/* * Copyright (c) 2019, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "config/av1_rtcd.h" #include "av1/encoder/encoder.h" #include "av1/encoder/temporal_filter.h" #define SSE_STRIDE (BW + 2) DECLARE_ALIGNED(32, static const uint32_t, sse_bytemask[4][8]) = { { 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0, 0 }, { 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0, 0 }, { 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0 }, { 0, 0, 0, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF, 0xFFFFFFFF } }; DECLARE_ALIGNED(32, static const uint8_t, shufflemask_16b[2][16]) = { { 0, 1, 0, 1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 }, { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 11, 10, 11 } }; #define CALC_X_GRADIENT(AC, GI, DF, out) \ out = _mm256_abs_epi16( \ _mm256_add_epi16(_mm256_add_epi16(AC, GI), _mm256_slli_epi16(DF, 1))); #define CALC_Y_GRADIENT(AC, GI, BH, out) \ out = _mm256_abs_epi16( \ _mm256_add_epi16(_mm256_sub_epi16(AC, GI), _mm256_slli_epi16(BH, 1))); double av1_estimate_noise_from_single_plane_avx2(const uint8_t *src, int height, int width, int stride, int edge_thresh) { int count = 0; int64_t accum = 0; // w32 stores width multiple of 32. const int w32 = (width - 1) & ~0x1f; const __m256i zero = _mm256_setzero_si256(); const __m256i edge_threshold = _mm256_set1_epi16(edge_thresh); __m256i num_accumulator = zero; __m256i sum_accumulator = zero; // A | B | C // D | E | F // G | H | I // g_x = (A - C) + (G - I) + 2*(D - F) // g_y = (A + C) - (G + I) + 2*(B - H) // v = 4*E - 2*(D+F+B+H) + (A+C+G+I) // Process the width multiple of 32 here. for (int w = 1; w < w32; w += 32) { int h = 1; const int start_idx = h * stride + w; const int stride_0 = start_idx - stride; __m256i num_accum_row_lvl = zero; const __m256i A = _mm256_loadu_si256((__m256i *)(&src[stride_0 - 1])); const __m256i C = _mm256_loadu_si256((__m256i *)(&src[stride_0 + 1])); const __m256i D = _mm256_loadu_si256((__m256i *)(&src[start_idx - 1])); const __m256i F = _mm256_loadu_si256((__m256i *)(&src[start_idx + 1])); __m256i B = _mm256_loadu_si256((__m256i *)(&src[stride_0])); __m256i E = _mm256_loadu_si256((__m256i *)(&src[start_idx])); const __m256i A_lo = _mm256_unpacklo_epi8(A, zero); const __m256i A_hi = _mm256_unpackhi_epi8(A, zero); const __m256i C_lo = _mm256_unpacklo_epi8(C, zero); const __m256i C_hi = _mm256_unpackhi_epi8(C, zero); const __m256i D_lo = _mm256_unpacklo_epi8(D, zero); const __m256i D_hi = _mm256_unpackhi_epi8(D, zero); const __m256i F_lo = _mm256_unpacklo_epi8(F, zero); const __m256i F_hi = _mm256_unpackhi_epi8(F, zero); __m256i sub_AC_lo = _mm256_sub_epi16(A_lo, C_lo); __m256i sub_AC_hi = _mm256_sub_epi16(A_hi, C_hi); __m256i sum_AC_lo = _mm256_add_epi16(A_lo, C_lo); __m256i sum_AC_hi = _mm256_add_epi16(A_hi, C_hi); __m256i sub_DF_lo = _mm256_sub_epi16(D_lo, F_lo); __m256i sub_DF_hi = _mm256_sub_epi16(D_hi, F_hi); __m256i sum_DF_lo = _mm256_add_epi16(D_lo, F_lo); __m256i sum_DF_hi = _mm256_add_epi16(D_hi, F_hi); for (; h < height - 1; h++) { __m256i sum_GI_lo, sub_GI_lo, sum_GI_hi, sub_GI_hi, gx_lo, gy_lo, gx_hi, gy_hi; const int k = h * stride + w; const __m256i G = _mm256_loadu_si256((__m256i *)(&src[k + stride - 1])); const __m256i H = _mm256_loadu_si256((__m256i *)(&src[k + stride])); const __m256i I = _mm256_loadu_si256((__m256i *)(&src[k + stride + 1])); const __m256i B_lo = _mm256_unpacklo_epi8(B, zero); const __m256i B_hi = _mm256_unpackhi_epi8(B, zero); const __m256i G_lo = _mm256_unpacklo_epi8(G, zero); const __m256i G_hi = _mm256_unpackhi_epi8(G, zero); const __m256i I_lo = _mm256_unpacklo_epi8(I, zero); const __m256i I_hi = _mm256_unpackhi_epi8(I, zero); const __m256i H_lo = _mm256_unpacklo_epi8(H, zero); const __m256i H_hi = _mm256_unpackhi_epi8(H, zero); sub_GI_lo = _mm256_sub_epi16(G_lo, I_lo); sub_GI_hi = _mm256_sub_epi16(G_hi, I_hi); sum_GI_lo = _mm256_add_epi16(G_lo, I_lo); sum_GI_hi = _mm256_add_epi16(G_hi, I_hi); const __m256i sub_BH_lo = _mm256_sub_epi16(B_lo, H_lo); const __m256i sub_BH_hi = _mm256_sub_epi16(B_hi, H_hi); CALC_X_GRADIENT(sub_AC_lo, sub_GI_lo, sub_DF_lo, gx_lo) CALC_Y_GRADIENT(sum_AC_lo, sum_GI_lo, sub_BH_lo, gy_lo) const __m256i ga_lo = _mm256_add_epi16(gx_lo, gy_lo); CALC_X_GRADIENT(sub_AC_hi, sub_GI_hi, sub_DF_hi, gx_hi) CALC_Y_GRADIENT(sum_AC_hi, sum_GI_hi, sub_BH_hi, gy_hi) const __m256i ga_hi = _mm256_add_epi16(gx_hi, gy_hi); __m256i cmp_lo = _mm256_cmpgt_epi16(edge_threshold, ga_lo); __m256i cmp_hi = _mm256_cmpgt_epi16(edge_threshold, ga_hi); const __m256i comp_reg = _mm256_add_epi16(cmp_lo, cmp_hi); // v = 4*E -2*(D+F+B+H) + (A+C+G+I) if (_mm256_movemask_epi8(comp_reg) != 0) { const __m256i sum_BH_lo = _mm256_add_epi16(B_lo, H_lo); const __m256i sum_BH_hi = _mm256_add_epi16(B_hi, H_hi); // 2*(D+F+B+H) const __m256i sum_DFBH_lo = _mm256_slli_epi16(_mm256_add_epi16(sum_DF_lo, sum_BH_lo), 1); // (A+C+G+I) const __m256i sum_ACGI_lo = _mm256_add_epi16(sum_AC_lo, sum_GI_lo); const __m256i sum_DFBH_hi = _mm256_slli_epi16(_mm256_add_epi16(sum_DF_hi, sum_BH_hi), 1); const __m256i sum_ACGI_hi = _mm256_add_epi16(sum_AC_hi, sum_GI_hi); // Convert E register values from 8bit to 16bit const __m256i E_lo = _mm256_unpacklo_epi8(E, zero); const __m256i E_hi = _mm256_unpackhi_epi8(E, zero); // 4*E - 2*(D+F+B+H)+ (A+C+G+I) const __m256i var_lo_0 = _mm256_abs_epi16(_mm256_add_epi16( _mm256_sub_epi16(_mm256_slli_epi16(E_lo, 2), sum_DFBH_lo), sum_ACGI_lo)); const __m256i var_hi_0 = _mm256_abs_epi16(_mm256_add_epi16( _mm256_sub_epi16(_mm256_slli_epi16(E_hi, 2), sum_DFBH_hi), sum_ACGI_hi)); cmp_lo = _mm256_srli_epi16(cmp_lo, 15); cmp_hi = _mm256_srli_epi16(cmp_hi, 15); const __m256i var_lo = _mm256_mullo_epi16(var_lo_0, cmp_lo); const __m256i var_hi = _mm256_mullo_epi16(var_hi_0, cmp_hi); num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_lo); num_accum_row_lvl = _mm256_add_epi16(num_accum_row_lvl, cmp_hi); sum_accumulator = _mm256_add_epi32(sum_accumulator, _mm256_unpacklo_epi16(var_lo, zero)); sum_accumulator = _mm256_add_epi32(sum_accumulator, _mm256_unpackhi_epi16(var_lo, zero)); sum_accumulator = _mm256_add_epi32(sum_accumulator, _mm256_unpacklo_epi16(var_hi, zero)); sum_accumulator = _mm256_add_epi32(sum_accumulator, _mm256_unpackhi_epi16(var_hi, zero)); } sub_AC_lo = sub_DF_lo; sub_AC_hi = sub_DF_hi; sub_DF_lo = sub_GI_lo; sub_DF_hi = sub_GI_hi; sum_AC_lo = sum_DF_lo; sum_AC_hi = sum_DF_hi; sum_DF_lo = sum_GI_lo; sum_DF_hi = sum_GI_hi; B = E; E = H; } const __m256i num_0 = _mm256_unpacklo_epi16(num_accum_row_lvl, zero); const __m256i num_1 = _mm256_unpackhi_epi16(num_accum_row_lvl, zero); num_accumulator = _mm256_add_epi32(num_accumulator, _mm256_add_epi32(num_0, num_1)); } // Process the remaining width here. for (int h = 1; h < height - 1; ++h) { for (int w = w32 + 1; w < width - 1; ++w) { const int k = h * stride + w; // Compute sobel gradients const int g_x = (src[k - stride - 1] - src[k - stride + 1]) + (src[k + stride - 1] - src[k + stride + 1]) + 2 * (src[k - 1] - src[k + 1]); const int g_y = (src[k - stride - 1] - src[k + stride - 1]) + (src[k - stride + 1] - src[k + stride + 1]) + 2 * (src[k - stride] - src[k + stride]); const int ga = abs(g_x) + abs(g_y); if (ga < edge_thresh) { // Find Laplacian const int v = 4 * src[k] - 2 * (src[k - 1] + src[k + 1] + src[k - stride] + src[k + stride]) + (src[k - stride - 1] + src[k - stride + 1] + src[k + stride - 1] + src[k + stride + 1]); accum += abs(v); ++count; } } } // s0 s1 n0 n1 s2 s3 n2 n3 __m256i sum_avx = _mm256_hadd_epi32(sum_accumulator, num_accumulator); __m128i sum_avx_lo = _mm256_castsi256_si128(sum_avx); __m128i sum_avx_hi = _mm256_extractf128_si256(sum_avx, 1); // s0+s2 s1+s3 n0+n2 n1+n3 __m128i sum_avx_1 = _mm_add_epi32(sum_avx_lo, sum_avx_hi); // s0+s2+s1+s3 n0+n2+n1+n3 __m128i result = _mm_add_epi32(_mm_srli_si128(sum_avx_1, 4), sum_avx_1); accum += _mm_cvtsi128_si32(result); count += _mm_extract_epi32(result, 2); // If very few smooth pels, return -1 since the estimate is unreliable. return (count < 16) ? -1.0 : (double)accum / (6 * count) * SQRT_PI_BY_2; } static AOM_FORCE_INLINE void get_squared_error_16x16_avx2( const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, const unsigned int stride2, const int block_width, const int block_height, uint16_t *frame_sse, const unsigned int sse_stride) { (void)block_width; const uint8_t *src1 = frame1; const uint8_t *src2 = frame2; uint16_t *dst = frame_sse; for (int i = 0; i < block_height; i++) { __m128i vf1_128, vf2_128; __m256i vf1, vf2, vdiff1, vsqdiff1; vf1_128 = _mm_loadu_si128((__m128i *)(src1)); vf2_128 = _mm_loadu_si128((__m128i *)(src2)); vf1 = _mm256_cvtepu8_epi16(vf1_128); vf2 = _mm256_cvtepu8_epi16(vf2_128); vdiff1 = _mm256_sub_epi16(vf1, vf2); vsqdiff1 = _mm256_mullo_epi16(vdiff1, vdiff1); _mm256_storeu_si256((__m256i *)(dst), vsqdiff1); // Set zero to uninitialized memory to avoid uninitialized loads later *(int *)(dst + 