/* * Copyright (c) 2017, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "common/obudec.h" #include "aom_dsp/aom_dsp_common.h" #include "aom_ports/mem_ops.h" #include "av1/common/common.h" #include "av1/common/obu_util.h" #include "tools_common.h" #define OBU_BUFFER_SIZE (500 * 1024) #define OBU_HEADER_SIZE 1 #define OBU_EXTENSION_SIZE 1 #define OBU_MAX_LENGTH_FIELD_SIZE 8 #define OBU_MAX_HEADER_SIZE \ (OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + 2 * OBU_MAX_LENGTH_FIELD_SIZE) #define OBU_DETECTION_SIZE \ (OBU_HEADER_SIZE + OBU_EXTENSION_SIZE + 4 * OBU_MAX_LENGTH_FIELD_SIZE) // Reads unsigned LEB128 integer and returns 0 upon successful read and decode. // Stores raw bytes in 'value_buffer', length of the number in 'value_length', // and decoded value in 'value'. If 'buffered' is true, it is buffered in the // detect buffer first. static int obudec_read_leb128(struct AvxInputContext *input_ctx, uint8_t *value_buffer, size_t *value_length, uint64_t *value, bool buffered) { if (!input_ctx || !value_buffer || !value_length || !value) return -1; size_t len; for (len = 0; len < OBU_MAX_LENGTH_FIELD_SIZE; ++len) { const size_t num_read = buffer_input(input_ctx, 1, &value_buffer[len], buffered); if (num_read == 0) { if (len == 0 && input_eof(input_ctx)) { *value_length = 0; return 0; } // Ran out of data before completing read of value. return -1; } if ((value_buffer[len] >> 7) == 0) { ++len; *value_length = len; break; } } return aom_uleb_decode(value_buffer, len, value, NULL); } // Reads OBU header from 'input_ctx'. The 'buffer_capacity' passed in must be // large enough to store an OBU header with extension (2 bytes). Raw OBU data is // written to 'obu_data', parsed OBU header values are written to 'obu_header', // and total bytes read from file are written to 'bytes_read'. Returns 0 for // success, and non-zero on failure. When end of file is reached, the return // value is 0 and the 'bytes_read' value is set to 0. If 'buffered' is true, it // is buffered in the detect buffer first. static int obudec_read_obu_header(struct AvxInputContext *input_ctx, size_t buffer_capacity, int is_annexb, uint8_t *obu_data, ObuHeader *obu_header, size_t *bytes_read, bool buffered) { if (!input_ctx || buffer_capacity < (OBU_HEADER_SIZE + OBU_EXTENSION_SIZE) || !obu_data || !obu_header || !bytes_read) { return -1; } *bytes_read = buffer_input(input_ctx, 1, obu_data, buffered); if (input_eof(input_ctx) && *bytes_read == 0) { return 0; } else if (*bytes_read != 1) { fprintf(stderr, "obudec: Failure reading OBU header.\n"); return -1; } const int has_extension = (obu_data[0] >> 2) & 0x1; if (has_extension) { if (buffer_input(input_ctx, 1, &obu_data[1], buffered) != 1) { fprintf(stderr, "obudec: Failure reading OBU extension."); return -1; } ++*bytes_read; } size_t obu_bytes_parsed = 0; const aom_codec_err_t parse_result = aom_read_obu_header( obu_data, *bytes_read, &obu_bytes_parsed, obu_header, is_annexb); if (parse_result != AOM_CODEC_OK || *bytes_read != obu_bytes_parsed) { fprintf(stderr, "obudec: Error parsing OBU header.\n"); return -1; } return 0; } // Reads OBU payload from 'input_ctx' and returns 0 for success when all payload // bytes are read from the file. Payload data is written to 'obu_data', and // actual bytes read added to 'bytes_read'. If 'buffered' is true, it is // buffered in the detect buffer first. static int obudec_read_obu_payload(struct AvxInputContext *input_ctx, size_t payload_length, uint8_t *obu_data, size_t *bytes_read, bool buffered) { if (!input_ctx || payload_length == 0 || !obu_data || !bytes_read) return -1; if (buffer_input(input_ctx, payload_length, obu_data, buffered) != payload_length) { fprintf(stderr, "obudec: Failure reading OBU payload.