/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include // AVX2 #include "aom_dsp/x86/mem_sse2.h" #include "aom_dsp/x86/synonyms.h" #include "aom_dsp/x86/synonyms_avx2.h" #include "aom_dsp/x86/transpose_sse2.h" #include "config/av1_rtcd.h" #include "av1/common/restoration.h" #include "av1/encoder/pickrst.h" #if CONFIG_AV1_HIGHBITDEPTH static INLINE void acc_stat_highbd_avx2(int64_t *dst, const uint16_t *dgd, const __m256i *shuffle, const __m256i *dgd_ijkl) { // Load two 128-bit chunks from dgd const __m256i s0 = _mm256_inserti128_si256( _mm256_castsi128_si256(_mm_loadu_si128((__m128i *)dgd)), _mm_loadu_si128((__m128i *)(dgd + 4)), 1); // s0 = [11 10 9 8 7 6 5 4] [7 6 5 4 3 2 1 0] as u16 (values are dgd indices) // The weird order is so the shuffle stays within 128-bit lanes // Shuffle 16x u16 values within lanes according to the mask: // [0 1 1 2 2 3 3 4] [0 1 1 2 2 3 3 4] // (Actually we shuffle u8 values as there's no 16-bit shuffle) const __m256i s1 = _mm256_shuffle_epi8(s0, *shuffle); // s1 = [8 7 7 6 6 5 5 4] [4 3 3 2 2 1 1 0] as u16 (values are dgd indices) // Multiply 16x 16-bit integers in dgd_ijkl and s1, resulting in 16x 32-bit // integers then horizontally add pairs of these integers resulting in 8x // 32-bit integers const __m256i d0 = _mm256_madd_epi16(*dgd_ijkl, s1); // d0 = [a b c d] [e f g h] as u32 // Take the lower-half of d0, extend to u64, add it on to dst (H) const __m256i d0l = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 0)); // d0l = [a b] [c d] as u64 const __m256i dst0 = yy_load_256(dst); yy_store_256(dst, _mm256_add_epi64(d0l, dst0)); // Take the upper-half of d0, extend to u64, add it on to dst (H) const __m256i d0h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(d0, 1)); // d0h = [e f] [g h] as u64 const __m256i dst1 = yy_load_256(dst + 4); yy_store_256(dst + 4, _mm256_add_epi64(d0h, dst1)); } static INLINE void acc_stat_highbd_win7_one_line_avx2( const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, int dgd_stride, const __m256i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN][WIENER_WIN], int64_t M_int[WIENER_WIN][WIENER_WIN], int64_t H_int[WIENER_WIN2][WIENER_WIN * 8]) { int j, k, l; const int wiener_win = WIENER_WIN; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint16_t X1 = src[j]; const uint16_t X2 = src[j + 1]; *sumX += X1 + X2; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; const uint16_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; // Load two u16 values from dgd_ijkl combined as a u32, // then broadcast to 8x u32 slots of a 256 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l)); // dgd_ijkl = [y x y x y x y x] [y x y x y x y x] where each is a u16 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &dgd_ijkl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint16_t X1 = src[j]; *sumX += X1; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_highbd_avx2` function wants its input to have // interleaved copies of two pixels, but we only have one. However, the // pixels are (effectively) used as inputs to a multiply-accumulate. So // if we set the extra pixel slot to 0, then it is effectively ignored. const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1); acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 5 * 8, dgd_ij + 5 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 6 * 8, dgd_ij + 6 * dgd_stride, shuffle, &dgd_ijkl); } } } } static INLINE void compute_stats_highbd_win7_opt_avx2( const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const uint16_t avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); int64_t M_int[WIENER_WIN][WIENER_WIN] = { { 0 } }; DECLARE_ALIGNED(32, int64_t, H_int[WIENER_WIN2][WIENER_WIN * 8]) = { { 0 } }; int32_t sumY[WIENER_WIN][WIENER_WIN] = { { 0 } }; int32_t sumX = 0; const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i++) { acc_stat_highbd_win7_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX, sumY, M_int, H_int); } } uint8_t bit_depth_divider = 1; if (bit_depth == AOM_BITS_12) bit_depth_divider = 16; else if (bit_depth == AOM_BITS_10) bit_depth_divider = 4; const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = (M_int[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / bit_depth_divider; int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = (H_int_[n * 8 + m] + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / bit_depth_divider; } } } } } static INLINE void acc_stat_highbd_win5_one_line_avx2( const uint16_t *dgd, const uint16_t *src, int h_start, int h_end, int dgd_stride, const __m256i *shuffle, int32_t *sumX, int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int64_t M_int[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA], int64_t H_int[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) { int j, k, l; const int wiener_win = WIENER_WIN_CHROMA; // Main loop handles two pixels at a time // We can assume that h_start is even, since it will always be aligned to // a tile edge + some number of restoration units, and both of those will // be 64-pixel aligned. // However, at the edge of the image, h_end may be odd, so we need to handle // that case correctly. assert(h_start % 2 == 0); const int h_end_even = h_end & ~1; const int has_odd_pixel = h_end & 1; for (j = h_start; j < h_end_even; j += 2) { const uint16_t X1 = src[j]; const uint16_t X2 = src[j + 1]; *sumX += X1 + X2; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; const uint16_t D2 = dgd_ijk[l + 1]; sumY[k][l] += D1 + D2; M_int[k][l] += D1 * X1 + D2 * X2; // Load two u16 values from dgd_ijkl combined as a u32, // then broadcast to 8x u32 slots of a 256 const __m256i dgd_ijkl = _mm256_set1_epi32(loadu_int32(dgd_ijk + l)); // dgd_ijkl = [x y x y x y x y] [x y x y x y x y] where each is a u16 acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); } } } // If the width is odd, add in the final pixel if (has_odd_pixel) { const uint16_t X1 = src[j]; *sumX += X1; const uint16_t *dgd_ij = dgd + j; for (k = 0; k < wiener_win; k++) { const uint16_t *dgd_ijk = dgd_ij + k * dgd_stride; for (l = 0; l < wiener_win; l++) { int64_t *H_ = &H_int[(l * wiener_win + k)][0]; const uint16_t D1 = dgd_ijk[l]; sumY[k][l] += D1; M_int[k][l] += D1 * X1; // The `acc_stat_highbd_avx2` function wants its input to have // interleaved copies of two pixels, but we only have one. However, the // pixels are (effectively) used as inputs to a multiply-accumulate. So // if we set the extra pixel slot to 0, then it is effectively ignored. const __m256i dgd_ijkl = _mm256_set1_epi32((int)D1); acc_stat_highbd_avx2(H_ + 0 * 8, dgd_ij + 0 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 1 * 8, dgd_ij + 1 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 2 * 8, dgd_ij + 2 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 3 * 8, dgd_ij + 3 * dgd_stride, shuffle, &dgd_ijkl); acc_stat_highbd_avx2(H_ + 4 * 8, dgd_ij + 4 * dgd_stride, shuffle, &dgd_ijkl); } } } } static INLINE void compute_stats_highbd_win5_opt_avx2( const uint8_t *dgd8, const uint8_t *src8, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { int i, j, k, l, m, n; const int wiener_win = WIENER_WIN_CHROMA; const int pixel_count = (h_end - h_start) * (v_end - v_start); const int wiener_win2 = wiener_win * wiener_win; const int wiener_halfwin = (wiener_win >> 1); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dgd = CONVERT_TO_SHORTPTR(dgd8); const uint16_t avg = find_average_highbd(dgd, h_start, h_end, v_start, v_end, dgd_stride); int64_t M_int64[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; DECLARE_ALIGNED( 32, int64_t, H_int64[WIENER_WIN2_CHROMA][WIENER_WIN_CHROMA * 8]) = { { 0 } }; int32_t sumY[WIENER_WIN_CHROMA][WIENER_WIN_CHROMA] = { { 0 } }; int32_t sumX = 0; const uint16_t *dgd_win = dgd - wiener_halfwin * dgd_stride - wiener_halfwin; const __m256i shuffle = yy_loadu_256(g_shuffle_stats_highbd_data); for (j = v_start; j < v_end; j += 64) { const int vert_end = AOMMIN(64, v_end - j) + j; for (i = j; i < vert_end; i++) { acc_stat_highbd_win5_one_line_avx2( dgd_win + i * dgd_stride, src + i * src_stride, h_start, h_end, dgd_stride, &shuffle, &sumX, sumY, M_int64, H_int64); } } uint8_t bit_depth_divider = 1; if (bit_depth == AOM_BITS_12) bit_depth_divider = 16; else if (bit_depth == AOM_BITS_10) bit_depth_divider = 4; const int64_t avg_square_sum = (int64_t)avg * (int64_t)avg * pixel_count; for (k = 0; k < wiener_win; k++) { for (l = 0; l < wiener_win; l++) { const int32_t idx0 = l * wiener_win + k; M[idx0] = (M_int64[k][l] + (avg_square_sum - (int64_t)avg * (sumX + sumY[k][l]))) / bit_depth_divider; int64_t *H_ = H + idx0 * wiener_win2; int64_t *H_int_ = &H_int64[idx0][0]; for (m = 0; m < wiener_win; m++) { for (n = 0; n < wiener_win; n++) { H_[m * wiener_win + n] = (H_int_[n * 8 + m] + (avg_square_sum - (int64_t)avg * (sumY[k][l] + sumY[n][m]))) / bit_depth_divider; } } } } } void av1_compute_stats_highbd_avx2(int wiener_win, const uint8_t *dgd8, const uint8_t *src8, int16_t *dgd_avg, int16_t *src_avg, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, aom_bit_depth_t bit_depth) { if (wiener_win == WIENER_WIN) { (void)dgd_avg; (void)src_avg; compute_stats_highbd_win7_opt_avx2(dgd8, src8, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } else if (wiener_win == WIENER_WIN_CHROMA) { (void)dgd_avg; (void)src_avg; compute_stats_highbd_win5_opt_avx2(dgd8, src8, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } else { av1_compute_stats_highbd_c(wiener_win, dgd8, src8, dgd_avg, src_avg, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, bit_depth); } } #endif // CONFIG_AV1_HIGHBITDEPTH static INLINE void madd_and_accum_avx2(__m256i src, __m256i dgd, __m256i *sum) { *sum = _mm256_add_epi32(*sum, _mm256_madd_epi16(src, dgd)); } static INLINE __m256i convert_and_add_avx2(__m256i src) { const __m256i s0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(src)); const __m256i s1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(src, 1)); return _mm256_add_epi64(s0, s1); } static INLINE __m256i hadd_four_32_to_64_avx2(__m256i src0, __m256i src1, __m256i *src2, __m256i *src3) { // 00 01 10 11 02 03 12 13 const __m256i s_0 = _mm256_hadd_epi32(src0, src1); // 20 21 30 31 22 23 32 33 const __m256i s_1 = _mm256_hadd_epi32(*src2, *src3); // 00+01 10+11 20+21 30+31 02+03 12+13 22+23 32+33 const __m256i s_2 = _mm256_hadd_epi32(s_0, s_1); return convert_and_add_avx2(s_2); } static INLINE __m128i add_64bit_lvl_avx2(__m256i src0, __m256i src1) { // 00 10 02 12 const __m256i t0 = _mm256_unpacklo_epi64(src0, src1); // 01 11 03 13 const __m256i t1 = _mm256_unpackhi_epi64(src0, src1); // 00+01 10+11 02+03 12+13 const __m256i sum = _mm256_add_epi64(t0, t1); // 00+01 10+11 const __m128i sum0 = _mm256_castsi256_si128(sum); // 02+03 12+13 const __m128i sum1 = _mm256_extracti128_si256(sum, 1); // 00+01+02+03 10+11+12+13 return _mm_add_epi64(sum0, sum1); } static INLINE __m128i convert_32_to_64_add_avx2(__m256i src0, __m256i src1) { // 00 01 02 03 const __m256i s0 = convert_and_add_avx2(src0); // 10 11 12 13 const __m256i s1 = convert_and_add_avx2(src1); return add_64bit_lvl_avx2(s0, s1); } static INLINE int32_t calc_sum_of_register(__m256i src) { const __m128i src_l = _mm256_castsi256_si128(src); const __m128i src_h = _mm256_extracti128_si256(src, 1); const __m128i sum = _mm_add_epi32(src_l, src_h); const __m128i dst0 = _mm_add_epi32(sum, _mm_srli_si128(sum, 8)); const __m128i dst1 = _mm_add_epi32(dst0, _mm_srli_si128(dst0, 4)); return _mm_cvtsi128_si32(dst1); } static INLINE void transpose_64bit_4x4_avx2(const __m256i *const src, __m256i *const dst) { // Unpack 64 bit elements. Goes from: // src[0]: 00 01 02 03 // src[1]: 10 11 12 13 // src[2]: 20 21 22 23 // src[3]: 30 31 32 33 // to: // reg0: 00 10 02 12 // reg1: 20 30 22 32 // reg2: 01 11 03 13 // reg3: 21 31 23 33 const __m256i reg0 = _mm256_unpacklo_epi64(src[0], src[1]); const __m256i reg1 = _mm256_unpacklo_epi64(src[2], src[3]); const __m256i reg2 = _mm256_unpackhi_epi64(src[0], src[1]); const __m256i reg3 = _mm256_unpackhi_epi64(src[2], src[3]); // Unpack 64 bit elements resulting in: // dst[0]: 00 10 20 30 // dst[1]: 01 11 21 31 // dst[2]: 02 12 22 32 // dst[3]: 03 13 23 33 dst[0] = _mm256_inserti128_si256(reg0, _mm256_castsi256_si128(reg1), 1); dst[1] = _mm256_inserti128_si256(reg2, _mm256_castsi256_si128(reg3), 1); dst[2] = _mm256_inserti128_si256(reg1, _mm256_extracti128_si256(reg0, 1), 0); dst[3] = _mm256_inserti128_si256(reg3, _mm256_extracti128_si256(reg2, 1), 0); } // When we load 32 values of int8_t type and need less than 32 values for // processing, the below mask is used to make the extra values zero. static const int8_t mask_8bit[32] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes }; // When we load 16 values of int16_t type and need less than 16 values for // processing, the below mask is used to make the extra values zero. static const int16_t mask_16bit[32] = { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, // 16 bytes 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 16 bytes }; static INLINE uint8_t calc_dgd_buf_avg_avx2(const uint8_t *src, int32_t h_start, int32_t h_end, int32_t v_start, int32_t v_end, int32_t stride) { const uint8_t *src_temp = src + v_start * stride + h_start; const __m256i zero = _mm256_setzero_si256(); const int32_t width = h_end - h_start; const int32_t height = v_end - v_start; const int32_t wd_beyond_mul32 = width & 31; const int32_t wd_mul32 = width - wd_beyond_mul32; __m128i mask_low, mask_high; __m256i ss = zero; // When width is not multiple of 32, it still loads 32 and to make the data // which is extra (beyond required) as zero using the below mask. if (wd_beyond_mul32 >= 16) { mask_low = _mm_set1_epi8(-1); mask_high = _mm_loadu_si128((__m128i *)(&mask_8bit[32 - wd_beyond_mul32])); } else { mask_low = _mm_loadu_si128((__m128i *)(&mask_8bit[16 - wd_beyond_mul32])); mask_high = _mm_setzero_si128(); } const __m256i mask = _mm256_inserti128_si256(_mm256_castsi128_si256(mask_low), mask_high, 1); int32_t proc_ht = 0; do { // Process width in multiple of 32. int32_t proc_wd = 0; while (proc_wd < wd_mul32) { const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd)); const __m256i sad_0 = _mm256_sad_epu8(s_0, zero); ss = _mm256_add_epi32(ss, sad_0); proc_wd += 32; } // Process the remaining width. if (wd_beyond_mul32) { const __m256i s_0 = _mm256_loadu_si256((__m256i *)(src_temp + proc_wd)); const __m256i s_m_0 = _mm256_and_si256(s_0, mask); const __m256i sad_0 = _mm256_sad_epu8(s_m_0, zero); ss = _mm256_add_epi32(ss, sad_0); } src_temp += stride; proc_ht++; } while (proc_ht < height); const uint32_t sum = calc_sum_of_register(ss); const uint8_t avg = sum / (width * height); return avg; } // Fill (src-avg) or (dgd-avg) buffers. Note that when n = (width % 16) is not // 0, it writes (16 - n) more data than required. static INLINE void sub_avg_block_avx2(const uint8_t *src, int32_t src_stride, uint8_t avg, int32_t width, int32_t height, int16_t *dst, int32_t dst_stride, int use_downsampled_wiener_stats) { const __m256i avg_reg = _mm256_set1_epi16(avg); int32_t proc_ht = 0; do { int ds_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; if (use_downsampled_wiener_stats && (height - proc_ht < WIENER_STATS_DOWNSAMPLE_FACTOR)) { ds_factor = height - proc_ht; } int32_t proc_wd = 0; while (proc_wd < width) { const __m128i s = _mm_loadu_si128((__m128i *)(src + proc_wd)); const __m256i ss = _mm256_cvtepu8_epi16(s); const __m256i d = _mm256_sub_epi16(ss, avg_reg); _mm256_storeu_si256((__m256i *)(dst + proc_wd), d); proc_wd += 16; } src += ds_factor * src_stride; dst += ds_factor * dst_stride; proc_ht += ds_factor; } while (proc_ht < height); } // Fills lower-triangular elements of H buffer from upper triangular elements of // the same static INLINE void fill_lower_triag_elements_avx2(const int32_t wiener_win2, int64_t *const H) { for (int32_t i = 0; i < wiener_win2 - 1; i += 4) { __m256i in[4], out[4]; in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + i + 1)); in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + i + 1)); in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + i + 1)); in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i + 1)); transpose_64bit_4x4_avx2(in, out); _mm_storel_epi64((__m128i *)(H + (i + 1) * wiener_win2 + i), _mm256_castsi256_si128(out[0])); _mm_storeu_si128((__m128i *)(H + (i + 2) * wiener_win2 + i), _mm256_castsi256_si128(out[1])); _mm256_storeu_si256((__m256i *)(H + (i + 3) * wiener_win2 + i), out[2]); _mm256_storeu_si256((__m256i *)(H + (i + 4) * wiener_win2 + i), out[3]); for (int32_t j = i + 5; j < wiener_win2; j += 4) { in[0] = _mm256_loadu_si256((__m256i *)(H + (i + 0) * wiener_win2 + j)); in[1] = _mm256_loadu_si256((__m256i *)(H + (i + 1) * wiener_win2 + j)); in[2] = _mm256_loadu_si256((__m256i *)(H + (i + 2) * wiener_win2 + j)); in[3] = _mm256_loadu_si256((__m256i *)(H + (i + 3) * wiener_win2 + j)); transpose_64bit_4x4_avx2(in, out); _mm256_storeu_si256((__m256i *)(H + (j + 0) * wiener_win2 + i), out[0]); _mm256_storeu_si256((__m256i *)(H + (j + 1) * wiener_win2 + i), out[1]); _mm256_storeu_si256((__m256i *)(H + (j + 2) * wiener_win2 + i), out[2]); _mm256_storeu_si256((__m256i *)(H + (j + 3) * wiener_win2 + i), out[3]); } } } // Fill H buffer based on loop_count. #define INIT_H_VALUES(d, loop_count) \ for (int g = 0; g < (loop_count); g++) { \ const __m256i dgd0 = \ _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \ madd_and_accum_avx2(dgd_mul_df, dgd0, &sum_h[g]); \ } // Fill M & H buffer. #define INIT_MH_VALUES(d) \ for (int g = 0; g < wiener_win; g++) { \ const __m256i dgds_0 = \ _mm256_loadu_si256((__m256i *)((d) + (g * d_stride))); \ madd_and_accum_avx2(src_mul_df, dgds_0, &sum_m[g]); \ madd_and_accum_avx2(dgd_mul_df, dgds_0, &sum_h[g]); \ } // Update the dgd pointers appropriately. #define INITIALIZATION(wiener_window_sz) \ j = i / (wiener_window_sz); \ const int16_t *d_window = d + j; \ const int16_t *d_current_row = \ d + j + ((i % (wiener_window_sz)) * d_stride); \ int proc_ht = v_start; \ downsample_factor = \ use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \ __m256i sum_h[wiener_window_sz]; \ memset(sum_h, 0, sizeof(sum_h)); // Update the downsample factor appropriately. #define UPDATE_DOWNSAMPLE_FACTOR \ int proc_wd = 0; \ if (use_downsampled_wiener_stats && \ ((v_end - proc_ht) < WIENER_STATS_DOWNSAMPLE_FACTOR)) { \ downsample_factor = v_end - proc_ht; \ } \ const __m256i df_reg = _mm256_set1_epi16(downsample_factor); #define CALCULATE_REMAINING_H_WIN5 \ while (j < wiener_win) { \ d_window = d; \ d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \ const __m256i zero = _mm256_setzero_si256(); \ sum_h[0] = zero; \ sum_h[1] = zero; \ sum_h[2] = zero; \ sum_h[3] = zero; \ sum_h[4] = zero; \ \ proc_ht = v_start; \ downsample_factor = \ use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \ do { \ UPDATE_DOWNSAMPLE_FACTOR; \ \ /* Process the amount of width multiple of 16.*/ \ while (proc_wd < wd_mul16) { \ const __m256i dgd = \ _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \ const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \ INIT_H_VALUES(d_window + j + proc_wd, 5) \ \ proc_wd += 16; \ }; \ \ /* Process the remaining width here. */ \ if (wd_beyond_mul16) { \ const __m256i dgd = \ _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \ const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \ const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \ INIT_H_VALUES(d_window + j + proc_wd, 5) \ } \ proc_ht += downsample_factor; \ d_window += downsample_factor * d_stride; \ d_current_row += downsample_factor * d_stride; \ } while (proc_ht < v_end); \ const __m256i s_h0 = \ hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \ _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \ s_h0); \ const __m256i s_m_h = convert_and_add_avx2(sum_h[4]); \ const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h); \ _mm_storel_epi64( \ (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0); \ j++; \ } #define CALCULATE_REMAINING_H_WIN7 \ while (j < wiener_win) { \ d_window = d; \ d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); \ const __m256i zero = _mm256_setzero_si256(); \ sum_h[0] = zero; \ sum_h[1] = zero; \ sum_h[2] = zero; \ sum_h[3] = zero; \ sum_h[4] = zero; \ sum_h[5] = zero; \ sum_h[6] = zero; \ \ proc_ht = v_start; \ downsample_factor = \ use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; \ do { \ UPDATE_DOWNSAMPLE_FACTOR; \ \ /* Process the amount of width multiple of 16.*/ \ while (proc_wd < wd_mul16) { \ const __m256i dgd = \ _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \ const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); \ INIT_H_VALUES(d_window + j + proc_wd, 7) \ \ proc_wd += 16; \ }; \ \ /* Process the remaining width here. */ \ if (wd_beyond_mul16) { \ const __m256i dgd = \ _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); \ const __m256i dgd_mask = _mm256_and_si256(dgd, mask); \ const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); \ INIT_H_VALUES(d_window + j + proc_wd, 7) \ } \ proc_ht += downsample_factor; \ d_window += downsample_factor * d_stride; \ d_current_row += downsample_factor * d_stride; \ } while (proc_ht < v_end); \ const __m256i s_h1 = \ hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); \ _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), \ s_h1); \ const __m256i s_h2 = \ hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]); \ _mm256_storeu_si256( \ (__m256i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_h2); \ j++; \ } // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate // the filter tap values required for wiener filtering. Here, the buffer H is of // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the // value above the diagonal (upper triangle) are equal to the values below the // diagonal (lower triangle). The calculation of elements/stats of H(upper // triangle) and M is done in steps as described below where each step fills // specific values of H and M. // Once the upper triangular elements of H matrix are derived, the same will be // copied to lower triangular using the function // fill_lower_triag_elements_avx2(). // Example: Wiener window size = // WIENER_WIN_CHROMA (5) M buffer = [M0 M1 M2 ---- M23 M24] H buffer = Hxy // (x-row, y-column) [H00 H01 H02 ---- H023 H024] [H10 H11 H12 ---- H123 H124] // [H30 H31 H32 ---- H323 H324] // [H40 H41 H42 ---- H423 H424] // [H50 H51 H52 ---- H523 H524] // [H60 H61 H62 ---- H623 H624] // || // || // [H230 H231 H232 ---- H2323 H2324] // [H240 H241 H242 ---- H2423 H2424] // In Step 1, whole M buffers (i.e., M0 to M24) and the first row of H (i.e., // H00 to H024) is filled. The remaining rows of H buffer are filled through // steps 2 to 6. static void compute_stats_win5_avx2(const int16_t *const d, int32_t