/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include #include "common/tools_common.h" #if CONFIG_AV1_ENCODER #include "aom/aomcx.h" #endif #if CONFIG_AV1_DECODER #include "aom/aomdx.h" #endif #if defined(_WIN32) #include #include #endif #define LOG_ERROR(label) \ do { \ const char *l = label; \ va_list ap; \ va_start(ap, fmt); \ if (l) fprintf(stderr, "%s: ", l); \ vfprintf(stderr, fmt, ap); \ fprintf(stderr, "\n"); \ va_end(ap); \ } while (0) FILE *set_binary_mode(FILE *stream) { (void)stream; #if defined(_WIN32) _setmode(_fileno(stream), _O_BINARY); #endif return stream; } void die(const char *fmt, ...) { LOG_ERROR(NULL); usage_exit(); } void fatal(const char *fmt, ...) { LOG_ERROR("Fatal"); exit(EXIT_FAILURE); } void aom_tools_warn(const char *fmt, ...) { LOG_ERROR("Warning"); } void die_codec(aom_codec_ctx_t *ctx, const char *s) { const char *detail = aom_codec_error_detail(ctx); fprintf(stderr, "%s: %s\n", s, aom_codec_error(ctx)); if (detail) fprintf(stderr, " %s\n", detail); exit(EXIT_FAILURE); } const char *image_format_to_string(aom_img_fmt_t fmt) { switch (fmt) { case AOM_IMG_FMT_I420: return "I420"; case AOM_IMG_FMT_I422: return "I422"; case AOM_IMG_FMT_I444: return "I444"; case AOM_IMG_FMT_YV12: return "YV12"; case AOM_IMG_FMT_NV12: return "NV12"; case AOM_IMG_FMT_YV1216: return "YV1216"; case AOM_IMG_FMT_I42016: return "I42016"; case AOM_IMG_FMT_I42216: return "I42216"; case AOM_IMG_FMT_I44416: return "I44416"; default: return "Other"; } } int read_yuv_frame(struct AvxInputContext *input_ctx, aom_image_t *yuv_frame) { FILE *f = input_ctx->file; struct FileTypeDetectionBuffer *detect = &input_ctx->detect; int plane = 0; int shortread = 0; const int bytespp = (yuv_frame->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; for (plane = 0; plane < 3; ++plane) { uint8_t *ptr; int w = aom_img_plane_width(yuv_frame, plane); const int h = aom_img_plane_height(yuv_frame, plane); int r; // Assuming that for nv12 we read all chroma data at one time if (yuv_frame->fmt == AOM_IMG_FMT_NV12 && plane > 1) break; if (yuv_frame->fmt == AOM_IMG_FMT_NV12 && plane == 1) w *= 2; /* Determine the correct plane based on the image format. The for-loop * always counts in Y,U,V order, but this may not match the order of * the data on disk. */ switch (plane) { case 1: ptr = yuv_frame->planes[yuv_frame->fmt == AOM_IMG_FMT_YV12 ? AOM_PLANE_V : AOM_PLANE_U]; break; case 2: ptr = yuv_frame->planes[yuv_frame->fmt == AOM_IMG_FMT_YV12 ? AOM_PLANE_U : AOM_PLANE_V]; break; default: ptr = yuv_frame->planes[plane]; } for (r = 0; r < h; ++r) { size_t needed = w * bytespp; size_t buf_position = 0; const size_t left = detect->buf_read - detect->position; if (left > 0) { const size_t more = (left < needed) ? left : needed; memcpy(ptr, detect->buf + detect->position, more); buf_position = more; needed -= more; detect->position += more; } if (needed > 0) { shortread |= (fread(ptr + buf_position, 1, needed, f) < needed); } ptr += yuv_frame->stride[plane]; } } return shortread; } struct CodecInfo { // Pointer to a function of zero arguments that returns an aom_codec_iface_t. aom_codec_iface_t *(*interface)(void); const char *short_name; uint32_t fourcc; }; #if CONFIG_AV1_ENCODER static const struct CodecInfo aom_encoders[] = { { &aom_codec_av1_cx, "av1", AV1_FOURCC }, }; int get_aom_encoder_count(void) { return sizeof(aom_encoders) / sizeof(aom_encoders[0]); } aom_codec_iface_t *get_aom_encoder_by_index(int i) { assert(i >= 0 && i < get_aom_encoder_count()); return aom_encoders[i].interface(); } aom_codec_iface_t *get_aom_encoder_by_short_name(const char *name) { for (int i = 0; i < get_aom_encoder_count(); ++i) { const struct CodecInfo *info = &aom_encoders[i]; if (strcmp(info->short_name, name) == 0) return info->interface(); } return