\n"); return -1; } *bytes_read += payload_length; return 0; } static int obudec_read_obu_header_and_size( struct AvxInputContext *input_ctx, size_t buffer_capacity, int is_annexb, uint8_t *buffer, size_t *bytes_read, size_t *payload_length, ObuHeader *obu_header, bool buffered) { const size_t kMinimumBufferSize = OBU_MAX_HEADER_SIZE; if (!input_ctx || !buffer || !bytes_read || !payload_length || !obu_header || buffer_capacity < kMinimumBufferSize) { return -1; } size_t leb128_length_obu = 0; size_t leb128_length_payload = 0; uint64_t obu_size = 0; if (is_annexb) { if (obudec_read_leb128(input_ctx, &buffer[0], &leb128_length_obu, &obu_size, buffered) != 0) { fprintf(stderr, "obudec: Failure reading OBU size length.\n"); return -1; } else if (leb128_length_obu == 0) { *payload_length = 0; return 0; } if (obu_size > UINT32_MAX) { fprintf(stderr, "obudec: OBU payload length too large.\n"); return -1; } } size_t header_size = 0; if (obudec_read_obu_header(input_ctx, buffer_capacity - leb128_length_obu, is_annexb, buffer + leb128_length_obu, obu_header, &header_size, buffered) != 0) { return -1; } else if (header_size == 0) { *payload_length = 0; return 0; } if (!obu_header->has_size_field) { assert(is_annexb); if (obu_size < header_size) { fprintf(stderr, "obudec: OBU size is too small.\n"); return -1; } *payload_length = (size_t)obu_size - header_size; } else { uint64_t u64_payload_length = 0; if (obudec_read_leb128(input_ctx, &buffer[leb128_length_obu + header_size], &leb128_length_payload, &u64_payload_length, buffered) != 0) { fprintf(stderr, "obudec: Failure reading OBU payload length.\n"); return -1; } if (u64_payload_length > UINT32_MAX) { fprintf(stderr, "obudec: OBU payload length too large.\n"); return -1; } *payload_length = (size_t)u64_payload_length; } *bytes_read = leb128_length_obu + header_size + leb128_length_payload; return 0; } static int obudec_grow_buffer(size_t growth_amount, uint8_t **obu_buffer, size_t *obu_buffer_capacity) { if (!*obu_buffer || !obu_buffer_capacity || growth_amount == 0) { return -1; } const size_t capacity = *obu_buffer_capacity; if (SIZE_MAX - growth_amount < capacity) { fprintf(stderr, "obudec: cannot grow buffer, capacity will roll over.\n"); return -1; } const size_t new_capacity = capacity + growth_amount; #if defined AOM_MAX_ALLOCABLE_MEMORY if (new_capacity > AOM_MAX_ALLOCABLE_MEMORY) { fprintf(stderr, "obudec: OBU size exceeds max alloc size.\n"); return -1; } #endif uint8_t *new_buffer = (uint8_t *)realloc(*obu_buffer, new_capacity); if (!new_buffer) { fprintf(stderr, "obudec: Failed to allocate compressed data buffer.\n"); return -1; } *obu_buffer = new_buffer; *obu_buffer_capacity = new_capacity; return 0; } static int obudec_read_one_obu(struct AvxInputContext *input_ctx, uint8_t **obu_buffer, size_t obu_bytes_buffered, size_t *obu_buffer_capacity, size_t *obu_length, ObuHeader *obu_header, int is_annexb, bool buffered) { if (!input_ctx || !