->seq_params->sb_size == BLOCK_64X64) { if (tile->mi_col_end == cm->mi_params.mi_cols) { bs_width_check = (block_width >> 1) + 1; bs_width_vert_check = (block_width >> 2) + 1; } if (tile->mi_row_end == cm->mi_params.mi_rows) { bs_height_check = (block_height >> 1) + 1; bs_height_horiz_check = (block_height >> 2) + 1; } } assert(block_height == block_width); tree_to_node(data, bsize, &vt); if (mi_col + bs_width_check <= tile->mi_col_end && mi_row + bs_height_check <= tile->mi_row_end && force_split == PART_EVAL_ONLY_NONE) { set_block_size(cpi, mi_row, mi_col, bsize); return 1; } if (force_split == PART_EVAL_ONLY_SPLIT) return 0; // For bsize=bsize_min (16x16/8x8 for 8x8/4x4 downsampling), select if // variance is below threshold, otherwise split will be selected. // No check for vert/horiz split as too few samples for variance. if (bsize == bsize_min) { // Variance already computed to set the force_split. if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); if (mi_col + bs_width_check <= tile->mi_col_end && mi_row + bs_height_check <= tile->mi_row_end && vt.part_variances->none.variance < threshold) { set_block_size(cpi, mi_row, mi_col, bsize); return 1; } return 0; } else if (bsize > bsize_min) { // Variance already computed to set the force_split. if (frame_is_intra_only(cm)) get_variance(&vt.part_variances->none); // For key frame: take split for bsize above 32X32 or very high variance. if (frame_is_intra_only(cm) && (bsize > BLOCK_32X32 || vt.part_variances->none.variance > (threshold << 4))) { return 0; } // If variance is low, take the bsize (no split). if (mi_col + bs_width_check <= tile->mi_col_end && mi_row + bs_height_check <= tile->mi_row_end && vt.part_variances->none.variance < threshold) { set_block_size(cpi, mi_row, mi_col, bsize); return 1; } // Check vertical split. if (mi_row + bs_height_check <= tile->mi_row_end && mi_col + bs_width_vert_check <= tile->mi_col_end) { BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_VERT); BLOCK_SIZE plane_bsize = get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x, xd->plane[AOM_PLANE_U].subsampling_y); get_variance(&vt.part_variances->vert[0]); get_variance(&vt.part_variances->vert[1]); if (vt.part_variances->vert[0].variance < threshold && vt.part_variances->vert[1].variance < threshold && plane_bsize < BLOCK_INVALID) { set_block_size(cpi, mi_row, mi_col, subsize); set_block_size(cpi, mi_row, mi_col + block_width / 2, subsize); return 1; } } // Check horizontal split. if (mi_col + bs_width_check <= tile->mi_col_end && mi_row + bs_height_horiz_check <= tile->mi_row_end) { BLOCK_SIZE subsize = get_partition_subsize(bsize, PARTITION_HORZ); BLOCK_SIZE plane_bsize = get_plane_block_size(subsize, xd->plane[AOM_PLANE_U].subsampling_x, xd->plane[AOM_PLANE_U].subsampling_y); get_variance(&vt.part_variances->horz[0]); get_variance(&vt.part_variances->horz[1]); if (vt.part_variances->horz[0].variance < threshold && vt.part_variances->horz[1].variance < threshold && plane_bsize < BLOCK_INVALID) { set_block_size(cpi, mi_row, mi_col, subsize); set_block_size(cpi, mi_row + block_height / 2, mi_col, subsize); return 1; } } return 0; } return 0; } static AOM_INLINE int all_blks_inside(int x16_idx, int y16_idx, int pixels_wide, int pixels_high) { int all_inside = 1; for (int idx = 0; idx < 4; idx++) { all_inside &= ((x16_idx + GET_BLK_IDX_X(idx, 3)) < pixels_wide); all_inside &= ((y16_idx + GET_BLK_IDX_Y(idx, 3)) < pixels_high); } return all_inside; } #if CONFIG_AV1_HIGHBITDEPTH // TODO(yunqingwang): Perform average of four 8x8 blocks similar to lowbd static AOM_INLINE void fill_variance_8x8avg_highbd( const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide, int pixels_high) { for (int idx = 0; idx < 4; idx++) { const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); unsigned int sse = 0; int sum = 0; if (x8_idx < pixels_wide && y8_idx < pixels_high) { int src_avg = aom_highbd_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride); int dst_avg = aom_highbd_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, dst_stride); sum = src_avg - dst_avg; sse = sum * sum; } fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none); } } #endif static AOM_INLINE void fill_variance_8x8avg_lowbd( const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int pixels_wide, int pixels_high) { unsigned int sse[4] = { 0 }; int sum[4] = { 0 }; if (all_blks_inside(x16_idx, y16_idx, pixels_wide, pixels_high)) { int src_avg[4]; int dst_avg[4]; aom_avg_8x8_quad(src_buf, src_stride, x16_idx, y16_idx, src_avg); aom_avg_8x8_quad(dst_buf, dst_stride, x16_idx, y16_idx, dst_avg); for (int idx = 0; idx < 4; idx++) { sum[idx] = src_avg[idx] - dst_avg[idx]; sse[idx] = sum[idx] * sum[idx]; } } else { for (int idx = 0; idx < 4; idx++) { const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); if (x8_idx < pixels_wide && y8_idx < pixels_high) { int src_avg = aom_avg_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride); int dst_avg = aom_avg_8x8(dst_buf + y8_idx * dst_stride + x8_idx, dst_stride); sum[idx] = src_avg - dst_avg; sse[idx] = sum[idx] * sum[idx]; } } } for (int idx = 0; idx < 4; idx++) { fill_variance(sse[idx], sum[idx], 0, &vst->split[idx].part_variances.none); } } // Obtain parameters required to calculate variance (such as sum, sse, etc,.) // at 8x8 sub-block level for a given 16x16 block. // The function can be called only when is_key_frame is false since sum is // computed between source and reference frames. static AOM_INLINE void fill_variance_8x8avg( const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, int dst_stride, int x16_idx, int y16_idx, VP16x16 *vst, int highbd_flag, int pixels_wide, int pixels_high) { #if CONFIG_AV1_HIGHBITDEPTH if (highbd_flag) { fill_variance_8x8avg_highbd(src_buf, src_stride, dst_buf, dst_stride, x16_idx, y16_idx, vst, pixels_wide, pixels_high); return; } #else (void)highbd_flag; #endif // CONFIG_AV1_HIGHBITDEPTH fill_variance_8x8avg_lowbd(src_buf, src_stride, dst_buf, dst_stride, x16_idx, y16_idx, vst, pixels_wide, pixels_high); } static int compute_minmax_8x8(const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, int dst_stride, int x16_idx, int y16_idx, #if CONFIG_AV1_HIGHBITDEPTH int highbd_flag, #endif int pixels_wide, int pixels_high) { int minmax_max = 0; int minmax_min = 255; // Loop over the 4 8x8 subblocks. for (int idx = 0; idx < 4; idx++) { const int x8_idx = x16_idx + GET_BLK_IDX_X(idx, 3); const int y8_idx = y16_idx + GET_BLK_IDX_Y(idx, 3); int min = 0; int max = 0; if (x8_idx < pixels_wide && y8_idx < pixels_high) { #if CONFIG_AV1_HIGHBITDEPTH if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { aom_highbd_minmax_8x8( src_buf + y8_idx * src_stride + x8_idx, src_stride, dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max); } else { aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride, dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max); } #else aom_minmax_8x8(src_buf + y8_idx * src_stride + x8_idx, src_stride, dst_buf + y8_idx * dst_stride + x8_idx, dst_stride, &min, &max); #endif if ((max - min) > minmax_max) minmax_max = (max - min); if ((max - min) < minmax_min) minmax_min = (max - min); } } return (minmax_max - minmax_min); } // Function to compute average and variance of 4x4 sub-block. // The function can be called only when is_key_frame is true since sum is // computed using source frame only. static AOM_INLINE void fill_variance_4x4avg(const uint8_t *src_buf, int src_stride, int x8_idx, int y8_idx, VP8x8 *vst, #if CONFIG_AV1_HIGHBITDEPTH int highbd_flag, #endif int pixels_wide, int pixels_high, int border_offset_4x4) { for (int idx = 0; idx < 4; idx++) { const int x4_idx = x8_idx + GET_BLK_IDX_X(idx, 2); const int y4_idx = y8_idx + GET_BLK_IDX_Y(idx, 2); unsigned int sse = 0; int sum = 0; if (x4_idx < pixels_wide - border_offset_4x4 && y4_idx < pixels_high - border_offset_4x4) { int src_avg; int dst_avg = 128; #if CONFIG_AV1_HIGHBITDEPTH if (highbd_flag & YV12_FLAG_HIGHBITDEPTH) { src_avg = aom_highbd_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride); } else { src_avg = aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride); } #else src_avg = aom_avg_4x4(src_buf + y4_idx * src_stride + x4_idx, src_stride); #endif sum = src_avg - dst_avg; sse = sum * sum; } fill_variance(sse, sum, 0, &vst->split[idx].part_variances.none); } } // TODO(kyslov) Bring back threshold adjustment based on content state static int64_t scale_part_thresh_content(int64_t threshold_base, int speed, int width, int height, int non_reference_frame) { (void)width; (void)height; int64_t threshold = threshold_base; if (non_reference_frame) threshold = (3 * threshold) >> 1; if (speed >= 8) { return (5 * threshold) >> 2; } return threshold; } // Tune thresholds less or more aggressively to prefer larger partitions static AOM_INLINE void tune_thresh_based_on_qindex( AV1_COMP *cpi, int64_t thresholds[], uint64_t block_sad, int current_qindex, int num_pixels, bool is_segment_id_boosted, int source_sad_nonrd, int lighting_change) { double weight; if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 3) { const int win = 20; if (current_qindex < QINDEX_LARGE_BLOCK_THR - win) weight = 1.0; else if (current_qindex > QINDEX_LARGE_BLOCK_THR + win) weight = 0.0; else weight = 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + win) / (2 * win); if (num_pixels > RESOLUTION_480P) { for (int i = 0; i < 4; i++) { thresholds[i] <<= 1; } } if (num_pixels <= RESOLUTION_288P) { thresholds[3] = INT64_MAX; if (is_segment_id_boosted == false) { thresholds[1] <<= 2; thresholds[2] <<= (source_sad_nonrd <= kLowSad) ? 5 : 4; } else { thresholds[1] <<= 1; thresholds[2] <<= 3; } // Allow for split to 8x8 for superblocks where part of it has // moving boundary. So allow for sb with source_sad above threshold, // and avoid very large source_sad or high source content, to avoid // too many 8x8 within superblock. uint64_t avg_source_sad_thresh = 25000; uint64_t block_sad_low = 25000; uint64_t block_sad_high = 50000; if (cpi->svc.temporal_layer_id == 0 && cpi->svc.number_temporal_layers > 1) { // Increase the sad thresholds for base TL0, as reference/LAST is // 2/4 frames behind (for 2/3 #TL). avg_source_sad_thresh = 40000; block_sad_high = 70000; } if (is_segment_id_boosted == false && cpi->rc.avg_source_sad < avg_source_sad_thresh && block_sad > block_sad_low && block_sad < block_sad_high && !lighting_change) { thresholds[2] = (3 * thresholds[2]) >> 2; thresholds[3] = thresholds[2] << 3; } // Condition the increase of partition thresholds on the segment // and the content. Avoid the increase for superblocks which have // high source sad, unless the whole frame has very high motion // (i.e, cpi->rc.avg_source_sad is very large, in which case all blocks // have high source sad). } else if (num_pixels > RESOLUTION_480P && is_segment_id_boosted == false && (source_sad_nonrd != kHighSad || cpi->rc.avg_source_sad > 50000)) { thresholds[0] = (3 * thresholds[0]) >> 1; thresholds[3] = INT64_MAX; if (current_qindex > QINDEX_LARGE_BLOCK_THR) { thresholds[1] = (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]); thresholds[2] = (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]); } } else if (current_qindex > QINDEX_LARGE_BLOCK_THR && is_segment_id_boosted == false && (source_sad_nonrd != kHighSad || cpi->rc.avg_source_sad > 50000)) { thresholds[1] = (int)((1 - weight) * (thresholds[1] << 2) + weight * thresholds[1]); thresholds[2] = (int)((1 - weight) * (thresholds[2] << 4) + weight * thresholds[2]); thresholds[3] = INT64_MAX; } } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 2) { thresholds[1] <<= (source_sad_nonrd <= kLowSad) ? 2 : 0; thresholds[2] = (source_sad_nonrd <= kLowSad) ? (3 * thresholds[2]) : thresholds[2]; } else if (cpi->sf.rt_sf.prefer_large_partition_blocks >= 1) { const int fac = (source_sad_nonrd <= kLowSad) ? 2 : 1; if (current_qindex < QINDEX_LARGE_BLOCK_THR - 45) weight = 1.0; else if (current_qindex > QINDEX_LARGE_BLOCK_THR + 45) weight = 0.0; else weight = 1.0 - (current_qindex - QINDEX_LARGE_BLOCK_THR + 45) / (2 * 45); thresholds[1] = (int)((1 - weight) * (thresholds[1] << 1) + weight * thresholds[1]); thresholds[2] = (int)((1 - weight) * (thresholds[2] << 1) + weight * thresholds[2]); thresholds[3] = (int)((1 - weight) * (thresholds[3] << fac) + weight * thresholds[3]); } if (cpi->sf.part_sf.disable_8x8_part_based_on_qidx && (current_qindex < 128)) thresholds[3] = INT64_MAX; } static void set_vbp_thresholds_key_frame(AV1_COMP *cpi, int64_t thresholds[], int64_t threshold_base, int threshold_left_shift, int num_pixels) { if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { const int shift_steps = threshold_left_shift - (cpi->oxcf.mode == ALLINTRA ? 7 : 8); assert(shift_steps >= 0); threshold_base <<= shift_steps; } thresholds[0] = threshold_base; thresholds[1] = threshold_base; if (num_pixels < RESOLUTION_720P) { thresholds[2] = threshold_base / 3; thresholds[3] = threshold_base >> 1; } else { int shift_val = 2; if (cpi->sf.rt_sf.force_large_partition_blocks_intra) { shift_val = 0; } thresholds[2] = threshold_base >> shift_val; thresholds[3] = threshold_base >> shift_val; } thresholds[4] = threshold_base << 2; } static AOM_INLINE void tune_thresh_based_on_resolution( AV1_COMP *cpi, int64_t thresholds[], int64_t threshold_base, int current_qindex, int source_sad_rd, int num_pixels) { if (num_pixels >= RESOLUTION_720P) thresholds[3] = thresholds[3] << 1; if (num_pixels <= RESOLUTION_288P) { const int qindex_thr[5][2] = { { 200, 220 }, { 140, 170 }, { 120, 150 }, { 200, 210 }, { 170, 220 }, }; int th_idx = 0; if (cpi->sf.rt_sf.var_part_based_on_qidx >= 1) th_idx = (source_sad_rd <= kLowSad) ? cpi->sf.rt_sf.var_part_based_on_qidx : 0; if (cpi->sf.rt_sf.var_part_based_on_qidx >= 3) th_idx = cpi->sf.rt_sf.var_part_based_on_qidx; const int qindex_low_thr = qindex_thr[th_idx][0]; const int qindex_high_thr = qindex_thr[th_idx][1]; if (current_qindex >= qindex_high_thr) { threshold_base = (5 * threshold_base) >> 1; thresholds[1] = threshold_base >> 3; thresholds[2] = threshold_base << 2; thresholds[3] = threshold_base << 5; } else if (current_qindex < qindex_low_thr) { thresholds[1] = threshold_base >> 3; thresholds[2] = threshold_base >> 1; thresholds[3] = threshold_base << 3; } else { int64_t qi_diff_low = current_qindex - qindex_low_thr; int64_t qi_diff_high = qindex_high_thr - current_qindex; int64_t threshold_diff = qindex_high_thr - qindex_low_thr; int64_t threshold_base_high = (5 * threshold_base) >> 1; threshold_diff = threshold_diff > 0 ? threshold_diff : 1; threshold_base = (qi_diff_low * threshold_base_high + qi_diff_high * threshold_base) / threshold_diff; thresholds[1] = threshold_base >> 3; thresholds[2] = ((qi_diff_low * threshold_base) + qi_diff_high * (threshold_base >> 1)) / threshold_diff; thresholds[3] = ((qi_diff_low * (threshold_base << 5)) + qi_diff_high * (threshold_base << 3)) / threshold_diff; } } else if (num_pixels < RESOLUTION_720P) { thresholds[2] = (5 * threshold_base) >> 2; } else if (num_pixels < RESOLUTION_1080P) { thresholds[2] = threshold_base << 1; } else { // num_pixels >= RESOLUTION_1080P if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN) { if (num_pixels < RESOLUTION_1440P) { thresholds[2] = (5 * threshold_base) >> 1; } else { thresholds[2] = (7 * threshold_base) >> 1; } } else { if (cpi->oxcf.speed > 7) { thresholds[2] = 6 * threshold_base; } else { thresholds[2] = 3 * threshold_base; } } } } // Increase partition thresholds for noisy content. Apply it only for // superblocks where sumdiff is low, as we assume the sumdiff of superblock // whose only change is due to noise will