16) = _mm_cvtsi128_si32(_mm_setzero_si128()); src1 += stride, src2 += stride2; dst += sse_stride; } } static AOM_FORCE_INLINE void get_squared_error_32x32_avx2( const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, const unsigned int stride2, const int block_width, const int block_height, uint16_t *frame_sse, const unsigned int sse_stride) { (void)block_width; const uint8_t *src1 = frame1; const uint8_t *src2 = frame2; uint16_t *dst = frame_sse; for (int i = 0; i < block_height; i++) { __m256i vsrc1, vsrc2, vmin, vmax, vdiff, vdiff1, vdiff2, vres1, vres2; vsrc1 = _mm256_loadu_si256((__m256i *)src1); vsrc2 = _mm256_loadu_si256((__m256i *)src2); vmax = _mm256_max_epu8(vsrc1, vsrc2); vmin = _mm256_min_epu8(vsrc1, vsrc2); vdiff = _mm256_subs_epu8(vmax, vmin); __m128i vtmp1 = _mm256_castsi256_si128(vdiff); __m128i vtmp2 = _mm256_extracti128_si256(vdiff, 1); vdiff1 = _mm256_cvtepu8_epi16(vtmp1); vdiff2 = _mm256_cvtepu8_epi16(vtmp2); vres1 = _mm256_mullo_epi16(vdiff1, vdiff1); vres2 = _mm256_mullo_epi16(vdiff2, vdiff2); _mm256_storeu_si256((__m256i *)(dst), vres1); _mm256_storeu_si256((__m256i *)(dst + 16), vres2); // Set zero to uninitialized memory to avoid uninitialized loads later *(int *)(dst + 32) = _mm_cvtsi128_si32(_mm_setzero_si128()); src1 += stride; src2 += stride2; dst += sse_stride; } } static AOM_FORCE_INLINE __m256i xx_load_and_pad(uint16_t *src, int col, int block_width) { __m128i v128tmp = _mm_loadu_si128((__m128i *)(src)); if (col == 0) { // For the first column, replicate the first element twice to the left v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[0]); } if (col == block_width - 4) { // For the last column, replicate the last element twice to the right v128tmp = _mm_shuffle_epi8(v128tmp, *(__m128i *)shufflemask_16b[1]); } return _mm256_cvtepu16_epi32(v128tmp); } static AOM_FORCE_INLINE int32_t xx_mask_and_hadd(__m256i vsum, int i) { // Mask the required 5 values inside the vector __m256i vtmp = _mm256_and_si256(vsum, *(__m256i *)sse_bytemask[i]); __m128i v128a, v128b; // Extract 256b as two 128b registers A and B v128a = _mm256_castsi256_si128(vtmp); v128b = _mm256_extracti128_si256(vtmp, 1); // A = [A0+B0, A1+B1, A2+B2, A3+B3] v128a = _mm_add_epi32(v128a, v128b); // B = [A2+B2, A3+B3, 0, 0] v128b = _mm_srli_si128(v128a, 8); // A = [A0+B0+A2+B2, A1+B1+A3+B3, X, X] v128a = _mm_add_epi32(v128a, v128b); // B = [A1+B1+A3+B3, 0, 0, 0] v128b = _mm_srli_si128(v128a, 4); // A = [A0+B0+A2+B2+A1+B1+A3+B3, X, X, X] v128a = _mm_add_epi32(v128a, v128b); return _mm_extract_epi32(v128a, 0); } // AVX2 implementation of approx_exp() static AOM_INLINE __m256 approx_exp_avx2(__m256 y) { #define A ((1 << 23) / 0.69314718056f) // (1 << 23) / ln(2) #define B \ 127 // Offset for the exponent according to IEEE floating point standard. #define C 60801 // Magic number controls the accuracy of approximation const __m256 multiplier = _mm256_set1_ps(A); const __m256i offset = _mm256_set1_epi32(B * (1 << 23) - C); y = _mm256_mul_ps(y, multiplier); y = _mm256_castsi256_ps(_mm256_add_epi32(_mm256_cvttps_epi32(y), offset)); return y; #undef A #undef B #undef C } static void apply_temporal_filter( const uint8_t *frame1, const unsigned int stride, const uint8_t *frame2, const unsigned int stride2, const int block_width, const int block_height, const int *subblock_mses, unsigned int *accumulator, uint16_t *count, uint16_t *frame_sse, uint32_t *luma_sse_sum, const double inv_num_ref_pixels, const double decay_factor, const double inv_factor, const double weight_factor, double *d_factor, int tf_wgt_calc_lvl) { assert(((block_width == 16) || (block_width == 32)) && ((block_height == 16) || (block_height == 32))); uint32_t acc_5x5_sse[BH][BW]; if (block_width == 32) { get_squared_error_32x32_avx2(frame1, stride, frame2, stride2, block_width, block_height, frame_sse, SSE_STRIDE); } else { get_squared_error_16x16_avx2(frame1, stride, frame2, stride2, block_width, block_height, frame_sse, SSE_STRIDE); } __m256i vsrc[5]; // Traverse 4 columns at a time // First and last columns will require padding for (int col = 0; col < block_width; col += 4) { uint16_t *src = (col) ? frame_sse + col - 2 : frame_sse; // Load and pad(for first and last col) 3 rows from the top for (int i = 2; i < 5; i++) { vsrc[i] = xx_load_and_pad(src, col, block_width); src += SSE_STRIDE; } // Copy first row to first 2 vectors vsrc[0] = vsrc[2]; vsrc[1] = vsrc[2]; for (int row = 0; row < block_height; row++) { __m256i vsum = _mm256_setzero_si256(); // Add 5 consecutive rows for (int i = 0; i < 5; i++) { vsum = _mm256_add_epi32(vsum, vsrc[i]); } // Push all elements by one element to the top for (int i = 0; i < 4; i++) { vsrc[i] = vsrc[i + 1]; } // Load next row to the last element if (row <= block_height - 4) { vsrc[4] = xx_load_and_pad(src, col, block_width); src += SSE_STRIDE; } else { vsrc[4] = vsrc[3]; } // Accumulate the sum horizontally for (int i = 0; i < 4; i++) { acc_5x5_sse[row][col + i] = xx_mask_and_hadd(vsum, i); } } } double subblock_mses_scaled[4]; double d_factor_decayed[4]; for (int idx = 0; idx < 4; idx++) { subblock_mses_scaled[idx] = subblock_mses[idx] * inv_factor; d_factor_decayed[idx] = d_factor[idx] * decay_factor; } if (tf_wgt_calc_lvl == 0) { for (int i = 0, k = 0; i < block_height; i++) { const int y_blk_raster_offset = (i >= block_height / 2) * 2; for (int j = 0; j < block_width; j++, k++) { const int pixel_value = frame2[i * stride2 + j]; uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j]; const double window_error = diff_sse * inv_num_ref_pixels; const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2); const double combined_error = weight_factor * window_error + subblock_mses_scaled[subblock_idx]; double scaled_error = combined_error * d_factor_decayed[subblock_idx]; scaled_error = AOMMIN(scaled_error, 7); const int weight = (int)(exp(-scaled_error) * TF_WEIGHT_SCALE); count[k] += weight; accumulator[k] += weight * pixel_value; } } } else { __m256d