/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // SSE2 #include "config/av1_rtcd.h" #include "aom_dsp/x86/synonyms.h" static int64_t k_means_horizontal_sum_sse2(__m128i a) { const __m128i sum1 = _mm_unpackhi_epi64(a, a); const __m128i sum2 = _mm_add_epi64(a, sum1); int64_t res; _mm_storel_epi64((__m128i *)&res, sum2); return res; } void av1_calc_indices_dim1_sse2(const int16_t *data, const int16_t *centroids, uint8_t *indices, int64_t *total_dist, int n, int k) { const __m128i v_zero = _mm_setzero_si128(); __m128i sum = _mm_setzero_si128(); __m128i cents[PALETTE_MAX_SIZE]; for (int j = 0; j < k; ++j) { cents[j] = _mm_set1_epi16(centroids[j]); } for (int i = 0; i < n; i += 8) { const __m128i in = _mm_loadu_si128((__m128i *)data); __m128i ind = _mm_setzero_si128(); // Compute the distance to the first centroid. __m128i d1 = _mm_sub_epi16(in, cents[0]); __m128i d2 = _mm_sub_epi16(cents[0], in); __m128i dist_min = _mm_max_epi16(d1, d2); for (int j = 1; j < k; ++j) { // Compute the distance to the centroid. d1 = _mm_sub_epi16(in, cents[j]); d2 = _mm_sub_epi16(cents[j], in); const __m128i dist = _mm_max_epi16(d1, d2); // Compare to the minimal one. const __m128i cmp = _mm_cmpgt_epi16(dist_min, dist); dist_min = _mm_min_epi16(dist_min, dist); const __m128i ind1 = _mm_set1_epi16(j); ind = _mm_or_si128(_mm_andnot_si128(cmp, ind), _mm_and_si128(cmp, ind1)); } if (total_dist) { // Square, convert to 32 bit and add together. dist_min = _mm_madd_epi16(dist_min, dist_min); // Convert to 64 bit and add to sum. const __m128i dist1 = _mm_unpacklo_epi32(dist_min, v_zero); const __m128i dist2 = _mm_unpackhi_epi32(dist_min, v_zero); sum = _mm_add_epi64(sum, dist1); sum = _mm_add_epi64(sum, dist2); } __m128i p2 = _mm_packus_epi16(ind, v_zero); _mm_storel_epi64((__m128i *)indices, p2); indices += 8; data += 8; } if (total_dist) { *total_dist = k_means_horizontal_sum_sse2(sum); } } void av1_calc_indices_dim2_sse2(const int16_t *data, const int16_t *centroids, uint8_t *indices, int64_t *total_dist, int n, int k) { const __m128i v_zero = _mm_setzero_si128(); __m128i sum = _mm_setzero_si128(); __m128i ind[2]; __m128i cents[PALETTE_MAX_SIZE]; for (int j = 0; j < k; ++j) { const int16_t cx = centroids[2 * j], cy = centroids[2 * j + 1]; cents[j] = _mm_set_epi16(cy, cx, cy, cx, cy, cx, cy, cx); } for (int i = 0; i < n; i += 8) { for (int l = 0; l < 2; ++l) { const __m128i in = _mm_loadu_si128((__m128i *)data); ind[l] = _mm_setzero_si128(); // Compute the distance to the first centroid. __m128i d1 = _mm_sub_epi16(in, cents[0]); __m128i dist_min = _mm_madd_epi16(d1, d1); for (int j = 1; j < k; ++j) { // Compute the distance to the centroid. d1 = _mm_sub_epi16(in, cents[j]); const __m128i dist = _mm_madd_epi16(d1, d1); // Compare to the minimal one. const __m128i cmp = _mm_cmpgt_epi32(dist_min, dist); const __m128i dist1 = _mm_andnot_si128(cmp, dist_min); const __m128i dist2 = _mm_and_si128(cmp, dist); dist_min = _mm_or_si128(dist1, dist2); const __m128i ind1 = _mm_set1_epi32(j); ind[l] = _mm_or_si128(_mm_andnot_si128(cmp, ind[l]), _mm_and_si128(cmp, ind1)); } if (total_dist) { // Convert to 64 bit and add to sum. const __m128i dist1 = _mm_unpacklo_epi32(dist_min, v_zero); const __m128i dist2 = _mm_unpackhi_epi32(dist_min, v_zero); sum = _mm_add_epi64(sum, dist1); sum = _mm_add_epi64(sum, dist2); } data += 8; } // Cast to 8 bit and store. const __m128i d2 = _mm_packus_epi16(ind[0], ind[1]); const __m128i d3 = _mm_packus_epi16(d2, v_zero); _mm_storel_epi64((__m128i *)indices, d3); indices += 8; } if (total_dist) { *total_dist = k_means_horizontal_sum_sse2(sum); } }