be low (i.e, noise will average // out over large block). static AOM_INLINE int64_t tune_thresh_noisy_content(AV1_COMP *cpi, int64_t threshold_base, int content_lowsumdiff, int num_pixels) { AV1_COMMON *const cm = &cpi->common; int64_t updated_thresh_base = threshold_base; if (cpi->noise_estimate.enabled && content_lowsumdiff && num_pixels > RESOLUTION_480P && cm->current_frame.frame_number > 60) { NOISE_LEVEL noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); if (noise_level == kHigh) updated_thresh_base = (5 * updated_thresh_base) >> 1; else if (noise_level == kMedium && !cpi->sf.rt_sf.prefer_large_partition_blocks) updated_thresh_base = (5 * updated_thresh_base) >> 2; } // TODO(kyslov) Enable var based partition adjusment on temporal denoising #if 0 // CONFIG_AV1_TEMPORAL_DENOISING if (cpi->oxcf.noise_sensitivity > 0 && denoise_svc(cpi) && cpi->oxcf.speed > 5 && cpi->denoiser.denoising_level >= kDenLow) updated_thresh_base = av1_scale_part_thresh(updated_thresh_base, cpi->denoiser.denoising_level, content_state, cpi->svc.temporal_layer_id); else threshold_base = scale_part_thresh_content(updated_thresh_base, cpi->oxcf.speed, cm->width, cm->height, cpi->ppi->rtc_ref.non_reference_frame); #else // Increase base variance threshold based on content_state/sum_diff level. updated_thresh_base = scale_part_thresh_content( updated_thresh_base, cpi->oxcf.speed, cm->width, cm->height, cpi->ppi->rtc_ref.non_reference_frame); #endif return updated_thresh_base; } static AOM_INLINE void set_vbp_thresholds( AV1_COMP *cpi, int64_t thresholds[], uint64_t blk_sad, int qindex, int content_lowsumdiff, int source_sad_nonrd, int source_sad_rd, bool is_segment_id_boosted, int lighting_change) { AV1_COMMON *const cm = &cpi->common; const int is_key_frame = frame_is_intra_only(cm); const int threshold_multiplier = is_key_frame ? 120 : 1; const int ac_q = av1_ac_quant_QTX(qindex, 0, cm->seq_params->bit_depth); int64_t threshold_base = (int64_t)(threshold_multiplier * ac_q); const int current_qindex = cm->quant_params.base_qindex; const int threshold_left_shift = cpi->sf.rt_sf.var_part_split_threshold_shift; const int num_pixels = cm->width * cm->height; if (is_key_frame) { set_vbp_thresholds_key_frame(cpi, thresholds, threshold_base, threshold_left_shift, num_pixels); return; } threshold_base = tune_thresh_noisy_content(cpi, threshold_base, content_lowsumdiff, num_pixels); thresholds[0] = threshold_base >> 1; thresholds[1] = threshold_base; thresholds[3] = threshold_base << threshold_left_shift; tune_thresh_based_on_resolution(cpi, thresholds, threshold_base, current_qindex, source_sad_rd, num_pixels); tune_thresh_based_on_qindex(cpi, thresholds, blk_sad, current_qindex, num_pixels, is_segment_id_boosted, source_sad_nonrd, lighting_change); } // Set temporal variance low flag for superblock 64x64. // Only first 25 in the array are used in this case. static AOM_INLINE void set_low_temp_var_flag_64x64( CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, MACROBLOCKD *xd, VP64x64 *vt, const int64_t thresholds[], int mi_col, int mi_row) { if (xd->mi[0]->bsize == BLOCK_64X64) { if ((vt->part_variances).none.variance < (thresholds[0] >> 1)) part_info->variance_low[0] = 1; } else if (xd->mi[0]->bsize == BLOCK_64X32) { for (int part_idx = 0; part_idx < 2; part_idx++) { if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2)) part_info->variance_low[part_idx + 1] = 1; } } else if (xd->mi[0]->bsize == BLOCK_32X64) { for (int part_idx = 0; part_idx < 2; part_idx++) { if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2)) part_info->variance_low[part_idx + 3] = 1; } } else { static const int idx[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { const int idx_str = mi_params->mi_stride * (mi_row + idx[lvl1_idx][0]) + mi_col + idx[lvl1_idx][1]; MB_MODE_INFO **this_mi = mi_params->mi_grid_base + idx_str; if (mi_params->mi_cols <= mi_col + idx[lvl1_idx][1] || mi_params->mi_rows <= mi_row + idx[lvl1_idx][0]) continue; if (*this_mi == NULL) continue; if ((*this_mi)->bsize == BLOCK_32X32) { int64_t threshold_32x32 = (5 * thresholds[1]) >> 3; if (vt->split[lvl1_idx].part_variances.none.variance < threshold_32x32) part_info->variance_low[lvl1_idx + 5] = 1; } else { // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block // inside. if ((*this_mi)->bsize == BLOCK_16X16 || (*this_mi)->bsize == BLOCK_32X16 || (*this_mi)->bsize == BLOCK_16X32) { for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { if (vt->split[lvl1_idx] .split[lvl2_idx] .part_variances.none.variance < (thresholds[2] >> 8)) part_info->variance_low[(lvl1_idx << 2) + lvl2_idx + 9] = 1; } } } } } } static AOM_INLINE void set_low_temp_var_flag_128x128( CommonModeInfoParams *mi_params, PartitionSearchInfo *part_info, MACROBLOCKD *xd, VP128x128 *vt, const int64_t thresholds[], int mi_col, int mi_row) { if (xd->mi[0]->bsize == BLOCK_128X128) { if (vt->part_variances.none.variance < (thresholds[0] >> 1)) part_info->variance_low[0] = 1; } else if (xd->mi[0]->bsize == BLOCK_128X64) { for (int part_idx = 0; part_idx < 2; part_idx++) { if (vt->part_variances.horz[part_idx].variance < (thresholds[0] >> 2)) part_info->variance_low[part_idx + 1] = 1; } } else if (xd->mi[0]->bsize == BLOCK_64X128) { for (int part_idx = 0; part_idx < 2; part_idx++) { if (vt->part_variances.vert[part_idx].variance < (thresholds[0] >> 2)) part_info->variance_low[part_idx + 3] = 1; } } else { static const int idx64[4][2] = { { 0, 0 }, { 0, 16 }, { 16, 0 }, { 16, 16 } }; static const int idx32[4][2] = { { 0, 0 }, { 0, 8 }, { 8, 0 }, { 8, 8 } }; for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { const int idx_str = mi_params->mi_stride * (mi_row + idx64[lvl1_idx][0]) + mi_col + idx64[lvl1_idx][1]; MB_MODE_INFO **mi_64 = mi_params->mi_grid_base + idx_str; if (*mi_64 == NULL) continue; if (mi_params->mi_cols <= mi_col + idx64[lvl1_idx][1] || mi_params->mi_rows <= mi_row + idx64[lvl1_idx][0]) continue; const int64_t threshold_64x64 = (5 * thresholds[1]) >> 3; if ((*mi_64)->bsize == BLOCK_64X64) { if (vt->split[lvl1_idx].part_variances.none.variance < threshold_64x64) part_info->variance_low[5 + lvl1_idx] = 1; } else if ((*mi_64)->bsize == BLOCK_64X32) { for (int part_idx = 0; part_idx < 2; part_idx++) if (vt->split[lvl1_idx].part_variances.horz[part_idx].variance < (threshold_64x64 >> 1)) part_info->variance_low[9 + (lvl1_idx << 1) + part_idx] = 1; } else if ((*mi_64)->bsize == BLOCK_32X64) { for (int part_idx = 0; part_idx < 2; part_idx++) if (vt->split[lvl1_idx].part_variances.vert[part_idx].variance < (threshold_64x64 >> 1)) part_info->variance_low[17 + (lvl1_idx << 1) + part_idx] = 1; } else { for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { const int idx_str1 = mi_params->mi_stride * idx32[lvl2_idx][0] + idx32[lvl2_idx][1]; MB_MODE_INFO **mi_32 = mi_params->mi_grid_base + idx_str + idx_str1; if (*mi_32 == NULL) continue; if (mi_params->mi_cols <= mi_col + idx64[lvl1_idx][1] + idx32[lvl2_idx][1] || mi_params->mi_rows <= mi_row + idx64[lvl1_idx][0] + idx32[lvl2_idx][0]) continue; const int64_t threshold_32x32 = (5 * thresholds[2]) >> 3; if ((*mi_32)->bsize == BLOCK_32X32) { if (vt->split[lvl1_idx] .split[lvl2_idx] .part_variances.none.variance < threshold_32x32) part_info->variance_low[25 + (lvl1_idx << 2) + lvl2_idx] = 1; } else { // For 32x16 and 16x32 blocks, the flag is set on each 16x16 block // inside. if ((*mi_32)->bsize == BLOCK_16X16 || (*mi_32)->bsize == BLOCK_32X16 || (*mi_32)->bsize == BLOCK_16X32) { for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) { VPartVar *none_var = &vt->split[lvl1_idx] .split[lvl2_idx] .split[lvl3_idx] .part_variances.none; if (none_var->variance < (thresholds[3] >> 8)) part_info->variance_low[41 + (lvl1_idx << 4) + (lvl2_idx << 2) + lvl3_idx] = 1; } } } } } } } } static AOM_INLINE void set_low_temp_var_flag( AV1_COMP *cpi, PartitionSearchInfo *part_info, MACROBLOCKD *xd, VP128x128 *vt, int64_t thresholds[], MV_REFERENCE_FRAME ref_frame_partition, int mi_col, int mi_row, const bool is_small_sb) { AV1_COMMON *const cm = &cpi->common; // Check temporal variance for bsize >= 16x16, if LAST_FRAME was selected. // If the temporal variance is small set the flag // variance_low for the block. The variance threshold can be adjusted, the // higher the more aggressive. if (ref_frame_partition == LAST_FRAME) { if (is_small_sb) set_low_temp_var_flag_64x64(&cm->mi_params, part_info, xd, &(vt->split[0]), thresholds, mi_col, mi_row); else set_low_temp_var_flag_128x128(&cm->mi_params, part_info, xd, vt, thresholds, mi_col, mi_row); } } static const int pos_shift_16x16[4][4] = { { 9, 10, 13, 14 }, { 11, 12, 15, 16 }, { 17, 18, 21, 22 }, { 19, 20, 23, 24 } }; int av1_get_force_skip_low_temp_var_small_sb(const uint8_t *variance_low, int mi_row, int mi_col, BLOCK_SIZE bsize) { // Relative indices of MB inside the superblock. const int mi_x = mi_row & 0xF; const int mi_y = mi_col & 0xF; // Relative indices of 16x16 block inside the superblock. const int i = mi_x >> 2; const int j = mi_y >> 2; int force_skip_low_temp_var = 0; // Set force_skip_low_temp_var based on the block size and block offset. switch (bsize) { case BLOCK_64X64: force_skip_low_temp_var = variance_low[0]; break; case BLOCK_64X32: if (!mi_y && !mi_x) { force_skip_low_temp_var = variance_low[1]; } else if (!mi_y && mi_x) { force_skip_low_temp_var = variance_low[2]; } break; case BLOCK_32X64: if (!mi_y && !mi_x) { force_skip_low_temp_var = variance_low[3]; } else if (mi_y && !mi_x) { force_skip_low_temp_var = variance_low[4]; } break; case BLOCK_32X32: if (!mi_y && !mi_x) { force_skip_low_temp_var = variance_low[5]; } else if (mi_y && !mi_x) { force_skip_low_temp_var = variance_low[6]; } else if (!mi_y && mi_x) { force_skip_low_temp_var = variance_low[7]; } else if (mi_y && mi_x) { force_skip_low_temp_var = variance_low[8]; } break; case BLOCK_32X16: case BLOCK_16X32: case BLOCK_16X16: force_skip_low_temp_var = variance_low[pos_shift_16x16[i][j]]; break; default: break; } return force_skip_low_temp_var; } int av1_get_force_skip_low_temp_var(const uint8_t *variance_low, int mi_row, int mi_col, BLOCK_SIZE bsize) { int force_skip_low_temp_var = 0; int x, y; x = (mi_col & 0x1F) >> 4; // y = (mi_row & 0x1F) >> 4; // const int idx64 = (y << 1) + x; y = (mi_row & 0x17) >> 3; const int idx64 = y + x; x = (mi_col & 0xF) >> 3; // y = (mi_row & 0xF) >> 3; // const int idx32 = (y << 1) + x; y = (mi_row & 0xB) >> 2; const int idx32 = y + x; x = (mi_col & 0x7) >> 2; // y = (mi_row & 0x7) >> 2; // const int idx16 = (y << 1) + x; y = (mi_row & 0x5) >> 1; const int idx16 = y + x; // Set force_skip_low_temp_var based on the block size and block offset. switch (bsize) { case BLOCK_128X128: force_skip_low_temp_var = variance_low[0]; break; case BLOCK_128X64: assert((mi_col & 0x1F) == 0); force_skip_low_temp_var = variance_low[1 + ((mi_row & 0x1F) != 0)]; break; case BLOCK_64X128: assert((mi_row & 0x1F) == 0); force_skip_low_temp_var = variance_low[3 + ((mi_col & 0x1F) != 0)]; break; case BLOCK_64X64: // Location of this 64x64 block inside the 128x128 superblock force_skip_low_temp_var = variance_low[5 + idx64]; break; case BLOCK_64X32: x = (mi_col & 0x1F) >> 4; y = (mi_row & 0x1F) >> 3; /* .---------------.---------------. | x=0,y=0,idx=0 | x=0,y=0,idx=2 | :---------------+---------------: | x=0,y=1,idx=1 | x=1,y=1,idx=3 | :---------------+---------------: | x=0,y=2,idx=4 | x=1,y=2,idx=6 | :---------------+---------------: | x=0,y=3,idx=5 | x=1,y=3,idx=7 | '---------------'---------------' */ const int idx64x32 = (x << 1) + (y % 2) + ((y >> 1) << 2); force_skip_low_temp_var = variance_low[9 + idx64x32]; break; case BLOCK_32X64: x = (mi_col & 0x1F) >> 3; y = (mi_row & 0x1F) >> 4; const int idx32x64 = (y << 2) + x; force_skip_low_temp_var = variance_low[17 + idx32x64]; break; case BLOCK_32X32: force_skip_low_temp_var = variance_low[25 + (idx64 << 2) + idx32]; break; case BLOCK_32X16: case BLOCK_16X32: case BLOCK_16X16: force_skip_low_temp_var = variance_low[41 + (idx64 << 4) + (idx32 << 2) + idx16]; break; default: break; } return force_skip_low_temp_var; } void av1_set_variance_partition_thresholds(AV1_COMP *cpi, int qindex, int content_lowsumdiff) { SPEED_FEATURES *const sf = &cpi->sf; if (sf->part_sf.partition_search_type != VAR_BASED_PARTITION) { return; } else { set_vbp_thresholds(cpi, cpi->vbp_info.thresholds, 0, qindex, content_lowsumdiff, 0, 0, 0, 0); // The threshold below is not changed locally. cpi->vbp_info.threshold_minmax = 15 + (qindex >> 3); } } static AOM_INLINE void chroma_check(AV1_COMP *cpi, MACROBLOCK *x, BLOCK_SIZE bsize, unsigned int y_sad, unsigned int y_sad_g, unsigned int y_sad_alt, bool is_key_frame, bool zero_motion, unsigned int *uv_sad) { MACROBLOCKD *xd = &x->e_mbd; const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; int shift_upper_limit = 1; int shift_lower_limit = 3; int fac_uv = 6; if (is_key_frame || cpi->oxcf.tool_cfg.enable_monochrome) return; // Use lower threshold (more conservative in setting color flag) for // higher resolutions non-screen, which tend to have more camera noise. // Since this may be used to skip compound mode in nonrd pickmode, which // is generally more effective for higher resolutions, better to be more // conservative. if (cpi->oxcf.tune_cfg.content != AOM_CONTENT_SCREEN) { if (cpi->common.width * cpi->common.height >= RESOLUTION_1080P) fac_uv = 3; else fac_uv = 5; } if (cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN && cpi->rc.high_source_sad) { shift_lower_limit = 7; } else if (source_sad_nonrd >= kMedSad && x->source_variance > 500 && cpi->common.width * cpi->common.height >= 640 * 360) { shift_upper_limit = 2; shift_lower_limit = source_sad_nonrd > kMedSad ? 5 : 4; } MB_MODE_INFO *mi = xd->mi[0]; const AV1_COMMON *const cm = &cpi->common; const YV12_BUFFER_CONFIG *yv12 = get_ref_frame_yv12_buf(cm, LAST_FRAME); const YV12_BUFFER_CONFIG *yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); const YV12_BUFFER_CONFIG *yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME); const struct scale_factors *const sf = get_ref_scale_factors_const(cm, LAST_FRAME); struct buf_2d dst; unsigned int uv_sad_g = 0; unsigned int uv_sad_alt = 0; for (int plane = AOM_PLANE_U; plane < MAX_MB_PLANE; ++plane) { struct macroblock_plane *p = &x->plane[plane]; struct macroblockd_plane *pd = &xd->plane[plane]; const BLOCK_SIZE bs = get_plane_block_size(bsize, pd->subsampling_x, pd->subsampling_y); if (bs != BLOCK_INVALID) { // For last: if (zero_motion) { if (mi->ref_frame[0] == LAST_FRAME) { uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, pd->pre[0].buf, pd->pre[0].stride); } else { uint8_t *src = (plane == 1) ? yv12->u_buffer : yv12->v_buffer; setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12->uv_crop_width, yv12->uv_crop_height, yv12->uv_stride, xd->mi_row, xd->mi_col, sf, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, dst.buf, dst.stride); } } else { uv_sad[plane - 1] = cpi->ppi->fn_ptr[bs].sdf( p->src.buf, p->src.stride, pd->dst.buf, pd->dst.stride); } // For golden: if (y_sad_g != UINT_MAX) { uint8_t *src = (plane == 1) ? yv12_g->u_buffer : yv12_g->v_buffer; setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_g->uv_crop_width, yv12_g->uv_crop_height, yv12_g->uv_stride, xd->mi_row, xd->mi_col, sf, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); uv_sad_g = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf, dst.stride); } // For altref: if (y_sad_alt != UINT_MAX) { uint8_t *src = (plane == 1) ? yv12_alt->u_buffer : yv12_alt->v_buffer; setup_pred_plane(&dst, xd->mi[0]->bsize, src, yv12_alt->uv_crop_width, yv12_alt->uv_crop_height, yv12_alt->uv_stride, xd->mi_row, xd->mi_col, sf, xd->plane[plane].subsampling_x, xd->plane[plane].subsampling_y); uv_sad_alt = cpi->ppi->fn_ptr[bs].sdf(p->src.buf, p->src.stride, dst.buf, dst.stride); } } if (uv_sad[plane - 1] > (y_sad >> shift_upper_limit)) x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 1; else if (uv_sad[plane - 1] < (y_sad >> shift_lower_limit)) x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 0; // Borderline case: to be refined at coding block level in nonrd_pickmode, // for coding block size < sb_size. else x->color_sensitivity_sb[COLOR_SENS_IDX(plane)] = 2; x->color_sensitivity_sb_g[COLOR_SENS_IDX(plane)] = uv_sad_g > y_sad_g / fac_uv; x->color_sensitivity_sb_alt[COLOR_SENS_IDX(plane)] = uv_sad_alt > y_sad_alt / fac_uv; } } static void fill_variance_tree_leaves( AV1_COMP *cpi, MACROBLOCK *x, VP128x128 *vt, PART_EVAL_STATUS *force_split, int avg_16x16[][4], int maxvar_16x16[][4], int minvar_16x16[][4], int64_t *thresholds, const uint8_t *src_buf, int src_stride, const uint8_t *dst_buf, int dst_stride, bool is_key_frame, const bool is_small_sb) { MACROBLOCKD *xd = &x->e_mbd; const int num_64x64_blocks = is_small_sb ? 