/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include // SSE2 #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/aom_scale_rtcd.h" #include "aom/aom_integer.h" #include "aom_dsp/blend.h" #include "aom_dsp/x86/mem_sse2.h" #include "aom_dsp/x86/synonyms.h" #include "av1/common/av1_common_int.h" #include "av1/common/blockd.h" #include "av1/common/mvref_common.h" #include "av1/common/obmc.h" #include "av1/common/reconinter.h" #include "av1/common/reconintra.h" #include "av1/encoder/reconinter_enc.h" void aom_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int plane = 0; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; InterPredParams inter_pred_params; inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); const int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); av1_init_inter_params( &inter_pred_params, width, height, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters); av1_enc_build_one_inter_predictor(comp_pred, width, mv, &inter_pred_params); return; } } const InterpFilterParams *filter = av1_get_filter(subpel_search); // (TODO:yunqing) 2-tap case uses 4-tap functions since there is no SIMD for // 2-tap yet. int filter_taps = (subpel_search <= USE_4_TAPS) ? 4 : SUBPEL_TAPS; if (!subpel_x_q3 && !subpel_y_q3) { if (width >= 16) { int i; assert(!(width & 15)); /*Read 16 pixels one row at a time.*/ for (i = 0; i < height; i++) { int j; for (j = 0; j < width; j += 16) { xx_storeu_128(comp_pred, xx_loadu_128(ref)); comp_pred += 16; ref += 16; } ref += ref_stride - width; } } else if (width >= 8) { int i; assert(!(width & 7)); assert(!(height & 1)); /*Read 8 pixels two rows at a time.*/ for (i = 0; i < height; i += 2) { __m128i s0 = xx_loadl_64(ref + 0 * ref_stride); __m128i s1 = xx_loadl_64(ref + 1 * ref_stride); xx_storeu_128(comp_pred, _mm_unpacklo_epi64(s0, s1)); comp_pred += 16; ref += 2 * ref_stride; } } else { int i; assert(!(width & 3)); assert(!(height & 3)); /*Read 4 pixels four rows at a time.*/ for (i = 0; i < height; i++) { const __m128i row0 = xx_loadl_64(ref + 0 * ref_stride); const __m128i row1 = xx_loadl_64(ref + 1 * ref_stride); const __m128i row2 = xx_loadl_64(ref + 2 * ref_stride); const __m128i row3 = xx_loadl_64(ref + 3 * ref_stride); const __m128i reg = _mm_unpacklo_epi64(_mm_unpacklo_epi32(row0, row1), _mm_unpacklo_epi32(row2, row3)); xx_storeu_128(comp_pred, reg); comp_pred += 16; ref += 4 * ref_stride; } } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_convolve8_horiz(ref, ref_stride, comp_pred, width, kernel, 16, NULL, -1, width, height); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_convolve8_vert(ref, ref_stride, comp_pred, width, NULL, -1, kernel, 16, width, height); } else { DECLARE_ALIGNED(16, uint8_t, temp[((MAX_SB_SIZE * 2 + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const uint8_t *ref_start = ref - ref_stride * ((filter_taps >> 1) - 1); uint8_t *temp_start_horiz = (subpel_search <= USE_4_TAPS) ? temp + (filter_taps >> 1) * MAX_SB_SIZE : temp; uint8_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1); int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_convolve8_horiz(ref_start, ref_stride, temp_start_horiz, MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height); aom_convolve8_vert(temp_start_vert, MAX_SB_SIZE, comp_pred, width, NULL, -1, kernel_y, 16, width, height); } } #if CONFIG_AV1_HIGHBITDEPTH static INLINE void highbd_compute_dist_wtd_comp_avg(__m128i *p0, __m128i *p1, const __m128i *w0, const __m128i *w1, const __m128i *r, void *const result) { assert(DIST_PRECISION_BITS <= 4); __m128i mult0 = _mm_mullo_epi16(*p0, *w0); __m128i mult1 = _mm_mullo_epi16(*p1, *w1); __m128i sum = _mm_adds_epu16(mult0, mult1); __m128i round = _mm_adds_epu16(sum, *r); __m128i shift = _mm_srli_epi16(round, DIST_PRECISION_BITS); xx_storeu_128(result, shift); } void aom_highbd_upsampled_pred_sse2(MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { // expect xd == NULL only in tests if (xd != NULL) { const MB_MODE_INFO *mi = xd->mi[0]; const int ref_num = 0; const int is_intrabc = is_intrabc_block(mi); const struct scale_factors *const sf = is_intrabc ? &cm->sf_identity : xd->block_ref_scale_factors[ref_num]; const int is_scaled = av1_is_scaled(sf); if (is_scaled) { int plane = 0; const int mi_x = mi_col * MI_SIZE; const int mi_y = mi_row * MI_SIZE; const struct macroblockd_plane *const pd = &xd->plane[plane]; const struct buf_2d *const dst_buf = &pd->dst; const struct buf_2d *const pre_buf = is_intrabc ? dst_buf : &pd->pre[ref_num]; InterPredParams inter_pred_params; inter_pred_params.conv_params = get_conv_params(0, plane, xd->bd); const int_interpfilters filters = av1_broadcast_interp_filter(EIGHTTAP_REGULAR); av1_init_inter_params( &inter_pred_params, width, height, mi_y >> pd->subsampling_y, mi_x >> pd->subsampling_x, pd->subsampling_x, pd->subsampling_y, xd->bd, is_cur_buf_hbd(xd), is_intrabc, sf, pre_buf, filters); av1_enc_build_one_inter_predictor(comp_pred8, width, mv, &inter_pred_params); return; } } const InterpFilterParams *filter = av1_get_filter(subpel_search); int filter_taps = (subpel_search <= USE_4_TAPS) ? 