subblock_mses_reg[4]; __m256d d_factor_mul_n_decay_qr_invs[4]; const __m256 zero = _mm256_set1_ps(0.0f); const __m256 point_five = _mm256_set1_ps(0.5f); const __m256 seven = _mm256_set1_ps(7.0f); const __m256d inv_num_ref_pixel_256bit = _mm256_set1_pd(inv_num_ref_pixels); const __m256d weight_factor_256bit = _mm256_set1_pd(weight_factor); const __m256 tf_weight_scale = _mm256_set1_ps((float)TF_WEIGHT_SCALE); // Maintain registers to hold mse and d_factor at subblock level. subblock_mses_reg[0] = _mm256_set1_pd(subblock_mses_scaled[0]); subblock_mses_reg[1] = _mm256_set1_pd(subblock_mses_scaled[1]); subblock_mses_reg[2] = _mm256_set1_pd(subblock_mses_scaled[2]); subblock_mses_reg[3] = _mm256_set1_pd(subblock_mses_scaled[3]); d_factor_mul_n_decay_qr_invs[0] = _mm256_set1_pd(d_factor_decayed[0]); d_factor_mul_n_decay_qr_invs[1] = _mm256_set1_pd(d_factor_decayed[1]); d_factor_mul_n_decay_qr_invs[2] = _mm256_set1_pd(d_factor_decayed[2]); d_factor_mul_n_decay_qr_invs[3] = _mm256_set1_pd(d_factor_decayed[3]); for (int i = 0; i < block_height; i++) { const int y_blk_raster_offset = (i >= block_height / 2) * 2; uint32_t *luma_sse_sum_temp = luma_sse_sum + i * BW; for (int j = 0; j < block_width; j += 8) { const __m256i acc_sse = _mm256_lddqu_si256((__m256i *)(acc_5x5_sse[i] + j)); const __m256i luma_sse = _mm256_lddqu_si256((__m256i *)((luma_sse_sum_temp + j))); // uint32_t diff_sse = acc_5x5_sse[i][j] + luma_sse_sum[i * BW + j]; const __m256i diff_sse = _mm256_add_epi32(acc_sse, luma_sse); const __m256d diff_sse_pd_1 = _mm256_cvtepi32_pd(_mm256_castsi256_si128(diff_sse)); const __m256d diff_sse_pd_2 = _mm256_cvtepi32_pd(_mm256_extracti128_si256(diff_sse, 1)); // const double window_error = diff_sse * inv_num_ref_pixels; const __m256d window_error_1 = _mm256_mul_pd(diff_sse_pd_1, inv_num_ref_pixel_256bit); const __m256d window_error_2 = _mm256_mul_pd(diff_sse_pd_2, inv_num_ref_pixel_256bit); // const int subblock_idx = y_blk_raster_offset + (j >= block_width / // 2); const int subblock_idx = y_blk_raster_offset + (j >= block_width / 2); const __m256d blk_error = subblock_mses_reg[subblock_idx]; // const double combined_error = // weight_factor *window_error + subblock_mses_scaled[subblock_idx]; const __m256d combined_error_1 = _mm256_add_pd( _mm256_mul_pd(window_error_1, weight_factor_256bit), blk_error); const __m256d combined_error_2 = _mm256_add_pd( _mm256_mul_pd(window_error_2, weight_factor_256bit), blk_error); // d_factor_decayed[subblock_idx] const __m256d d_fact_mul_n_decay = d_factor_mul_n_decay_qr_invs[subblock_idx]; // double scaled_error = combined_error * // d_factor_decayed[subblock_idx]; const __m256d scaled_error_1 = _mm256_mul_pd(combined_error_1, d_fact_mul_n_decay); const __m256d scaled_error_2 = _mm256_mul_pd(combined_error_2, d_fact_mul_n_decay); const __m128 scaled_error_ps_1 = _mm256_cvtpd_ps(scaled_error_1); const __m128 scaled_error_ps_2 = _mm256_cvtpd_ps(scaled_error_2); const __m256 scaled_error_ps = _mm256_insertf128_ps( _mm256_castps128_ps256(scaled_error_ps_1), scaled_error_ps_2, 0x1); // scaled_error = AOMMIN(scaled_error, 7); const __m256 scaled_diff_ps = _mm256_min_ps(scaled_error_ps, seven); const __m256 minus_scaled_diff_ps = _mm256_sub_ps(zero, scaled_diff_ps); // const int weight = //(int)(approx_exp((float)-scaled_error) * TF_WEIGHT_SCALE + 0.5f); const __m256 exp_result = approx_exp_avx2(minus_scaled_diff_ps); const __m256 scale_weight_exp_result = _mm256_mul_ps(exp_result, tf_weight_scale); const __m256 round_result = _mm256_add_ps(scale_weight_exp_result, point_five); __m256i weights_in_32bit = _mm256_cvttps_epi32(round_result); __m128i weights_in_16bit = _mm_packus_epi32(_mm256_castsi256_si128(weights_in_32bit), _mm256_extractf128_si256(weights_in_32bit, 0x1)); // count[k] += weight; // accumulator[k] += weight * pixel_value; const int stride_idx = i * stride2 + j; const __m128i count_array = _mm_loadu_si128((__m128i *)(count + stride_idx)); _mm_storeu_si128((__m128i *)(count + stride_idx), _mm_add_epi16(count_array, weights_in_16bit)); const __m256i accumulator_array = _mm256_loadu_si256((__m256i *)(accumulator + stride_idx)); const __m128i pred_values = _mm_loadl_epi64((__m128i *)(frame2 + stride_idx)); const __m256i pred_values_u32 = _mm256_cvtepu8_epi32(pred_values); const __m256i mull_frame2_weight_u32 = _mm256_mullo_epi32(pred_values_u32, weights_in_32bit); _mm256_storeu_si256( (__m256i *)(accumulator + stride_idx), _mm256_add_epi32(accumulator_array, mull_frame2_weight_u32)); } } } } void av1_apply_temporal_filter_avx2( const YV12_BUFFER_CONFIG *frame_to_filter, const MACROBLOCKD *mbd, const BLOCK_SIZE block_size, const int mb_row, const int mb_col, const int num_planes, const double *noise_levels, const MV *subblock_mvs, const int *subblock_mses, const int q_factor, const int filter_strength, int tf_wgt_calc_lvl, const uint8_t *pred, uint32_t *accum, uint16_t *count) { const int is_high_bitdepth = frame_to_filter->flags & YV12_FLAG_HIGHBITDEPTH; assert(block_size == BLOCK_32X32 && "Only support 32x32 block with avx2!"); assert(TF_WINDOW_LENGTH == 5 && "Only support window length 5 with avx2!"); assert(!is_high_bitdepth && "Only support low bit-depth with avx2!"); assert(num_planes >= 1 && num_planes <= MAX_MB_PLANE); (void)is_high_bitdepth; const int mb_height = block_size_high[block_size]; const int mb_width = block_size_wide[block_size]; const int frame_height = frame_to_filter->y_crop_height; const int frame_width = frame_to_filter->y_crop_width; const int min_frame_size = AOMMIN(frame_height, frame_width); // Variables to simplify combined error calculation. const double inv_factor = 1.0 / ((TF_WINDOW_BLOCK_BALANCE_WEIGHT + 1) * TF_SEARCH_ERROR_NORM_WEIGHT); const double weight_factor = (double)TF_WINDOW_BLOCK_BALANCE_WEIGHT * inv_factor; // Adjust filtering based on q. // Larger q -> stronger filtering -> larger weight. // Smaller q -> weaker filtering -> smaller weight. double q_decay = pow((double)q_factor / TF_Q_DECAY_THRESHOLD, 2); q_decay = CLIP(q_decay, 1e-5, 1); if (q_factor >= TF_QINDEX_CUTOFF) { // Max q_factor is 255, therefore the upper bound of q_decay is 8. // We do not need a clip here. q_decay = 0.5 * pow((double)q_factor / 64, 2); } // Smaller strength -> smaller filtering weight. double s_decay = pow((double)filter_strength / TF_STRENGTH_THRESHOLD, 2); s_decay = CLIP(s_decay, 1e-5, 1); double d_factor[4] = { 0 }; uint16_t frame_sse[SSE_STRIDE * BH] = { 0 }; uint32_t luma_sse_sum[BW * BH] = { 0 }; for (int subblock_idx = 0; subblock_idx < 4; subblock_idx++) { // Larger motion vector -> smaller filtering weight. const MV mv = subblock_mvs[subblock_idx]; const double distance = sqrt(pow(mv.row, 2) + pow(mv.col, 2)); double distance_threshold = min_frame_size * TF_SEARCH_DISTANCE_THRESHOLD; distance_threshold = AOMMAX(distance_threshold, 1); d_factor[subblock_idx] = distance / distance_threshold; d_factor[subblock_idx] = AOMMAX(d_factor[subblock_idx], 1); } // Handle planes in sequence. int plane_offset = 0; for (int plane = 0; plane < num_planes; ++plane) { const uint32_t plane_h = mb_height >> mbd->plane[plane].subsampling_y; const uint32_t plane_w = mb_width >> mbd->plane[plane].subsampling_x; const uint32_t frame_stride = frame_to_filter->strides[plane == 0 ? 0 : 1]; const int frame_offset = mb_row * plane_h * frame_stride + mb_col * plane_w; const uint8_t *ref = frame_to_filter->buffers[plane] + frame_offset; const int ss_x_shift = mbd->plane[plane].subsampling_x - mbd->plane[AOM_PLANE_Y].subsampling_x; const int ss_y_shift = mbd->plane[plane].subsampling_y - mbd->plane[AOM_PLANE_Y].subsampling_y; const int num_ref_pixels = TF_WINDOW_LENGTH * TF_WINDOW_LENGTH + ((plane) ? (1 << (ss_x_shift + ss_y_shift)) : 0); const double inv_num_ref_pixels = 1.0 / num_ref_pixels; // Larger noise -> larger filtering weight. const double n_decay = 0.5 + log(2 * noise_levels[plane] + 5.0); // Decay factors for non-local mean approach. const double decay_factor = 1 / (n_decay * q_decay * s_decay); // Filter U-plane and V-plane using Y-plane. This is because motion // search is only done on Y-plane, so the information from Y-plane // will be more accurate. The luma sse sum is reused in both chroma // planes. if (plane == AOM_PLANE_U) { for (unsigned int i = 0, k = 0; i < plane_h; i++) { for (unsigned int j = 0; j < plane_w; j++, k++) { for (int ii = 0; ii < (1 << ss_y_shift); ++ii) { for (int jj = 0; jj < (1 << ss_x_shift); ++jj) { const int yy = (i << ss_y_shift) + ii; // Y-coord on Y-plane. const int xx = (j << ss_x_shift) + jj; // X-coord on Y-plane. luma_sse_sum[i * BW + j] += frame_sse[yy * SSE_STRIDE + xx]; } } } } } apply_temporal_filter(ref, frame_stride, pred + plane_offset, plane_w, plane_w, plane_h, subblock_mses, accum + plane_offset, count + plane_offset, frame_sse, luma_sse_sum, inv_num_ref_pixels, decay_factor, inv_factor, weight_factor, d_factor, tf_wgt_calc_lvl); plane_offset += plane_h * plane_w; } }