1 : 4; // TODO(kyslov) Bring back compute_minmax_variance with content type detection const int compute_minmax_variance = 0; const int segment_id = xd->mi[0]->segment_id; int pixels_wide = 128, pixels_high = 128; int border_offset_4x4 = 0; int temporal_denoising = cpi->sf.rt_sf.use_rtc_tf; // dst_buf pointer is not used for is_key_frame, so it should be NULL. assert(IMPLIES(is_key_frame, dst_buf == NULL)); if (is_small_sb) { pixels_wide = 64; pixels_high = 64; } if (xd->mb_to_right_edge < 0) pixels_wide += (xd->mb_to_right_edge >> 3); if (xd->mb_to_bottom_edge < 0) pixels_high += (xd->mb_to_bottom_edge >> 3); #if CONFIG_AV1_TEMPORAL_DENOISING temporal_denoising |= cpi->oxcf.noise_sensitivity; #endif // For temporal filtering or temporal denoiser enabled: since the source // is modified we need to avoid 4x4 avg along superblock boundary, since // simd code will load 8 pixels for 4x4 avg and so can access source // data outside superblock (while its being modified by temporal filter). // Temporal filtering is never done on key frames. if (!is_key_frame && temporal_denoising) border_offset_4x4 = 4; for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; blk64_idx++) { const int x64_idx = GET_BLK_IDX_X(blk64_idx, 6); const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 6); const int blk64_scale_idx = blk64_idx << 2; force_split[blk64_idx + 1] = PART_EVAL_ALL; for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { const int x32_idx = x64_idx + GET_BLK_IDX_X(lvl1_idx, 5); const int y32_idx = y64_idx + GET_BLK_IDX_Y(lvl1_idx, 5); const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ALL; avg_16x16[blk64_idx][lvl1_idx] = 0; maxvar_16x16[blk64_idx][lvl1_idx] = 0; minvar_16x16[blk64_idx][lvl1_idx] = INT_MAX; for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { const int x16_idx = x32_idx + GET_BLK_IDX_X(lvl2_idx, 4); const int y16_idx = y32_idx + GET_BLK_IDX_Y(lvl2_idx, 4); const int split_index = 21 + lvl1_scale_idx + lvl2_idx; VP16x16 *vst = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; force_split[split_index] = PART_EVAL_ALL; if (is_key_frame) { // Go down to 4x4 down-sampling for variance. for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) { const int x8_idx = x16_idx + GET_BLK_IDX_X(lvl3_idx, 3); const int y8_idx = y16_idx + GET_BLK_IDX_Y(lvl3_idx, 3); VP8x8 *vst2 = &vst->split[lvl3_idx]; fill_variance_4x4avg(src_buf, src_stride, x8_idx, y8_idx, vst2, #if CONFIG_AV1_HIGHBITDEPTH xd->cur_buf->flags, #endif pixels_wide, pixels_high, border_offset_4x4); } } else { fill_variance_8x8avg(src_buf, src_stride, dst_buf, dst_stride, x16_idx, y16_idx, vst, is_cur_buf_hbd(xd), pixels_wide, pixels_high); fill_variance_tree(vst, BLOCK_16X16); VPartVar *none_var = &vt->split[blk64_idx] .split[lvl1_idx] .split[lvl2_idx] .part_variances.none; get_variance(none_var); const int val_none_var = none_var->variance; avg_16x16[blk64_idx][lvl1_idx] += val_none_var; minvar_16x16[blk64_idx][lvl1_idx] = AOMMIN(minvar_16x16[blk64_idx][lvl1_idx], val_none_var); maxvar_16x16[blk64_idx][lvl1_idx] = AOMMAX(maxvar_16x16[blk64_idx][lvl1_idx], val_none_var); if (val_none_var > thresholds[3]) { // 16X16 variance is above threshold for split, so force split to // 8x8 for this 16x16 block (this also forces splits for upper // levels). force_split[split_index] = PART_EVAL_ONLY_SPLIT; force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } else if (!cyclic_refresh_segment_id_boosted(segment_id) && compute_minmax_variance && val_none_var > thresholds[2]) { // We have some nominal amount of 16x16 variance (based on average), // compute the minmax over the 8x8 sub-blocks, and if above // threshold, force split to 8x8 block for this 16x16 block. int minmax = compute_minmax_8x8(src_buf, src_stride, dst_buf, dst_stride, x16_idx, y16_idx, #if CONFIG_AV1_HIGHBITDEPTH xd->cur_buf->flags, #endif pixels_wide, pixels_high); const int thresh_minmax = (int)cpi->vbp_info.threshold_minmax; if (minmax > thresh_minmax) { force_split[split_index] = PART_EVAL_ONLY_SPLIT; force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } } } } } } } static AOM_INLINE void set_ref_frame_for_partition( AV1_COMP *cpi, MACROBLOCK *x, MACROBLOCKD *xd, MV_REFERENCE_FRAME *ref_frame_partition, MB_MODE_INFO *mi, unsigned int *y_sad, unsigned int *y_sad_g, unsigned int *y_sad_alt, const YV12_BUFFER_CONFIG *yv12_g, const YV12_BUFFER_CONFIG *yv12_alt, int mi_row, int mi_col, int num_planes) { AV1_COMMON *const cm = &cpi->common; const bool is_set_golden_ref_frame = *y_sad_g < 0.9 * *y_sad && *y_sad_g < *y_sad_alt; const bool is_set_altref_ref_frame = *y_sad_alt < 0.9 * *y_sad && *y_sad_alt < *y_sad_g; if (is_set_golden_ref_frame) { av1_setup_pre_planes(xd, 0, yv12_g, mi_row, mi_col, get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes); mi->ref_frame[0] = GOLDEN_FRAME; mi->mv[0].as_int = 0; *y_sad = *y_sad_g; *ref_frame_partition = GOLDEN_FRAME; x->nonrd_prune_ref_frame_search = 0; x->sb_me_partition = 0; } else if (is_set_altref_ref_frame) { av1_setup_pre_planes(xd, 0, yv12_alt, mi_row, mi_col, get_ref_scale_factors(cm, ALTREF_FRAME), num_planes); mi->ref_frame[0] = ALTREF_FRAME; mi->mv[0].as_int = 0; *y_sad = *y_sad_alt; *ref_frame_partition = ALTREF_FRAME; x->nonrd_prune_ref_frame_search = 0; x->sb_me_partition = 0; } else { *ref_frame_partition = LAST_FRAME; x->nonrd_prune_ref_frame_search = cpi->sf.rt_sf.nonrd_prune_ref_frame_search; } } static AOM_FORCE_INLINE int mv_distance(const FULLPEL_MV *mv0, const FULLPEL_MV *mv1) { return abs(mv0->row - mv1->row) + abs(mv0->col - mv1->col); } static AOM_INLINE void evaluate_neighbour_mvs(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad, bool is_small_sb, int est_motion) { const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; // TODO(yunqingwang@google.com): test if this condition works with other // speeds. if (est_motion > 2 && source_sad_nonrd > kMedSad) return; MACROBLOCKD *xd = &x->e_mbd; BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; MB_MODE_INFO *mi = xd->mi[0]; unsigned int above_y_sad = UINT_MAX; unsigned int left_y_sad = UINT_MAX; FULLPEL_MV above_mv = kZeroFullMv; FULLPEL_MV left_mv = kZeroFullMv; SubpelMvLimits subpel_mv_limits; const MV dummy_mv = { 0, 0 }; av1_set_subpel_mv_search_range(&subpel_mv_limits, &x->mv_limits, &dummy_mv); // Current best MV FULLPEL_MV best_mv = get_fullmv_from_mv(&mi->mv[0].as_mv); const int multi = (est_motion > 2 && source_sad_nonrd > kLowSad) ? 