4 : SUBPEL_TAPS; if (!subpel_x_q3 && !subpel_y_q3) { uint16_t *ref = CONVERT_TO_SHORTPTR(ref8); uint16_t *comp_pred = CONVERT_TO_SHORTPTR(comp_pred8); if (width >= 8) { int i; assert(!(width & 7)); /*Read 8 pixels one row at a time.*/ for (i = 0; i < height; i++) { int j; for (j = 0; j < width; j += 8) { __m128i s0 = _mm_loadu_si128((const __m128i *)ref); _mm_storeu_si128((__m128i *)comp_pred, s0); comp_pred += 8; ref += 8; } ref += ref_stride - width; } } else { int i; assert(!(width & 3)); /*Read 4 pixels two rows at a time.*/ for (i = 0; i < height; i += 2) { __m128i s0 = _mm_loadl_epi64((const __m128i *)ref); __m128i s1 = _mm_loadl_epi64((const __m128i *)(ref + ref_stride)); __m128i t0 = _mm_unpacklo_epi64(s0, s1); _mm_storeu_si128((__m128i *)comp_pred, t0); comp_pred += 8; ref += 2 * ref_stride; } } } else if (!subpel_y_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); aom_highbd_convolve8_horiz(ref8, ref_stride, comp_pred8, width, kernel, 16, NULL, -1, width, height, bd); } else if (!subpel_x_q3) { const int16_t *const kernel = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); aom_highbd_convolve8_vert(ref8, ref_stride, comp_pred8, width, NULL, -1, kernel, 16, width, height, bd); } else { DECLARE_ALIGNED(16, uint16_t, temp[((MAX_SB_SIZE + 16) + 16) * MAX_SB_SIZE]); const int16_t *const kernel_x = av1_get_interp_filter_subpel_kernel(filter, subpel_x_q3 << 1); const int16_t *const kernel_y = av1_get_interp_filter_subpel_kernel(filter, subpel_y_q3 << 1); const uint8_t *ref_start = ref8 - ref_stride * ((filter_taps >> 1) - 1); uint16_t *temp_start_horiz = (subpel_search <= USE_4_TAPS) ? temp + (filter_taps >> 1) * MAX_SB_SIZE : temp; uint16_t *temp_start_vert = temp + MAX_SB_SIZE * ((filter->taps >> 1) - 1); const int intermediate_height = (((height - 1) * 8 + subpel_y_q3) >> 3) + filter_taps; assert(intermediate_height <= (MAX_SB_SIZE * 2 + 16) + 16); aom_highbd_convolve8_horiz( ref_start, ref_stride, CONVERT_TO_BYTEPTR(temp_start_horiz), MAX_SB_SIZE, kernel_x, 16, NULL, -1, width, intermediate_height, bd); aom_highbd_convolve8_vert(CONVERT_TO_BYTEPTR(temp_start_vert), MAX_SB_SIZE, comp_pred8, width, NULL, -1, kernel_y, 16, width, height, bd); } } void aom_highbd_comp_avg_upsampled_pred_sse2( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search) { aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); uint16_t *comp_pred16 = CONVERT_TO_SHORTPTR(comp_pred8); /*The total number of pixels must be a multiple of 8 (e.g., 4x4).*/ assert(!(width * height & 7)); int n = width * height >> 3; for (int i = 0; i < n; i++) { __m128i s0 = _mm_loadu_si128((const __m128i *)comp_pred16); __m128i p0 = _mm_loadu_si128((const __m128i *)pred); _mm_storeu_si128((__m128i *)comp_pred16, _mm_avg_epu16(s0, p0)); comp_pred16 += 8; pred += 8; } } void aom_highbd_dist_wtd_comp_avg_upsampled_pred_sse2( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, const DIST_WTD_COMP_PARAMS *jcp_param, int subpel_search) { uint16_t *pred = CONVERT_TO_SHORTPTR(pred8); int n; int i; aom_highbd_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred8, width, height, subpel_x_q3, subpel_y_q3, ref8, ref_stride, bd, subpel_search); assert(!(width * height & 7)); n = width * height >> 3; const int16_t wt0 = (int16_t)jcp_param->fwd_offset; const int16_t wt1 = (int16_t)jcp_param->bck_offset; const __m128i w0 = _mm_set1_epi16(wt0); const __m128i w1 = _mm_set1_epi16(wt1); const int16_t round = (int16_t)((1 << DIST_PRECISION_BITS) >> 1); const __m128i r = _mm_set1_epi16(round); uint16_t *comp_pred16 = CONVERT_TO_SHORTPTR(comp_pred8); for (i = 0; i < n; i++) { __m128i p0 = xx_loadu_128(comp_pred16); __m128i p1 = xx_loadu_128(pred); highbd_compute_dist_wtd_comp_avg(&p0, &p1, &w0, &w1, &r, comp_pred16); comp_pred16 += 8; pred += 8; } } #endif // CONFIG_AV1_HIGHBITDEPTH void aom_comp_avg_upsampled_pred_sse2( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, const uint8_t *pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search) { int n; int i; aom_upsampled_pred(xd, cm, mi_row, mi_col, mv, comp_pred, width, height, subpel_x_q3, subpel_y_q3, ref, ref_stride, subpel_search); /*The total number of pixels must be a multiple of 16 (e.g., 4x4).*/ assert(!(width * height & 15)); n = width * height >> 4; for (i = 0; i < n; i++) { __m128i s0 = xx_loadu_128(comp_pred); __m128i p0 = xx_loadu_128(pred); xx_storeu_128(comp_pred, _mm_avg_epu8(s0, p0)); comp_pred += 16; pred += 16; } }