d_stride, const int16_t *const s, int32_t s_stride, int32_t width, int v_start, int v_end, int64_t *const M, int64_t *const H, int use_downsampled_wiener_stats) { const int32_t wiener_win = WIENER_WIN_CHROMA; const int32_t wiener_win2 = wiener_win * wiener_win; // Amount of width which is beyond multiple of 16. This case is handled // appropriately to process only the required width towards the end. const int32_t wd_mul16 = width & ~15; const int32_t wd_beyond_mul16 = width - wd_mul16; const __m256i mask = _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16])); int downsample_factor; // Step 1: Full M (i.e., M0 to M24) and first row H (i.e., H00 to H024) // values are filled here. Here, the loop over 'j' is executed for values 0 // to 4 (wiener_win-1). When the loop executed for a specific 'j', 5 values of // M and H are filled as shown below. // j=0: M0-M4 and H00-H04, j=1: M5-M9 and H05-H09 are filled etc,. int j = 0; do { const int16_t *s_t = s; const int16_t *d_t = d; __m256i sum_m[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() }; __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() }; downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; int proc_ht = v_start; do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd)); const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd)); const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_MH_VALUES(d_t + j + proc_wd) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd)); const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd)); const __m256i src_mask = _mm256_and_si256(src, mask); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_MH_VALUES(d_t + j + proc_wd) } proc_ht += downsample_factor; s_t += downsample_factor * s_stride; d_t += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_m = hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]); const __m128i s_m_h = convert_32_to_64_add_avx2(sum_m[4], sum_h[4]); _mm256_storeu_si256((__m256i *)(M + wiener_win * j), s_m); _mm_storel_epi64((__m128i *)&M[wiener_win * j + 4], s_m_h); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + wiener_win * j), s_h); _mm_storeh_epi64((__m128i *)&H[wiener_win * j + 4], s_m_h); } while (++j < wiener_win); // The below steps are designed to fill remaining rows of H buffer. Here, aim // is to fill only upper triangle elements correspond to each row and lower // triangle elements are copied from upper-triangle elements. Also, as // mentioned in Step 1, the core function is designed to fill 5 // elements/stats/values of H buffer. // // Step 2: Here, the rows 1, 6, 11, 16 and 21 are filled. As we need to fill // only upper-triangle elements, H10 from row1, H60-H64 and H65 from row6,etc, // are need not be filled. As the core function process 5 values, in first // iteration of 'j' only 4 values to be filled i.e., H11-H14 from row1,H66-H69 // from row6, etc. for (int i = 1; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN_CHROMA) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 4) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN5 } // Step 3: Here, the rows 2, 7, 12, 17 and 22 are filled. As we need to fill // only upper-triangle elements, H20-H21 from row2, H70-H74 and H75-H76 from // row7, etc, are need not be filled. As the core function process 5 values, // in first iteration of 'j' only 3 values to be filled i.e., H22-H24 from // row2, H77-H79 from row7, etc. for (int i = 2; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN_CHROMA) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 3) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN5 } // Step 4: Here, the rows 3, 8, 13, 18 and 23 are filled. As we need to fill // only upper-triangle elements, H30-H32 from row3, H80-H84 and H85-H87 from // row8, etc, are need not be filled. As the core function process 5 values, // in first iteration of 'j' only 2 values to be filled i.e., H33-H34 from // row3, H88-89 from row8, etc. for (int i = 3; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN_CHROMA) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 2) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]); _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN5 } // Step 5: Here, the rows 4, 9, 14, 19 and 24 are filled. As we need to fill // only upper-triangle elements, H40-H43 from row4, H90-H94 and H95-H98 from // row9, etc, are need not be filled. As the core function process 5 values, // in first iteration of 'j' only 1 values to be filled i.e., H44 from row4, // H99 from row9, etc. for (int i = 4; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN_CHROMA) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 1) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m128i s_h = convert_32_to_64_add_avx2(sum_h[0], sum_h[1]); _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN5 } // Step 6: Here, the rows 5, 10, 15 and 20 are filled. As we need to fill only // upper-triangle elements, H50-H54 from row5, H100-H104 and H105-H109 from // row10,etc, are need not be filled. The first iteration of 'j' fills H55-H59 // from row5 and H1010-H1014 from row10, etc. for (int i = 5; i < wiener_win2; i += wiener_win) { // Derive j'th iteration from where the H buffer filling needs to be // started. j = i / wiener_win; int shift = 0; do { // Update the dgd pointers appropriately. int proc_ht = v_start; const int16_t *d_window = d + (i / wiener_win); const int16_t *d_current_row = d + (i / wiener_win) + ((i % wiener_win) * d_stride); downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; __m256i sum_h[WIENER_WIN_CHROMA] = { _mm256_setzero_si256() }; do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + shift + proc_wd, 5) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + shift + proc_wd, 5) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), s_h); const __m256i s_m_h = convert_and_add_avx2(sum_h[4]); const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h); _mm_storel_epi64( (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), s_m_h0); shift++; } while (++j < wiener_win); } fill_lower_triag_elements_avx2(wiener_win2, H); } // The buffers H(auto-covariance) and M(cross-correlation) are used to estimate // the filter tap values required for wiener filtering. Here, the buffer H is of // size ((wiener_window_size^2)*(wiener_window_size^2)) and M is of size // (wiener_window_size*wiener_window_size). H is a symmetric matrix where the // value above the diagonal (upper triangle) are equal to the values below the // diagonal (lower triangle). The calculation of elements/stats of H(upper // triangle) and M is done in steps as described below where each step fills // specific values of H and M. // Example: // Wiener window size = WIENER_WIN (7) // M buffer = [M0 M1 M2 ---- M47 M48] // H buffer = Hxy (x-row, y-column) // [H00 H01 H02 ---- H047 H048] // [H10 H11 H12 ---- H147 H148] // [H30 H31 H32 ---- H347 H348] // [H40 H41 H42 ---- H447 H448] // [H50 H51 H52 ---- H547 H548] // [H60 H61 H62 ---- H647 H648] // || // || // [H470 H471 H472 ---- H4747 H4748] // [H480 H481 H482 ---- H4847 H4848] // In Step 1, whole M buffers (i.e., M0 to M48) and the first row of H (i.e., // H00 to H048) is filled. The remaining rows of H buffer are filled through // steps 2 to 8. static void compute_stats_win7_avx2(const int16_t *const d, int32_t d_stride, const int16_t *const s, int32_t s_stride, int32_t width, int v_start, int v_end, int64_t *const M, int64_t *const H, int use_downsampled_wiener_stats) { const int32_t wiener_win = WIENER_WIN; const int32_t wiener_win2 = wiener_win * wiener_win; // Amount of width which is