7 : 8; if (xd->up_available) { const MB_MODE_INFO *above_mbmi = xd->above_mbmi; if (above_mbmi->mode >= INTRA_MODE_END && above_mbmi->ref_frame[0] == LAST_FRAME) { MV temp = above_mbmi->mv[0].as_mv; clamp_mv(&temp, &subpel_mv_limits); above_mv = get_fullmv_from_mv(&temp); if (mv_distance(&best_mv, &above_mv) > 0) { uint8_t const *ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &above_mv); above_y_sad = cpi->ppi->fn_ptr[bsize].sdf( x->plane[0].src.buf, x->plane[0].src.stride, ref_buf, xd->plane[0].pre[0].stride); } } } if (xd->left_available) { const MB_MODE_INFO *left_mbmi = xd->left_mbmi; if (left_mbmi->mode >= INTRA_MODE_END && left_mbmi->ref_frame[0] == LAST_FRAME) { MV temp = left_mbmi->mv[0].as_mv; clamp_mv(&temp, &subpel_mv_limits); left_mv = get_fullmv_from_mv(&temp); if (mv_distance(&best_mv, &left_mv) > 0 && mv_distance(&above_mv, &left_mv) > 0) { uint8_t const *ref_buf = get_buf_from_fullmv(&xd->plane[0].pre[0], &left_mv); left_y_sad = cpi->ppi->fn_ptr[bsize].sdf( x->plane[0].src.buf, x->plane[0].src.stride, ref_buf, xd->plane[0].pre[0].stride); } } } if (above_y_sad < ((multi * *y_sad) >> 3) && above_y_sad < left_y_sad) { *y_sad = above_y_sad; mi->mv[0].as_mv = get_mv_from_fullmv(&above_mv); clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits); } if (left_y_sad < ((multi * *y_sad) >> 3) && left_y_sad < above_y_sad) { *y_sad = left_y_sad; mi->mv[0].as_mv = get_mv_from_fullmv(&left_mv); clamp_mv(&mi->mv[0].as_mv, &subpel_mv_limits); } } static void setup_planes(AV1_COMP *cpi, MACROBLOCK *x, unsigned int *y_sad, unsigned int *y_sad_g, unsigned int *y_sad_alt, unsigned int *y_sad_last, MV_REFERENCE_FRAME *ref_frame_partition, struct scale_factors *sf_no_scale, int mi_row, int mi_col, bool is_small_sb, bool scaled_ref_last) { AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; const int num_planes = av1_num_planes(cm); bool scaled_ref_golden = false; bool scaled_ref_alt = false; BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; MB_MODE_INFO *mi = xd->mi[0]; const YV12_BUFFER_CONFIG *yv12 = scaled_ref_last ? av1_get_scaled_ref_frame(cpi, LAST_FRAME) : get_ref_frame_yv12_buf(cm, LAST_FRAME); assert(yv12 != NULL); const YV12_BUFFER_CONFIG *yv12_g = NULL; const YV12_BUFFER_CONFIG *yv12_alt = NULL; // Check if LAST is a reference. For spatial layers always use it as // reference scaling. int use_last_ref = (cpi->ref_frame_flags & AOM_LAST_FLAG) || cpi->svc.number_spatial_layers > 1; int use_golden_ref = cpi->ref_frame_flags & AOM_GOLD_FLAG; int use_alt_ref = cpi->ppi->rtc_ref.set_ref_frame_config || cpi->sf.rt_sf.use_nonrd_altref_frame || (cpi->sf.rt_sf.use_comp_ref_nonrd && cpi->sf.rt_sf.ref_frame_comp_nonrd[2] == 1); // For 1 spatial layer: GOLDEN is another temporal reference. // Check if it should be used as reference for partitioning. if (cpi->svc.number_spatial_layers == 1 && use_golden_ref && (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) { yv12_g = get_ref_frame_yv12_buf(cm, GOLDEN_FRAME); if (yv12_g && (yv12_g->y_crop_height != cm->height || yv12_g->y_crop_width != cm->width)) { yv12_g = av1_get_scaled_ref_frame(cpi, GOLDEN_FRAME); scaled_ref_golden = true; } if (yv12_g && yv12_g != yv12) { av1_setup_pre_planes( xd, 0, yv12_g, mi_row, mi_col, scaled_ref_golden ? NULL : get_ref_scale_factors(cm, GOLDEN_FRAME), num_planes); *y_sad_g = cpi->ppi->fn_ptr[bsize].sdf( x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, xd->plane[AOM_PLANE_Y].pre[0].buf, xd->plane[AOM_PLANE_Y].pre[0].stride); } } // For 1 spatial layer: ALTREF is another temporal reference. // Check if it should be used as reference for partitioning. if (cpi->svc.number_spatial_layers == 1 && use_alt_ref && (cpi->ref_frame_flags & AOM_ALT_FLAG) && (x->content_state_sb.source_sad_nonrd != kZeroSad || !use_last_ref)) { yv12_alt = get_ref_frame_yv12_buf(cm, ALTREF_FRAME); if (yv12_alt && (yv12_alt->y_crop_height != cm->height || yv12_alt->y_crop_width != cm->width)) { yv12_alt = av1_get_scaled_ref_frame(cpi, ALTREF_FRAME); scaled_ref_alt = true; } if (yv12_alt && yv12_alt != yv12) { av1_setup_pre_planes( xd, 0, yv12_alt, mi_row, mi_col, scaled_ref_alt ? NULL : get_ref_scale_factors(cm, ALTREF_FRAME), num_planes); *y_sad_alt = cpi->ppi->fn_ptr[bsize].sdf( x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, xd->plane[AOM_PLANE_Y].pre[0].buf, xd->plane[AOM_PLANE_Y].pre[0].stride); } } if (use_last_ref) { const int source_sad_nonrd = x->content_state_sb.source_sad_nonrd; av1_setup_pre_planes( xd, 0, yv12, mi_row, mi_col, scaled_ref_last ? NULL : get_ref_scale_factors(cm, LAST_FRAME), num_planes); mi->ref_frame[0] = LAST_FRAME; mi->ref_frame[1] = NONE_FRAME; mi->bsize = cm->seq_params->sb_size; mi->mv[0].as_int = 0; mi->interp_filters = av1_broadcast_interp_filter(BILINEAR); int est_motion = cpi->sf.rt_sf.estimate_motion_for_var_based_partition; // TODO(b/290596301): Look into adjusting this condition. // There is regression on color content when // estimate_motion_for_var_based_partition = 3 and high motion, // so for now force it to 2 based on superblock sad. if (est_motion > 2 && source_sad_nonrd > kMedSad) est_motion = 2; if (est_motion == 1 || est_motion == 2) { if (xd->mb_to_right_edge >= 0 && xd->mb_to_bottom_edge >= 0) { // For screen only do int_pro_motion for spatial variance above // threshold and motion level above LowSad. if (x->source_variance > 100 && source_sad_nonrd > kLowSad) { int is_screen = cpi->oxcf.tune_cfg.content == AOM_CONTENT_SCREEN; int me_search_size_col = is_screen ? 96 : block_size_wide[cm->seq_params->sb_size] >> 1; // For screen use larger search size row motion to capture // vertical scroll, which can be larger motion. int me_search_size_row = is_screen ? 192 : block_size_high[cm->seq_params->sb_size] >> 1; unsigned int y_sad_zero; *y_sad = av1_int_pro_motion_estimation( cpi, x, cm->seq_params->sb_size, mi_row, mi_col, &kZeroMv, &y_sad_zero, me_search_size_col, me_search_size_row); // The logic below selects whether the motion estimated in the // int_pro_motion() will be used in nonrd_pickmode. Only do this // for screen for now. if (is_screen) { unsigned int thresh_sad = (cm->seq_params->sb_size == BLOCK_128X128) ? 50000 : 20000; if (*y_sad < (y_sad_zero >> 1) && *y_sad < thresh_sad) { x->sb_me_partition = 1; x->sb_me_mv.as_int = mi->mv[0].as_int; } else { x->sb_me_partition = 0; // Fall back to using zero motion. *y_sad = y_sad_zero; mi->mv[0].as_int = 0; } } } } } if (*y_sad == UINT_MAX) { *y_sad = cpi->ppi->fn_ptr[bsize].sdf( x->plane[AOM_PLANE_Y].src.buf, x->plane[AOM_PLANE_Y].src.stride, xd->plane[AOM_PLANE_Y].pre[0].buf, xd->plane[AOM_PLANE_Y].pre[0].stride); } // Evaluate if neighbours' MVs give better predictions. Zero MV is tested // already, so only non-zero MVs are tested here. Here the neighbour blocks // are the first block above or left to this superblock. if (est_motion >= 2 && (xd->up_available || xd->left_available)) evaluate_neighbour_mvs(cpi, x, y_sad, is_small_sb, est_motion); *y_sad_last = *y_sad; } // Pick the ref frame for partitioning, use golden or altref frame only if // its lower sad, bias to LAST with factor 0.9. set_ref_frame_for_partition(cpi, x, xd, ref_frame_partition, mi, y_sad, y_sad_g, y_sad_alt, yv12_g, yv12_alt, mi_row, mi_col, num_planes); // Only calculate the predictor for non-zero MV. if (mi->mv[0].as_int != 0) { if (!scaled_ref_last) { set_ref_ptrs(cm, xd, mi->ref_frame[0], mi->ref_frame[1]); } else { xd->block_ref_scale_factors[0] = sf_no_scale; xd->block_ref_scale_factors[1] = sf_no_scale; } av1_enc_build_inter_predictor(cm, xd, mi_row, mi_col, NULL, cm->seq_params->sb_size, AOM_PLANE_Y, num_planes - 1); } } // Decides whether to split or merge a 16x16 partition block in variance based // partitioning based on the 8x8 sub-block variances. static AOM_INLINE PART_EVAL_STATUS get_part_eval_based_on_sub_blk_var( VP16x16 *var_16x16_info, int64_t threshold16) { int max_8x8_var = 0, min_8x8_var = INT_MAX; for (int split_idx = 0; split_idx < 4; split_idx++) { get_variance(&var_16x16_info->split[split_idx].part_variances.none); int this_8x8_var = var_16x16_info->split[split_idx].part_variances.none.variance; max_8x8_var = AOMMAX(this_8x8_var, max_8x8_var); min_8x8_var = AOMMIN(this_8x8_var, min_8x8_var); } // If the difference between maximum and minimum sub-block variances is high, // then only evaluate PARTITION_SPLIT for the 16x16 block. Otherwise, evaluate // only PARTITION_NONE. The shift factor for threshold16 has been derived // empirically. return ((max_8x8_var - min_8x8_var) > (threshold16 << 2)) ? PART_EVAL_ONLY_SPLIT : PART_EVAL_ONLY_NONE; } static AOM_INLINE bool is_set_force_zeromv_skip_based_on_src_sad( int set_zeromv_skip_based_on_source_sad, SOURCE_SAD source_sad_nonrd) { if (set_zeromv_skip_based_on_source_sad == 0) return false; if (set_zeromv_skip_based_on_source_sad >= 3) return source_sad_nonrd <= kLowSad; else if (set_zeromv_skip_based_on_source_sad >= 2) return source_sad_nonrd <= kVeryLowSad; else if (set_zeromv_skip_based_on_source_sad >= 1) return source_sad_nonrd == kZeroSad; return false; } static AOM_INLINE bool set_force_zeromv_skip_for_sb( AV1_COMP *cpi, MACROBLOCK *x, const TileInfo *const tile, VP128x128 *vt, unsigned int *uv_sad, int mi_row, int mi_col, unsigned int y_sad, BLOCK_SIZE bsize) { AV1_COMMON *const cm = &cpi->common; if (!is_set_force_zeromv_skip_based_on_src_sad( cpi->sf.rt_sf.set_zeromv_skip_based_on_source_sad, x->content_state_sb.source_sad_nonrd)) return false; int shift = cpi->sf.rt_sf.increase_source_sad_thresh ? 1 : 0; const int block_width = mi_size_wide[cm->seq_params->sb_size]; const int block_height = mi_size_high[cm->seq_params->sb_size]; const unsigned int thresh_exit_part_y = cpi->zeromv_skip_thresh_exit_part[bsize] << shift; unsigned int thresh_exit_part_uv = CALC_CHROMA_THRESH_FOR_ZEROMV_SKIP(thresh_exit_part_y) << shift; // Be more aggressive in UV threshold if source_sad >= VeryLowSad // to suppreess visual artifact caused by the speed feature: // set_zeromv_skip_based_on_source_sad = 2. For now only for // part_early_exit_zeromv = 1. if (x->content_state_sb.source_sad_nonrd >= kVeryLowSad && cpi->sf.rt_sf.part_early_exit_zeromv == 1) thresh_exit_part_uv = thresh_exit_part_uv >> 3; if (mi_col + block_width <= tile->mi_col_end && mi_row + block_height <= tile->mi_row_end && y_sad < thresh_exit_part_y && uv_sad[0] < thresh_exit_part_uv && uv_sad[1] < thresh_exit_part_uv) { set_block_size(cpi, mi_row, mi_col, bsize); x->force_zeromv_skip_for_sb = 1; aom_free(vt); // Partition shape is set here at SB level. // Exit needs to happen from av1_choose_var_based_partitioning(). return true; } else if (x->content_state_sb.source_sad_nonrd == kZeroSad && cpi->sf.rt_sf.part_early_exit_zeromv >= 2) x->force_zeromv_skip_for_sb = 2; return false; } int av1_choose_var_based_partitioning(AV1_COMP *cpi, const TileInfo *const tile, ThreadData *td, MACROBLOCK *x, int mi_row, int mi_col) { #if CONFIG_COLLECT_COMPONENT_TIMING start_timing(cpi, choose_var_based_partitioning_time); #endif AV1_COMMON *const cm = &cpi->common; MACROBLOCKD *xd = &x->e_mbd; const int64_t *const vbp_thresholds = cpi->vbp_info.thresholds; PART_EVAL_STATUS force_split[85]; int avg_64x64; int max_var_32x32[4]; int min_var_32x32[4]; int var_32x32; int var_64x64; int min_var_64x64 = INT_MAX; int max_var_64x64 = 0; int avg_16x16[4][4]; int maxvar_16x16[4][4]; int minvar_16x16[4][4]; const uint8_t *src_buf; const uint8_t *dst_buf; int dst_stride; unsigned int uv_sad[MAX_MB_PLANE - 1]; NOISE_LEVEL noise_level = kLow; bool is_zero_motion = true; bool scaled_ref_last = false; struct scale_factors sf_no_scale; av1_setup_scale_factors_for_frame(&sf_no_scale, cm->width, cm->height, cm->width, cm->height); bool is_key_frame = (frame_is_intra_only(cm) || (cpi->ppi->use_svc && cpi->svc.layer_context[cpi->svc.temporal_layer_id].is_key_frame)); assert(cm->seq_params->sb_size == BLOCK_64X64 || cm->seq_params->sb_size == BLOCK_128X128); const bool is_small_sb = (cm->seq_params->sb_size == BLOCK_64X64); const int num_64x64_blocks = is_small_sb ? 1 : 4; unsigned int y_sad = UINT_MAX; unsigned int y_sad_g = UINT_MAX; unsigned int y_sad_alt = UINT_MAX; unsigned int y_sad_last = UINT_MAX; BLOCK_SIZE bsize = is_small_sb ? BLOCK_64X64 : BLOCK_128X128; // Ref frame used in partitioning. MV_REFERENCE_FRAME ref_frame_partition = LAST_FRAME; int64_t thresholds[5] = { vbp_thresholds[0], vbp_thresholds[1], vbp_thresholds[2], vbp_thresholds[3], vbp_thresholds[4] }; const int segment_id = xd->mi[0]->segment_id; uint64_t blk_sad = 0; if (cpi->src_sad_blk_64x64 != NULL && cpi->svc.spatial_layer_id == cpi->svc.number_spatial_layers - 1) { const int sb_size_by_mb = (cm->seq_params->sb_size == BLOCK_128X128) ? (cm->seq_params->mib_size >> 1) : cm->seq_params->mib_size; const int sb_cols = (cm->mi_params.mi_cols + sb_size_by_mb - 1) / sb_size_by_mb; const int sbi_col = mi_col / sb_size_by_mb; const int sbi_row = mi_row / sb_size_by_mb; blk_sad = cpi->src_sad_blk_64x64[sbi_col + sbi_row * sb_cols]; } const bool is_segment_id_boosted = cpi->oxcf.q_cfg.aq_mode == CYCLIC_REFRESH_AQ && cm->seg.enabled && cyclic_refresh_segment_id_boosted(segment_id); const int qindex = is_segment_id_boosted ? av1_get_qindex(&cm->seg, segment_id, cm->quant_params.base_qindex) : cm->quant_params.base_qindex; set_vbp_thresholds( cpi, thresholds, blk_sad, qindex, x->content_state_sb.low_sumdiff, x->content_state_sb.source_sad_nonrd, x->content_state_sb.source_sad_rd, is_segment_id_boosted, x->content_state_sb.lighting_change); src_buf = x->plane[AOM_PLANE_Y].src.buf; int src_stride = x->plane[AOM_PLANE_Y].src.stride; // Index for force_split: 0 for 64x64, 1-4 for 32x32 blocks, // 5-20 for the 16x16 blocks. force_split[0] = PART_EVAL_ALL; memset(x->part_search_info.variance_low, 0, sizeof(x->part_search_info.variance_low)); // Check if LAST frame is NULL, and if so, treat this frame // as a key frame, for the purpose of the superblock partitioning. // LAST == NULL can happen in cases where enhancement spatial layers are // enabled dyanmically and the only reference is the spatial(GOLDEN). // If LAST frame has a different resolution: set the scaled_ref_last flag // and check if ref_scaled is NULL. if (!frame_is_intra_only(cm)) { const YV12_BUFFER_CONFIG *ref = get_ref_frame_yv12_buf(cm, LAST_FRAME); if (ref == NULL) { is_key_frame = true; } else if (ref->y_crop_height != cm->height || ref->y_crop_width != cm->width) { scaled_ref_last = true; const YV12_BUFFER_CONFIG *ref_scaled = av1_get_scaled_ref_frame(cpi, LAST_FRAME); if (ref_scaled == NULL) is_key_frame = true; } } x->source_variance = UINT_MAX; // For nord_pickmode: compute source_variance, only for superblocks with // some motion for now. This input can then be used to bias the partitioning // or the chroma_check. if (cpi->sf.rt_sf.use_nonrd_pick_mode && x->content_state_sb.source_sad_nonrd > kLowSad) x->source_variance = av1_get_perpixel_variance_facade( cpi, xd, &x->plane[0].src, cm->seq_params->sb_size, AOM_PLANE_Y); if (!is_key_frame) { setup_planes(cpi, x, &y_sad, &y_sad_g, &y_sad_alt, &y_sad_last, &ref_frame_partition, &sf_no_scale, mi_row, mi_col, is_small_sb, scaled_ref_last); MB_MODE_INFO *mi = xd->mi[0]; // Use reference SB directly for zero mv. if (mi->mv[0].as_int != 0) { dst_buf = xd->plane[AOM_PLANE_Y].dst.buf; dst_stride = xd->plane[AOM_PLANE_Y].dst.stride; is_zero_motion = false; } else { dst_buf = xd->plane[AOM_PLANE_Y].pre[0].buf; dst_stride = xd->plane[AOM_PLANE_Y].pre[0].stride; } } else { dst_buf = NULL; dst_stride = 0; } // check and set the color sensitivity of sb. av1_zero(uv_sad); chroma_check(cpi, x, bsize, y_sad_last, y_sad_g, y_sad_alt, is_key_frame, is_zero_motion, uv_sad); x->force_zeromv_skip_for_sb = 0; VP128x128 *vt; AOM_CHECK_MEM_ERROR(xd->error_info, vt, aom_malloc(sizeof(*vt))); vt->split = td->vt64x64; // If the superblock is completely static (zero source sad) and // the y_sad (relative to LAST ref) is very small, take the sb_size partition // and exit, and force zeromv_last skip mode for nonrd_pickmode. // Only do this on the base segment (so the QP-boosted segment, if applied, // can still continue cleaning/ramping up the quality). // Condition on color uv_sad is also added. if (!is_key_frame && cpi->sf.rt_sf.part_early_exit_zeromv && cpi->rc.frames_since_key > 30 && segment_id == CR_SEGMENT_ID_BASE && ref_frame_partition == LAST_FRAME && xd->mi[0]->mv[0].as_int == 0) { // Exit here, if zero mv skip flag is set at SB level. if (set_force_zeromv_skip_for_sb(cpi, x, tile, vt, uv_sad, mi_row, mi_col, y_sad, bsize)) return 0; } if (cpi->noise_estimate.enabled) noise_level = av1_noise_estimate_extract_level(&cpi->noise_estimate); // Fill in the entire tree of 8x8 (for inter frames) or 4x4 (for key frames) // variances for splits. fill_variance_tree_leaves(cpi, x, vt, force_split, avg_16x16, maxvar_16x16, minvar_16x16, thresholds, src_buf, src_stride, dst_buf, dst_stride, is_key_frame, is_small_sb); avg_64x64 = 0; for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) { max_var_32x32[blk64_idx] = 0; min_var_32x32[blk64_idx] = INT_MAX; const int blk64_scale_idx = blk64_idx << 2; for (int lvl1_idx = 0; lvl1_idx < 4; lvl1_idx++) { const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; for (int lvl2_idx = 0; lvl2_idx < 4; lvl2_idx++) { if (!is_key_frame) continue; VP16x16 *vtemp = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; for (int lvl3_idx = 0; lvl3_idx < 4; lvl3_idx++) fill_variance_tree(&vtemp->split[lvl3_idx], BLOCK_8X8); fill_variance_tree(vtemp, BLOCK_16X16); // If variance of this 16x16 block is above the threshold, force block // to split. This also forces a split on the upper levels. get_variance(&vtemp->part_variances.none); if (vtemp->part_variances.none.variance > thresholds[3]) { const int split_index = 21 + lvl1_scale_idx + lvl2_idx; force_split[split_index] = cpi->sf.rt_sf.vbp_prune_16x16_split_using_min_max_sub_blk_var ? get_part_eval_based_on_sub_blk_var(vtemp, thresholds[3]) : PART_EVAL_ONLY_SPLIT; force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } } fill_variance_tree(&vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32); // If variance of this 32x32 block is above the threshold, or if its above // (some threshold of) the average variance over the sub-16x16 blocks, // then force this block to split. This also forces a split on the upper // (64x64) level. uint64_t frame_sad_thresh = 20000; const int is_360p_or_smaller = cm->width * cm->height <= RESOLUTION_360P; if (cpi->svc.number_temporal_layers > 2 && cpi->svc.temporal_layer_id == 0) frame_sad_thresh = frame_sad_thresh << 1; if (force_split[5 + blk64_scale_idx + lvl1_idx] == PART_EVAL_ALL) { get_variance(&vt->split[blk64_idx].split[lvl1_idx].part_variances.none); var_32x32 = vt->split[blk64_idx].split[lvl1_idx].part_variances.none.variance; max_var_32x32[blk64_idx] = AOMMAX(var_32x32, max_var_32x32[blk64_idx]); min_var_32x32[blk64_idx] = AOMMIN(var_32x32, min_var_32x32[blk64_idx]); const int max_min_var_16X16_diff = (maxvar_16x16[blk64_idx][lvl1_idx] - minvar_16x16[blk64_idx][lvl1_idx]); if (var_32x32 > thresholds[2] || (!is_key_frame && var_32x32 > (thresholds[2] >> 1) && var_32x32 > (avg_16x16[blk64_idx][lvl1_idx] >> 1))) { force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } else if (!is_key_frame && is_360p_or_smaller && ((max_min_var_16X16_diff > (thresholds[2] >> 1) && maxvar_16x16[blk64_idx][lvl1_idx] > thresholds[2]) || (cpi->sf.rt_sf.prefer_large_partition_blocks && x->content_state_sb.source_sad_nonrd > kLowSad && cpi->rc.frame_source_sad < frame_sad_thresh && maxvar_16x16[blk64_idx][lvl1_idx] > (thresholds[2] >> 4) && maxvar_16x16[blk64_idx][lvl1_idx] > (minvar_16x16[blk64_idx][lvl1_idx] << 2)))) { force_split[5 + blk64_scale_idx + lvl1_idx] = PART_EVAL_ONLY_SPLIT; force_split[blk64_idx + 1] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } } } if (force_split[1 + blk64_idx] == PART_EVAL_ALL) { fill_variance_tree(&vt->split[blk64_idx], BLOCK_64X64); get_variance(&vt->split[blk64_idx].part_variances.none); var_64x64 = vt->split[blk64_idx].part_variances.none.variance; max_var_64x64 = AOMMAX(var_64x64, max_var_64x64); min_var_64x64 = AOMMIN(var_64x64, min_var_64x64); // If the difference of the max-min variances of sub-blocks or max // variance of a sub-block is above some threshold of then force this // block to split. Only checking this for noise level >= medium, if // encoder is in SVC or if we already forced large blocks. const int max_min_var_32x32_diff = max_var_32x32[blk64_idx] - min_var_32x32[blk64_idx]; const int check_max_var = max_var_32x32[blk64_idx] > thresholds[1] >> 1; const bool check_noise_lvl = noise_level >= kMedium || cpi->ppi->use_svc || cpi->sf.rt_sf.prefer_large_partition_blocks; const int64_t set_threshold = 3 * (thresholds[1] >> 3); if (!is_key_frame && max_min_var_32x32_diff > set_threshold && check_max_var && check_noise_lvl) { force_split[1 + blk64_idx] = PART_EVAL_ONLY_SPLIT; force_split[0] = PART_EVAL_ONLY_SPLIT; } avg_64x64 += var_64x64; } if (is_small_sb) force_split[0] = PART_EVAL_ONLY_SPLIT; } if (force_split[0] == PART_EVAL_ALL) { fill_variance_tree(vt, BLOCK_128X128); get_variance(&vt->part_variances.none); const int set_avg_64x64 = (9 * avg_64x64) >> 5; if (!is_key_frame && vt->part_variances.none.variance > set_avg_64x64) force_split[0] = PART_EVAL_ONLY_SPLIT; if (!is_key_frame && (max_var_64x64 - min_var_64x64) > 3 * (thresholds[0] >> 3) && max_var_64x64 > thresholds[0] >> 1) force_split[0] = PART_EVAL_ONLY_SPLIT; } if (mi_col + 32 > tile->mi_col_end || mi_row + 32 > tile->mi_row_end || !set_vt_partitioning(cpi, xd, tile, vt, BLOCK_128X128, mi_row, mi_col, thresholds[0], BLOCK_16X16, force_split[0])) { for (int blk64_idx = 0; blk64_idx < num_64x64_blocks; ++blk64_idx) { const int x64_idx = GET_BLK_IDX_X(blk64_idx, 4); const int y64_idx = GET_BLK_IDX_Y(blk64_idx, 4); const int blk64_scale_idx = blk64_idx << 2; // Now go through the entire structure, splitting every block size until // we get to one that's got a variance lower than our threshold. if (set_vt_partitioning(cpi, xd, tile, &vt->split[blk64_idx], BLOCK_64X64, mi_row + y64_idx, mi_col + x64_idx, thresholds[1], BLOCK_16X16, force_split[1 + blk64_idx])) continue; for (int lvl1_idx = 0; lvl1_idx < 4; ++lvl1_idx) { const int x32_idx = GET_BLK_IDX_X(lvl1_idx, 3); const int y32_idx = GET_BLK_IDX_Y(lvl1_idx, 3); const int lvl1_scale_idx = (blk64_scale_idx + lvl1_idx) << 2; if (set_vt_partitioning( cpi, xd, tile, &vt->split[blk64_idx].split[lvl1_idx], BLOCK_32X32, (mi_row + y64_idx + y32_idx), (mi_col + x64_idx + x32_idx), thresholds[2], BLOCK_16X16, force_split[5 + blk64_scale_idx + lvl1_idx])) continue; for (int lvl2_idx = 0; lvl2_idx < 4; ++lvl2_idx) { const int x16_idx = GET_BLK_IDX_X(lvl2_idx, 2); const int y16_idx = GET_BLK_IDX_Y(lvl2_idx, 2); const int split_index = 21 + lvl1_scale_idx + lvl2_idx; VP16x16 *vtemp = &vt->split[blk64_idx].split[lvl1_idx].split[lvl2_idx]; if (set_vt_partitioning(cpi, xd, tile, vtemp, BLOCK_16X16, mi_row + y64_idx + y32_idx + y16_idx, mi_col + x64_idx + x32_idx + x16_idx, thresholds[3], BLOCK_8X8, force_split[split_index])) continue; for (int lvl3_idx = 0; lvl3_idx < 4; ++lvl3_idx) { const int x8_idx = GET_BLK_IDX_X(lvl3_idx, 1); const int y8_idx = GET_BLK_IDX_Y(lvl3_idx, 1); set_block_size(cpi, (mi_row + y64_idx + y32_idx + y16_idx + y8_idx), (mi_col + x64_idx + x32_idx + x16_idx + x8_idx), BLOCK_8X8); } } } } } if (cpi->sf.rt_sf.short_circuit_low_temp_var) { set_low_temp_var_flag(cpi, &x->part_search_info, xd, vt, thresholds, ref_frame_partition, mi_col, mi_row, is_small_sb); } aom_free(vt); #if CONFIG_COLLECT_COMPONENT_TIMING end_timing(cpi, choose_var_based_partitioning_time); #endif return 0; }