(*obu_buffer) || !obu_buffer_capacity || !obu_length || !obu_header) { return -1; } size_t bytes_read = 0; size_t obu_payload_length = 0; size_t available_buffer_capacity = *obu_buffer_capacity - obu_bytes_buffered; if (available_buffer_capacity < OBU_MAX_HEADER_SIZE) { if (obudec_grow_buffer(AOMMAX(*obu_buffer_capacity, OBU_MAX_HEADER_SIZE), obu_buffer, obu_buffer_capacity) != 0) { *obu_length = bytes_read; return -1; } available_buffer_capacity += AOMMAX(*obu_buffer_capacity, OBU_MAX_HEADER_SIZE); } const int status = obudec_read_obu_header_and_size( input_ctx, available_buffer_capacity, is_annexb, *obu_buffer + obu_bytes_buffered, &bytes_read, &obu_payload_length, obu_header, buffered); if (status < 0) return status; if (obu_payload_length > SIZE_MAX - bytes_read) return -1; if (obu_payload_length > 256 * 1024 * 1024) { fprintf(stderr, "obudec: Read invalid OBU size (%u)\n", (unsigned int)obu_payload_length); *obu_length = bytes_read + obu_payload_length; return -1; } if (bytes_read + obu_payload_length > available_buffer_capacity && obudec_grow_buffer(AOMMAX(*obu_buffer_capacity, obu_payload_length), obu_buffer, obu_buffer_capacity) != 0) { *obu_length = bytes_read + obu_payload_length; return -1; } if (obu_payload_length > 0 && obudec_read_obu_payload(input_ctx, obu_payload_length, *obu_buffer + obu_bytes_buffered + bytes_read, &bytes_read, buffered) != 0) { return -1; } *obu_length = bytes_read; return 0; } int file_is_obu(struct ObuDecInputContext *obu_ctx) { if (!obu_ctx || !obu_ctx->avx_ctx) return 0; struct AvxInputContext *avx_ctx = obu_ctx->avx_ctx; uint8_t detect_buf[OBU_DETECTION_SIZE] = { 0 }; const int is_annexb = obu_ctx->is_annexb; size_t payload_length = 0; ObuHeader obu_header; memset(&obu_header, 0, sizeof(obu_header)); size_t length_of_unit_size = 0; size_t annexb_header_length = 0; uint64_t unit_size = 0; if (is_annexb) { // read the size of first temporal unit if (obudec_read_leb128(avx_ctx, &detect_buf[0], &length_of_unit_size, &unit_size, /*buffered=*/true) != 0) { fprintf(stderr, "obudec: Failure reading temporal unit header\n"); rewind_detect(avx_ctx); return 0; } // read the size of first frame unit if (obudec_read_leb128(avx_ctx, &detect_buf[length_of_unit_size], &annexb_header_length, &unit_size, /*buffered=*/true) != 0) { fprintf(stderr, "obudec: Failure reading frame unit header\n"); rewind_detect(avx_ctx); return 0; } annexb_header_length += length_of_unit_size; } size_t bytes_read = 0; if (obudec_read_obu_header_and_size( avx_ctx, OBU_DETECTION_SIZE - annexb_header_length, is_annexb, &detect_buf[annexb_header_length], &bytes_read, &payload_length, &obu_header, /*buffered=*/true) != 0) { fprintf(stderr, "obudec: Failure reading first OBU.\n"); rewind_detect(avx_ctx); return 0; } if (is_annexb) { bytes_read += annexb_header_length; } if (obu_header.type != OBU_TEMPORAL_DELIMITER && obu_header.type != OBU_SEQUENCE_HEADER) { rewind_detect(avx_ctx); return 0; } if (obu_header.has_size_field) { if (obu_header.type == OBU_TEMPORAL_DELIMITER && payload_length != 0) { fprintf( stderr, "obudec: Invalid OBU_TEMPORAL_DELIMITER payload length (non-zero)."); rewind_detect(avx_ctx); return 0; } } else if (!is_annexb) { fprintf(stderr, "obudec: OBU size fields required, cannot decode input.\n"); rewind_detect(avx_ctx); return 0; } // Appears that input is valid Section 5 AV1 stream. obu_ctx->buffer = (uint8_t *)malloc(OBU_BUFFER_SIZE); if (!obu_ctx->buffer) { fprintf(stderr, "Out of memory.