beyond multiple of 16. This case is handled // appropriately to process only the required width towards the end. const int32_t wd_mul16 = width & ~15; const int32_t wd_beyond_mul16 = width - wd_mul16; const __m256i mask = _mm256_loadu_si256((__m256i *)(&mask_16bit[16 - wd_beyond_mul16])); int downsample_factor; // Step 1: Full M (i.e., M0 to M48) and first row H (i.e., H00 to H048) // values are filled here. Here, the loop over 'j' is executed for values 0 // to 6. When the loop executed for a specific 'j', 7 values of M and H are // filled as shown below. // j=0: M0-M6 and H00-H06, j=1: M7-M13 and H07-H013 are filled etc,. int j = 0; do { const int16_t *s_t = s; const int16_t *d_t = d; __m256i sum_m[WIENER_WIN] = { _mm256_setzero_si256() }; __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() }; downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; int proc_ht = v_start; do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd)); const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd)); const __m256i src_mul_df = _mm256_mullo_epi16(src, df_reg); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_MH_VALUES(d_t + j + proc_wd) proc_wd += 16; } if (wd_beyond_mul16) { const __m256i src = _mm256_loadu_si256((__m256i *)(s_t + proc_wd)); const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_t + proc_wd)); const __m256i src_mask = _mm256_and_si256(src, mask); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i src_mul_df = _mm256_mullo_epi16(src_mask, df_reg); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_MH_VALUES(d_t + j + proc_wd) } proc_ht += downsample_factor; s_t += downsample_factor * s_stride; d_t += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_m0 = hadd_four_32_to_64_avx2(sum_m[0], sum_m[1], &sum_m[2], &sum_m[3]); const __m256i s_m1 = hadd_four_32_to_64_avx2(sum_m[4], sum_m[5], &sum_m[6], &sum_m[6]); _mm256_storeu_si256((__m256i *)(M + wiener_win * j + 0), s_m0); _mm_storeu_si128((__m128i *)(M + wiener_win * j + 4), _mm256_castsi256_si128(s_m1)); _mm_storel_epi64((__m128i *)&M[wiener_win * j + 6], _mm256_extracti128_si256(s_m1, 1)); const __m256i sh_0 = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); const __m256i sh_1 = hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]); _mm256_storeu_si256((__m256i *)(H + wiener_win * j + 0), sh_0); _mm_storeu_si128((__m128i *)(H + wiener_win * j + 4), _mm256_castsi256_si128(sh_1)); _mm_storel_epi64((__m128i *)&H[wiener_win * j + 6], _mm256_extracti128_si256(sh_1, 1)); } while (++j < wiener_win); // The below steps are designed to fill remaining rows of H buffer. Here, aim // is to fill only upper triangle elements correspond to each row and lower // triangle elements are copied from upper-triangle elements. Also, as // mentioned in Step 1, the core function is designed to fill 7 // elements/stats/values of H buffer. // // Step 2: Here, the rows 1, 8, 15, 22, 29, 36 and 43 are filled. As we need // to fill only upper-triangle elements, H10 from row1, H80-H86 and H87 from // row8, etc. are need not be filled. As the core function process 7 values, // in first iteration of 'j' only 6 values to be filled i.e., H11-H16 from // row1 and H88-H813 from row8, etc. for (int i = 1; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (1 * d_stride), 6) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); const __m128i s_h0 = convert_32_to_64_add_avx2(sum_h[4], sum_h[5]); _mm_storeu_si128((__m128i *)(H + (i * wiener_win2) + i + 4), s_h0); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 3: Here, the rows 2, 9, 16, 23, 30, 37 and 44 are filled. As we need // to fill only upper-triangle elements, H20-H21 from row2, H90-H96 and // H97-H98 from row9, etc. are need not be filled. As the core function // process 7 values, in first iteration of 'j' only 5 values to be filled // i.e., H22-H26 from row2 and H99-H913 from row9, etc. for (int i = 2; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (2 * d_stride), 5) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); const __m256i s_m_h = convert_and_add_avx2(sum_h[4]); const __m128i s_m_h0 = add_64bit_lvl_avx2(s_m_h, s_m_h); _mm_storel_epi64((__m128i *)(H + (i * wiener_win2) + i + 4), s_m_h0); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 4: Here, the rows 3, 10, 17, 24, 31, 38 and 45 are filled. As we need // to fill only upper-triangle elements, H30-H32 from row3, H100-H106 and // H107-H109 from row10, etc. are need not be filled. As the core function // process 7 values, in first iteration of 'j' only 4 values to be filled // i.e., H33-H36 from row3 and H1010-H1013 from row10, etc. for (int i = 3; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (3 * d_stride), 4) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 5: Here, the rows 4, 11, 18, 25, 32, 39 and 46 are filled. As we need // to fill only upper-triangle elements, H40-H43 from row4, H110-H116 and // H117-H1110 from row10, etc. are need not be filled. As the core function // process 7 values, in first iteration of 'j' only 3 values to be filled // i.e., H44-H46 from row4 and H1111-H1113 from row11, etc. for (int i = 4; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (4 * d_stride), 3) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 6: Here, the rows 5, 12, 19, 26, 33, 40 and 47 are filled. As we need // to fill only upper-triangle elements, H50-H54 from row5, H120-H126 and // H127-H1211 from row12, etc. are need not be filled. As the core function // process 7 values, in first iteration of 'j' only 2 values to be filled // i.e., H55-H56 from row5 and H1212-H1213 from row12, etc. for (int i = 5; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (5 * d_stride), 2) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + i), s_h); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 7: Here, the rows 6, 13, 20, 27, 34, 41 and 48 are filled. As we need // to fill only upper-triangle elements, H60-H65 from row6, H130-H136 and // H137-H1312 from row13, etc. are need not be filled. As the core function // process 7 values, in first iteration of 'j' only 1 value to be filled // i.e., H66 from row6 and H1313 from row13, etc. for (int i = 6; i < wiener_win2; i += wiener_win) { // Update the dgd pointers appropriately and also derive the 'j'th iteration // from where the H buffer filling needs to be started. INITIALIZATION(WIENER_WIN) do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + proc_wd + (6 * d_stride), 1) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i s_h = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); xx_storel_64(&H[(i * wiener_win2) + i], _mm256_castsi256_si128(s_h)); // process the remaining 'j' iterations. j++; CALCULATE_REMAINING_H_WIN7 } // Step 8: Here, the rows 7, 14, 21, 28, 35 and 42 are filled. As we need // to fill only upper-triangle elements, H70-H75 from row7, H140-H146 and // H147-H1413 from row14, etc. are need not be filled. The first iteration of // 'j' fills H77-H713 from row7 and H1414-H1420 from row14, etc. for (int i = 7; i < wiener_win2; i += wiener_win) { // Derive j'th iteration from where the H buffer filling needs to be // started. j = i / wiener_win; int shift = 0; do { // Update the dgd pointers appropriately. int proc_ht = v_start; const int16_t *d_window = d + (i / WIENER_WIN); const int16_t *d_current_row = d + (i / WIENER_WIN) + ((i % WIENER_WIN) * d_stride); downsample_factor = use_downsampled_wiener_stats ? WIENER_STATS_DOWNSAMPLE_FACTOR : 1; __m256i sum_h[WIENER_WIN] = { _mm256_setzero_si256() }; do { UPDATE_DOWNSAMPLE_FACTOR // Process the amount of width multiple of 16. while (proc_wd < wd_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd, df_reg); INIT_H_VALUES(d_window + shift + proc_wd, 7) proc_wd += 16; } // Process the remaining width here. if (wd_beyond_mul16) { const __m256i dgd = _mm256_loadu_si256((__m256i *)(d_current_row + proc_wd)); const __m256i dgd_mask = _mm256_and_si256(dgd, mask); const __m256i dgd_mul_df = _mm256_mullo_epi16(dgd_mask, df_reg); INIT_H_VALUES(d_window + shift + proc_wd, 7) } proc_ht += downsample_factor; d_window += downsample_factor * d_stride; d_current_row += downsample_factor * d_stride; } while (proc_ht < v_end); const __m256i sh_0 = hadd_four_32_to_64_avx2(sum_h[0], sum_h[1], &sum_h[2], &sum_h[3]); const __m256i sh_1 = hadd_four_32_to_64_avx2(sum_h[4], sum_h[5], &sum_h[6], &sum_h[6]); _mm256_storeu_si256((__m256i *)(H + (i * wiener_win2) + (wiener_win * j)), sh_0); _mm_storeu_si128( (__m128i *)(H + (i * wiener_win2) + (wiener_win * j) + 4), _mm256_castsi256_si128(sh_1)); _mm_storel_epi64((__m128i *)&H[(i * wiener_win2) + (wiener_win * j) + 6], _mm256_extracti128_si256(sh_1, 1)); shift++; } while (++j < wiener_win); } fill_lower_triag_elements_avx2(wiener_win2, H); } void av1_compute_stats_avx2(int wiener_win, const uint8_t *dgd, const uint8_t *src, int16_t *dgd_avg, int16_t *src_avg, int h_start, int h_end, int v_start, int v_end, int dgd_stride, int src_stride, int64_t *M, int64_t *H, int use_downsampled_wiener_stats) { if (wiener_win != WIENER_WIN && wiener_win != WIENER_WIN_CHROMA) { // Currently, libaom supports Wiener filter processing with window sizes as // WIENER_WIN_CHROMA(5) and WIENER_WIN(7). For any other window size, SIMD // support is not facilitated. Hence, invoke C function for the same. av1_compute_stats_c(wiener_win, dgd, src, dgd_avg, src_avg, h_start, h_end, v_start, v_end, dgd_stride, src_stride, M, H, use_downsampled_wiener_stats); return; } const int32_t wiener_halfwin = wiener_win >> 1; const uint8_t avg = calc_dgd_buf_avg_avx2(dgd, h_start, h_end, v_start, v_end, dgd_stride); const int32_t width = h_end - h_start; const int32_t height = v_end - v_start; const int32_t d_stride = (width + 2 * wiener_halfwin + 15) & ~15; const int32_t s_stride = (width + 15) & ~15; // Based on the sf 'use_downsampled_wiener_stats', process either once for // UPDATE_DOWNSAMPLE_FACTOR or for each row. sub_avg_block_avx2(src + v_start * src_stride + h_start, src_stride, avg, width, height, src_avg, s_stride, use_downsampled_wiener_stats); // Compute (dgd-avg) buffer here which is used to fill H buffer. sub_avg_block_avx2( dgd + (v_start - wiener_halfwin) * dgd_stride + h_start - wiener_halfwin, dgd_stride, avg, width + 2 * wiener_halfwin, height + 2 * wiener_halfwin, dgd_avg, d_stride, 0); if (wiener_win == WIENER_WIN) { compute_stats_win7_avx2(dgd_avg, d_stride, src_avg, s_stride, width, v_start, v_end, M, H, use_downsampled_wiener_stats); } else if (wiener_win == WIENER_WIN_CHROMA) { compute_stats_win5_avx2(dgd_avg, d_stride, src_avg, s_stride, width, v_start, v_end, M, H, use_downsampled_wiener_stats); } } static INLINE __m256i pair_set_epi16(int a, int b) { return _mm256_set1_epi32( (int32_t)(((uint16_t)(a)) | (((uint32_t)(b)) << 16))); } int64_t av1_lowbd_pixel_proj_error_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { int i, j, k; const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); __m256i sum64 = _mm256_setzero_si256(); const uint8_t *src = src8; const uint8_t *dat = dat8; int64_t err = 0; if (params->r[0] > 0 && params->r[1] > 0) { __m256i xq_coeff = pair_set_epi16(xq[0], xq[1]); for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i flt0_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt0 + j), yy_loadu_256(flt0 + j + 8)), 0xd8); const __m256i flt1_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt1 + j), yy_loadu_256(flt1 + j + 8)), 0xd8); const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); const __m256i flt0_0_sub_u = _mm256_sub_epi16(flt0_16b, u0); const __m256i flt1_0_sub_u = _mm256_sub_epi16(flt1_16b, u0); const __m256i v0 = _mm256_madd_epi16( xq_coeff, _mm256_unpacklo_epi16(flt0_0_sub_u, flt1_0_sub_u)); const __m256i v1 = _mm256_madd_epi16( xq_coeff, _mm256_unpackhi_epi16(flt0_0_sub_u, flt1_0_sub_u)); const __m256i vr0 = _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); const __m256i vr1 = _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); const __m256i e0 = _mm256_sub_epi16( _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; flt1 += flt1_stride; const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } } else if (params->r[0] > 0 || params->r[1] > 0) { const int xq_active = (params->r[0] > 0) ? xq[0] : xq[1]; const __m256i xq_coeff = pair_set_epi16(xq_active, -xq_active * (1 << SGRPROJ_RST_BITS)); const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i flt_16b = _mm256_permute4x64_epi64( _mm256_packs_epi32(yy_loadu_256(flt + j), yy_loadu_256(flt + j + 8)), 0xd8); const __m256i v0 = _mm256_madd_epi16(xq_coeff, _mm256_unpacklo_epi16(flt_16b, d0)); const __m256i v1 = _mm256_madd_epi16(xq_coeff, _mm256_unpackhi_epi16(flt_16b, d0)); const __m256i vr0 = _mm256_srai_epi32(_mm256_add_epi32(v0, rounding), shift); const __m256i vr1 = _mm256_srai_epi32(_mm256_add_epi32(v1, rounding), shift); const __m256i e0 = _mm256_sub_epi16( _mm256_add_epi16(_mm256_packs_epi32(vr0, vr1), d0), s0); const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq_active * (flt[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt += flt_stride; const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum64_0); sum64 = _mm256_add_epi64(sum64, sum64_1); } } else { __m256i sum32 = _mm256_setzero_si256(); for (i = 0; i < height; ++i) { for (j = 0; j <= width - 16; j += 16) { const __m256i d0 = _mm256_cvtepu8_epi16(xx_loadu_128(dat + j)); const __m256i s0 = _mm256_cvtepu8_epi16(xx_loadu_128(src + j)); const __m256i diff0 = _mm256_sub_epi16(d0, s0); const __m256i err0 = _mm256_madd_epi16(diff0, diff0); sum32 = _mm256_add_epi32(sum32, err0); } for (k = j; k < width; ++k) { const int32_t e = (int32_t)(dat[k]) - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } const __m256i sum64_0 = _mm256_cvtepi32_epi64(_mm256_castsi256_si128(sum32)); const __m256i sum64_1 = _mm256_cvtepi32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64_0, sum64_1); } int64_t sum[4]; yy_storeu_256(sum, sum64); err += sum[0] + sum[1] + sum[2] + sum[3]; return err; } // When params->r[0] > 0 and params->r[1] > 0. In this case all elements of // C and H need to be computed. static AOM_INLINE void calc_proj_params_r0_r1_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h00, h01, h11, c0, c1; const __m256i zero = _mm256_setzero_si256(); h01 = h11 = c0 = c1 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i h01_even = _mm256_mul_epi32(f1, f2); const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f2, 32)); h01 = _mm256_add_epi64(h01, h01_even); h01 = _mm256_add_epi64(h01, h01_odd); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } __m256i c_low = _mm256_unpacklo_epi64(c0, c1); const __m256i c_high = _mm256_unpackhi_epi64(c0, c1); c_low = _mm256_add_epi64(c_low, c_high); const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1), _mm256_castsi256_si128(c_low)); __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01); const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01); h0x_low = _mm256_add_epi64(h0x_low, h0x_high); const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1), _mm256_castsi256_si128(h0x_low)); // Using the symmetric properties of H, calculations of H[1][0] are not // needed. __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11); const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11); h1x_low = _mm256_add_epi64(h1x_low, h1x_high); const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1), _mm256_castsi256_si128(h1x_low)); xx_storeu_128(C, c_128bit); xx_storeu_128(H[0], h0x_128bit); xx_storeu_128(H[1], h1x_128bit); H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; // Since H is a symmetric matrix H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } // When only params->r[0] > 0. In this case only H[0][0] and C[0] are // non-zero and need to be computed. static AOM_INLINE void calc_proj_params_r0_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h00, c0; const __m256i zero = _mm256_setzero_si256(); c0 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); } } const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1), _mm256_castsi256_si128(h00)); const __m128i h00_val = _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8)); const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1), _mm256_castsi256_si128(c0)); const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero)); const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero)); xx_storeu_128(C, c); xx_storeu_128(H[0], h0x); H[0][0] /= size; C[0] /= size; } // When only params->r[1] > 0. In this case only H[1][1] and C[1] are // non-zero and need to be computed. static AOM_INLINE void calc_proj_params_r1_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint8_t *src = src8; const uint8_t *dat = dat8; __m256i h11, c1; const __m256i zero = _mm256_setzero_si256(); c1 = h11 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu8_epi32( _mm_loadl_epi64((__m128i *)(src + i * src_stride + j))); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1), _mm256_castsi256_si128(h11)); const __m128i h11_val = _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8)); const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1), _mm256_castsi256_si128(c1)); const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val); const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val); xx_storeu_128(C, c); xx_storeu_128(H[1], h1x); H[1][1] /= size; C[1] /= size; } // AVX2 variant of av1_calc_proj_params_c. void av1_calc_proj_params_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_avx2(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } static AOM_INLINE void calc_proj_params_r0_r1_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h00, h01, h11, c0, c1; const __m256i zero = _mm256_setzero_si256(); h01 = h11 = c0 = c1 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i h01_even = _mm256_mul_epi32(f1, f2); const __m256i h01_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f2, 32)); h01 = _mm256_add_epi64(h01, h01_even); h01 = _mm256_add_epi64(h01, h01_odd); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } __m256i c_low = _mm256_unpacklo_epi64(c0, c1); const __m256i c_high = _mm256_unpackhi_epi64(c0, c1); c_low = _mm256_add_epi64(c_low, c_high); const __m128i c_128bit = _mm_add_epi64(_mm256_extracti128_si256(c_low, 1), _mm256_castsi256_si128(c_low)); __m256i h0x_low = _mm256_unpacklo_epi64(h00, h01); const __m256i h0x_high = _mm256_unpackhi_epi64(h00, h01); h0x_low = _mm256_add_epi64(h0x_low, h0x_high); const __m128i h0x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h0x_low, 1), _mm256_castsi256_si128(h0x_low)); // Using the symmetric properties of H, calculations of H[1][0] are not // needed. __m256i h1x_low = _mm256_unpacklo_epi64(zero, h11); const __m256i h1x_high = _mm256_unpackhi_epi64(zero, h11); h1x_low = _mm256_add_epi64(h1x_low, h1x_high); const __m128i h1x_128bit = _mm_add_epi64(_mm256_extracti128_si256(h1x_low, 1), _mm256_castsi256_si128(h1x_low)); xx_storeu_128(C, c_128bit); xx_storeu_128(H[0], h0x_128bit); xx_storeu_128(H[1], h1x_128bit); H[0][0] /= size; H[0][1] /= size; H[1][1] /= size; // Since H is a symmetric matrix H[1][0] = H[0][1]; C[0] /= size; C[1] /= size; } static AOM_INLINE void calc_proj_params_r0_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h00, c0; const __m256i zero = _mm256_setzero_si256(); c0 = h00 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f1 = _mm256_loadu_si256((__m256i *)(flt0 + i * flt0_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f1 = _mm256_sub_epi32(f1, d); const __m256i h00_even = _mm256_mul_epi32(f1, f1); const __m256i h00_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(f1, 32)); h00 = _mm256_add_epi64(h00, h00_even); h00 = _mm256_add_epi64(h00, h00_odd); const __m256i c0_even = _mm256_mul_epi32(f1, s); const __m256i c0_odd = _mm256_mul_epi32(_mm256_srli_epi64(f1, 32), _mm256_srli_epi64(s, 32)); c0 = _mm256_add_epi64(c0, c0_even); c0 = _mm256_add_epi64(c0, c0_odd); } } const __m128i h00_128bit = _mm_add_epi64(_mm256_extracti128_si256(h00, 1), _mm256_castsi256_si128(h00)); const __m128i h00_val = _mm_add_epi64(h00_128bit, _mm_srli_si128(h00_128bit, 8)); const __m128i c0_128bit = _mm_add_epi64(_mm256_extracti128_si256(c0, 1), _mm256_castsi256_si128(c0)); const __m128i c0_val = _mm_add_epi64(c0_128bit, _mm_srli_si128(c0_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(c0_val, _mm256_castsi256_si128(zero)); const __m128i h0x = _mm_unpacklo_epi64(h00_val, _mm256_castsi256_si128(zero)); xx_storeu_128(C, c); xx_storeu_128(H[0], h0x); H[0][0] /= size; C[0] /= size; } static AOM_INLINE void calc_proj_params_r1_high_bd_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2]) { const int size = width * height; const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); __m256i h11, c1; const __m256i zero = _mm256_setzero_si256(); c1 = h11 = zero; for (int i = 0; i < height; ++i) { for (int j = 0; j < width; j += 8) { const __m256i u_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(dat + i * dat_stride + j))); const __m256i s_load = _mm256_cvtepu16_epi32( _mm_load_si128((__m128i *)(src + i * src_stride + j))); __m256i f2 = _mm256_loadu_si256((__m256i *)(flt1 + i * flt1_stride + j)); __m256i d = _mm256_slli_epi32(u_load, SGRPROJ_RST_BITS); __m256i s = _mm256_slli_epi32(s_load, SGRPROJ_RST_BITS); s = _mm256_sub_epi32(s, d); f2 = _mm256_sub_epi32(f2, d); const __m256i h11_even = _mm256_mul_epi32(f2, f2); const __m256i h11_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(f2, 32)); h11 = _mm256_add_epi64(h11, h11_even); h11 = _mm256_add_epi64(h11, h11_odd); const __m256i c1_even = _mm256_mul_epi32(f2, s); const __m256i c1_odd = _mm256_mul_epi32(_mm256_srli_epi64(f2, 32), _mm256_srli_epi64(s, 32)); c1 = _mm256_add_epi64(c1, c1_even); c1 = _mm256_add_epi64(c1, c1_odd); } } const __m128i h11_128bit = _mm_add_epi64(_mm256_extracti128_si256(h11, 1), _mm256_castsi256_si128(h11)); const __m128i h11_val = _mm_add_epi64(h11_128bit, _mm_srli_si128(h11_128bit, 8)); const __m128i c1_128bit = _mm_add_epi64(_mm256_extracti128_si256(c1, 1), _mm256_castsi256_si128(c1)); const __m128i c1_val = _mm_add_epi64(c1_128bit, _mm_srli_si128(c1_128bit, 8)); const __m128i c = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), c1_val); const __m128i h1x = _mm_unpacklo_epi64(_mm256_castsi256_si128(zero), h11_val); xx_storeu_128(C, c); xx_storeu_128(H[1], h1x); H[1][1] /= size; C[1] /= size; } // AVX2 variant of av1_calc_proj_params_high_bd_c. void av1_calc_proj_params_high_bd_avx2(const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int64_t H[2][2], int64_t C[2], const sgr_params_type *params) { if ((params->r[0] > 0) && (params->r[1] > 0)) { calc_proj_params_r0_r1_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, flt1, flt1_stride, H, C); } else if (params->r[0] > 0) { calc_proj_params_r0_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt0, flt0_stride, H, C); } else if (params->r[1] > 0) { calc_proj_params_r1_high_bd_avx2(src8, width, height, src_stride, dat8, dat_stride, flt1, flt1_stride, H, C); } } #if CONFIG_AV1_HIGHBITDEPTH int64_t av1_highbd_pixel_proj_error_avx2( const uint8_t *src8, int width, int height, int src_stride, const uint8_t *dat8, int dat_stride, int32_t *flt0, int flt0_stride, int32_t *flt1, int flt1_stride, int xq[2], const sgr_params_type *params) { int i, j, k; const int32_t shift = SGRPROJ_RST_BITS + SGRPROJ_PRJ_BITS; const __m256i rounding = _mm256_set1_epi32(1 << (shift - 1)); __m256i sum64 = _mm256_setzero_si256(); const uint16_t *src = CONVERT_TO_SHORTPTR(src8); const uint16_t *dat = CONVERT_TO_SHORTPTR(dat8); int64_t err = 0; if (params->r[0] > 0 && params->r[1] > 0) { // Both filters are enabled const __m256i xq0 = _mm256_set1_epi32(xq[0]); const __m256i xq1 = _mm256_set1_epi32(xq[1]); for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { // Process 16 pixels at a time // Load 16 pixels each from source image and corrupted image const __m256i s0 = yy_loadu_256(src + j); const __m256i d0 = yy_loadu_256(dat + j); // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 (indices) // Shift-up each pixel to match filtered image scaling const __m256i u0 = _mm256_slli_epi16(d0, SGRPROJ_RST_BITS); // Split u0 into two halves and pad each from u16 to i32 const __m256i u0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(u0)); const __m256i u0h = _mm256_cvtepu16_epi32(_mm256_extracti128_si256(u0, 1)); // u0h, u0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 // Load 16 pixels from each filtered image const __m256i flt0l = yy_loadu_256(flt0 + j); const __m256i flt0h = yy_loadu_256(flt0 + j + 8); const __m256i flt1l = yy_loadu_256(flt1 + j); const __m256i flt1h = yy_loadu_256(flt1 + j + 8); // flt?l, flt?h = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as u32 // Subtract shifted corrupt image from each filtered image const __m256i flt0l_subu = _mm256_sub_epi32(flt0l, u0l); const __m256i flt0h_subu = _mm256_sub_epi32(flt0h, u0h); const __m256i flt1l_subu = _mm256_sub_epi32(flt1l, u0l); const __m256i flt1h_subu = _mm256_sub_epi32(flt1h, u0h); // Multiply basis vectors by appropriate coefficients const __m256i v0l = _mm256_mullo_epi32(flt0l_subu, xq0); const __m256i v0h = _mm256_mullo_epi32(flt0h_subu, xq0); const __m256i v1l = _mm256_mullo_epi32(flt1l_subu, xq1); const __m256i v1h = _mm256_mullo_epi32(flt1h_subu, xq1); // Add together the contributions from the two basis vectors const __m256i vl = _mm256_add_epi32(v0l, v1l); const __m256i vh = _mm256_add_epi32(v0h, v1h); // Right-shift v with appropriate rounding const __m256i vrl = _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); const __m256i vrh = _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] // Saturate each i32 to an i16 then combine both halves // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes const __m256i vr = _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] // Add twin-subspace-sgr-filter to corrupt image then subtract source const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); // Calculate squared error and add adjacent values const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels in this row (modulo 16) for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq[0] * (flt0[k] - u) + xq[1] * (flt1[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt0 += flt0_stride; flt1 += flt1_stride; } } else if (params->r[0] > 0 || params->r[1] > 0) { // Only one filter enabled const int32_t xq_on = (params->r[0] > 0) ? xq[0] : xq[1]; const __m256i xq_active = _mm256_set1_epi32(xq_on); const __m256i xq_inactive = _mm256_set1_epi32(-xq_on * (1 << SGRPROJ_RST_BITS)); const int32_t *flt = (params->r[0] > 0) ? flt0 : flt1; const int flt_stride = (params->r[0] > 0) ? flt0_stride : flt1_stride; for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 16; j += 16) { // Load 16 pixels from source image const __m256i s0 = yy_loadu_256(src + j); // s0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // Load 16 pixels from corrupted image and pad each u16 to i32 const __m256i d0 = yy_loadu_256(dat + j); const __m256i d0h = _mm256_cvtepu16_epi32(_mm256_extracti128_si256(d0, 1)); const __m256i d0l = _mm256_cvtepu16_epi32(_mm256_castsi256_si128(d0)); // d0 = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // d0h, d0l = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 // Load 16 pixels from the filtered image const __m256i flth = yy_loadu_256(flt + j + 8); const __m256i fltl = yy_loadu_256(flt + j); // flth, fltl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 const __m256i flth_xq = _mm256_mullo_epi32(flth, xq_active); const __m256i fltl_xq = _mm256_mullo_epi32(fltl, xq_active); const __m256i d0h_xq = _mm256_mullo_epi32(d0h, xq_inactive); const __m256i d0l_xq = _mm256_mullo_epi32(d0l, xq_inactive); const __m256i vh = _mm256_add_epi32(flth_xq, d0h_xq); const __m256i vl = _mm256_add_epi32(fltl_xq, d0l_xq); // Shift this down with appropriate rounding const __m256i vrh = _mm256_srai_epi32(_mm256_add_epi32(vh, rounding), shift); const __m256i vrl = _mm256_srai_epi32(_mm256_add_epi32(vl, rounding), shift); // vrh, vrl = [15 14 13 12] [11 10 9 8], [7 6 5 4] [3 2 1 0] as i32 // Saturate each i32 to an i16 then combine both halves // The permute (control=[3 1 2 0]) fixes weird ordering from AVX lanes const __m256i vr = _mm256_permute4x64_epi64(_mm256_packs_epi32(vrl, vrh), 0xd8); // intermediate = [15 14 13 12 7 6 5 4] [11 10 9 8 3 2 1 0] as u16 // vr = [15 14 13 12 11 10 9 8] [7 6 5 4 3 2 1 0] as u16 // Subtract twin-subspace-sgr filtered from source image to get error const __m256i e0 = _mm256_sub_epi16(_mm256_add_epi16(vr, d0), s0); // Calculate squared error and add adjacent values const __m256i err0 = _mm256_madd_epi16(e0, e0); sum32 = _mm256_add_epi32(sum32, err0); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels in this row (modulo 16) for (k = j; k < width; ++k) { const int32_t u = (int32_t)(dat[k] << SGRPROJ_RST_BITS); int32_t v = xq_on * (flt[k] - u); const int32_t e = ROUND_POWER_OF_TWO(v, shift) + dat[k] - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; flt += flt_stride; } } else { // Neither filter is enabled for (i = 0; i < height; ++i) { __m256i sum32 = _mm256_setzero_si256(); for (j = 0; j <= width - 32; j += 32) { // Load 2x16 u16 from source image const __m256i s0l = yy_loadu_256(src + j); const __m256i s0h = yy_loadu_256(src + j + 16); // Load 2x16 u16 from corrupted image const __m256i d0l = yy_loadu_256(dat + j); const __m256i d0h = yy_loadu_256(dat + j + 16); // Subtract corrupted image from source image const __m256i diffl = _mm256_sub_epi16(d0l, s0l); const __m256i diffh = _mm256_sub_epi16(d0h, s0h); // Square error and add adjacent values const __m256i err0l = _mm256_madd_epi16(diffl, diffl); const __m256i err0h = _mm256_madd_epi16(diffh, diffh); sum32 = _mm256_add_epi32(sum32, err0l); sum32 = _mm256_add_epi32(sum32, err0h); } const __m256i sum32l = _mm256_cvtepu32_epi64(_mm256_castsi256_si128(sum32)); sum64 = _mm256_add_epi64(sum64, sum32l); const __m256i sum32h = _mm256_cvtepu32_epi64(_mm256_extracti128_si256(sum32, 1)); sum64 = _mm256_add_epi64(sum64, sum32h); // Process remaining pixels (modulu 16) for (k = j; k < width; ++k) { const int32_t e = (int32_t)(dat[k]) - src[k]; err += ((int64_t)e * e); } dat += dat_stride; src += src_stride; } } // Sum 4 values from sum64l and sum64h into err int64_t sum[4]; yy_storeu_256(sum, sum64); err += sum[0] + sum[1] + sum[2] + sum[3]; return err; } #endif // CONFIG_AV1_HIGHBITDEPTH