\n"); rewind_detect(avx_ctx); return 0; } obu_ctx->buffer_capacity = OBU_BUFFER_SIZE; memcpy(obu_ctx->buffer, &detect_buf[0], bytes_read); obu_ctx->bytes_buffered = bytes_read; // If the first OBU is a SEQUENCE_HEADER, then it will have a payload. // We need to read this in so that our buffer only contains complete OBUs. if (payload_length > 0) { if (payload_length > (obu_ctx->buffer_capacity - bytes_read)) { fprintf(stderr, "obudec: First OBU's payload is too large\n"); rewind_detect(avx_ctx); obudec_free(obu_ctx); return 0; } size_t payload_bytes = 0; const int status = obudec_read_obu_payload( avx_ctx, payload_length, &obu_ctx->buffer[bytes_read], &payload_bytes, /*buffered=*/false); if (status < 0) { rewind_detect(avx_ctx); obudec_free(obu_ctx); return 0; } obu_ctx->bytes_buffered += payload_bytes; } return 1; } int obudec_read_temporal_unit(struct ObuDecInputContext *obu_ctx, uint8_t **buffer, size_t *bytes_read, size_t *buffer_size) { FILE *f = obu_ctx->avx_ctx->file; if (!f) return -1; *buffer_size = 0; *bytes_read = 0; if (input_eof(obu_ctx->avx_ctx)) { return 1; } size_t tu_size; size_t obu_size = 0; size_t length_of_temporal_unit_size = 0; uint8_t tuheader[OBU_MAX_LENGTH_FIELD_SIZE] = { 0 }; if (obu_ctx->is_annexb) { uint64_t size = 0; if (obu_ctx->bytes_buffered == 0) { if (obudec_read_leb128(obu_ctx->avx_ctx, &tuheader[0], &length_of_temporal_unit_size, &size, /*buffered=*/false) != 0) { fprintf(stderr, "obudec: Failure reading temporal unit header\n"); return -1; } if (size == 0 && input_eof(obu_ctx->avx_ctx)) { return 1; } } else { // temporal unit size was already stored in buffer if (aom_uleb_decode(obu_ctx->buffer, obu_ctx->bytes_buffered, &size, &length_of_temporal_unit_size) != 0) { fprintf(stderr, "obudec: Failure reading temporal unit header\n"); return -1; } } if (size > UINT32_MAX || size + length_of_temporal_unit_size > UINT32_MAX) { fprintf(stderr, "obudec: TU too large.\n"); return -1; } size += length_of_temporal_unit_size; tu_size = (size_t)size; } else { while (1) { ObuHeader obu_header; memset(&obu_header, 0, sizeof(obu_header)); if (obudec_read_one_obu(obu_ctx->avx_ctx, &obu_ctx->buffer, obu_ctx->bytes_buffered, &obu_ctx->buffer_capacity, &obu_size, &obu_header, 0, /*buffered=*/false) != 0) { fprintf(stderr, "obudec: read_one_obu failed in TU loop\n"); return -1; } if (obu_header.type == OBU_TEMPORAL_DELIMITER || obu_size == 0) { tu_size = obu_ctx->bytes_buffered; break; } else { obu_ctx->bytes_buffered += obu_size; } } } #if defined AOM_MAX_ALLOCABLE_MEMORY if (tu_size > AOM_MAX_ALLOCABLE_MEMORY) { fprintf(stderr, "obudec: Temporal Unit size exceeds max alloc size.\n"); return -1; } #endif if (tu_size > 0) { uint8_t *new_buffer = (uint8_t *)realloc(*buffer, tu_size); if (!new_buffer) { free(*buffer); fprintf(stderr, "obudec: Out of memory.\n"); return -1; } *buffer = new_buffer; } *bytes_read = tu_size; *buffer_size = tu_size; if (!obu_ctx->is_annexb) { memcpy(*buffer, obu_ctx->buffer, tu_size); // At this point, (obu_ctx->buffer + obu_ctx->bytes_buffered + obu_size) // points to the end of the buffer. memmove(obu_ctx->buffer, obu_ctx->buffer + obu_ctx->bytes_buffered, obu_size); obu_ctx->bytes_buffered = obu_size; } else { if (!input_eof(obu_ctx->avx_ctx)) { size_t data_size; size_t offset; if (!obu_ctx->bytes_buffered) { data_size = tu_size - length_of_temporal_unit_size; memcpy(*buffer, &tuheader[0], length_of_temporal_unit_size); offset = length_of_temporal_unit_size; } else { const size_t copy_size = AOMMIN(obu_ctx->bytes_buffered, tu_size); memcpy(*buffer, obu_ctx->buffer, copy_size); offset = copy_size; data_size = tu_size - copy_size; obu_ctx->bytes_buffered -= copy_size; } if (read_from_input(obu_ctx->avx_ctx, data_size, *buffer + offset) != data_size) { fprintf(stderr, "obudec: Failed to read full temporal unit\n"); return -1; } } } return 0; } void obudec_free(struct ObuDecInputContext *obu_ctx) { free(obu_ctx->buffer); obu_ctx->buffer = NULL; obu_ctx->buffer_capacity = 0; obu_ctx->bytes_buffered = 0; }