NULL; } uint32_t get_fourcc_by_aom_encoder(aom_codec_iface_t *iface) { for (int i = 0; i < get_aom_encoder_count(); ++i) { const struct CodecInfo *info = &aom_encoders[i]; if (info->interface() == iface) { return info->fourcc; } } return 0; } const char *get_short_name_by_aom_encoder(aom_codec_iface_t *iface) { for (int i = 0; i < get_aom_encoder_count(); ++i) { const struct CodecInfo *info = &aom_encoders[i]; if (info->interface() == iface) { return info->short_name; } } return NULL; } #endif // CONFIG_AV1_ENCODER #if CONFIG_AV1_DECODER static const struct CodecInfo aom_decoders[] = { { &aom_codec_av1_dx, "av1", AV1_FOURCC }, }; int get_aom_decoder_count(void) { return sizeof(aom_decoders) / sizeof(aom_decoders[0]); } aom_codec_iface_t *get_aom_decoder_by_index(int i) { assert(i >= 0 && i < get_aom_decoder_count()); return aom_decoders[i].interface(); } aom_codec_iface_t *get_aom_decoder_by_short_name(const char *name) { for (int i = 0; i < get_aom_decoder_count(); ++i) { const struct CodecInfo *info = &aom_decoders[i]; if (strcmp(info->short_name, name) == 0) return info->interface(); } return NULL; } aom_codec_iface_t *get_aom_decoder_by_fourcc(uint32_t fourcc) { for (int i = 0; i < get_aom_decoder_count(); ++i) { const struct CodecInfo *info = &aom_decoders[i]; if (info->fourcc == fourcc) return info->interface(); } return NULL; } const char *get_short_name_by_aom_decoder(aom_codec_iface_t *iface) { for (int i = 0; i < get_aom_decoder_count(); ++i) { const struct CodecInfo *info = &aom_decoders[i]; if (info->interface() == iface) { return info->short_name; } } return NULL; } uint32_t get_fourcc_by_aom_decoder(aom_codec_iface_t *iface) { for (int i = 0; i < get_aom_decoder_count(); ++i) { const struct CodecInfo *info = &aom_decoders[i]; if (info->interface() == iface) { return info->fourcc; } } return 0; } #endif // CONFIG_AV1_DECODER void aom_img_write(const aom_image_t *img, FILE *file) { int plane; for (plane = 0; plane < 3; ++plane) { const unsigned char *buf = img->planes[plane]; const int stride = img->stride[plane]; const int w = aom_img_plane_width(img, plane) * ((img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); const int h = aom_img_plane_height(img, plane); int y; for (y = 0; y < h; ++y) { fwrite(buf, 1, w, file); buf += stride; } } } bool aom_img_read(aom_image_t *img, FILE *file) { int plane; const int bytespp = (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; for (plane = 0; plane < 3; ++plane) { unsigned char *buf = img->planes[plane]; const int stride = img->stride[plane]; const int w = aom_img_plane_width(img, plane) * bytespp; const int h = aom_img_plane_height(img, plane); int y; for (y = 0; y < h; ++y) { if (fread(buf, 1, w, file) != (size_t)w) return false; buf += stride; } } return true; } // TODO(dkovalev) change sse_to_psnr signature: double -> int64_t double sse_to_psnr(double samples, double peak, double sse) { static const double kMaxPSNR = 100.0; if (sse > 0.0) { const double psnr = 10.0 * log10(samples * peak * peak / sse); return psnr > kMaxPSNR ? kMaxPSNR : psnr; } else { return kMaxPSNR; } } // TODO(debargha): Consolidate the functions below into a separate file. static void highbd_img_upshift(aom_image_t *dst, const aom_image_t *src, int input_shift) { // Note the offset is 1 less than half. const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0; int plane; if (dst->d_w != src->d_w || dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt || input_shift < 0) { fatal("Unsupported image conversion"); } switch (src->fmt) { case AOM_IMG_FMT_I42016: case AOM_IMG_FMT_I42216: case AOM_IMG_FMT_I44416: break; default: fatal("Unsupported image conversion"); } for (plane = 0; plane < 3; plane++) { int w = src->d_w; int h = src->d_h; int x, y; if (plane) { w = (w + src->x_chroma_shift) >> src->x_chroma_shift; h = (h + src->y_chroma_shift) >> src->y_chroma_shift; } for (y = 0; y < h; y++) { const uint16_t *p_src = (const uint16_t *)(src->planes[plane] + y * src->stride[plane]); uint16_t *p_dst = (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); for (x = 0; x < w; x++) *p_dst++ = (*p_src++ << input_shift) + offset; } } } static void lowbd_img_upshift(aom_image_t *dst, const aom_image_t *src, int input_shift) { // Note the offset is 1 less than half. const int offset = input_shift > 0 ? (1 << (input_shift - 1)) - 1 : 0; int plane; if (dst->d_w != src->d_w || dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt + AOM_IMG_FMT_HIGHBITDEPTH || input_shift < 0) { fatal("Unsupported image conversion"); } switch (src->fmt) { case AOM_IMG_FMT_YV12: case AOM_IMG_FMT_I420: case AOM_IMG_FMT_I422: case AOM_IMG_FMT_I444: break; default: fatal("Unsupported image conversion"); } for (plane = 0; plane < 3; plane++) { int w = src->d_w; int h = src->d_h; int x, y; if (plane) { w = (w + src->x_chroma_shift) >> src->x_chroma_shift; h = (h + src->y_chroma_shift) >> src->y_chroma_shift; } for (y = 0; y < h; y++) { const uint8_t *p_src = src->planes[plane] + y * src->stride[plane]; uint16_t *p_dst = (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); for (x = 0; x < w; x++) { *p_dst++ = (*p_src++ << input_shift) + offset; } } } } void aom_img_upshift(aom_image_t *dst, const aom_image_t *src, int input_shift) { if (src->fmt & AOM_IMG_FMT_HIGHBITDEPTH) { highbd_img_upshift(dst, src, input_shift); } else { lowbd_img_upshift(dst, src, input_shift); } } void aom_img_truncate_16_to_8(aom_image_t *dst, const aom_image_t *src) { int plane; if (dst->fmt + AOM_IMG_FMT_HIGHBITDEPTH != src->fmt || dst->d_w != src->d_w || dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || dst->y_chroma_shift != src->y_chroma_shift) { fatal("Unsupported image conversion"); } switch (dst->fmt) { case AOM_IMG_FMT_I420: case AOM_IMG_FMT_I422: case AOM_IMG_FMT_I444: break; default: fatal("Unsupported image conversion"); } for (plane = 0; plane < 3; plane++) { int w = src->d_w; int h = src->d_h; int x, y; if (plane) { w = (w + src->x_chroma_shift) >> src->x_chroma_shift; h = (h + src->y_chroma_shift) >> src->y_chroma_shift; } for (y = 0; y < h; y++) { const uint16_t *p_src = (const uint16_t *)(src->planes[plane] + y * src->stride[plane]); uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane]; for (x = 0; x < w; x++) { *p_dst++ = (uint8_t)(*p_src++); } } } } static void highbd_img_downshift(aom_image_t *dst, const aom_image_t *src, int down_shift) { int plane; if (dst->d_w != src->d_w || dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || dst->y_chroma_shift != src->y_chroma_shift || dst->fmt != src->fmt || down_shift < 0) { fatal("Unsupported image conversion"); } switch (src->fmt) { case AOM_IMG_FMT_I42016: case AOM_IMG_FMT_I42216: case AOM_IMG_FMT_I44416: break; default: fatal("Unsupported image conversion"); } for (plane = 0; plane < 3; plane++) { int w = src->d_w; int h = src->d_h; int x, y; if (plane) { w = (w + src->x_chroma_shift) >> src->x_chroma_shift; h = (h + src->y_chroma_shift) >> src->y_chroma_shift; } for (y = 0; y < h; y++) { const uint16_t *p_src = (const uint16_t *)(src->planes[plane] + y * src->stride[plane]); uint16_t *p_dst = (uint16_t *)(dst->planes[plane] + y * dst->stride[plane]); for (x = 0; x < w; x++) *p_dst++ = *p_src++ >> down_shift; } } } static void lowbd_img_downshift(aom_image_t *dst, const aom_image_t *src, int down_shift) { int plane; if (dst->d_w != src->d_w || dst->d_h != src->d_h || dst->x_chroma_shift != src->x_chroma_shift || dst->y_chroma_shift != src->y_chroma_shift || src->fmt != dst->fmt + AOM_IMG_FMT_HIGHBITDEPTH || down_shift < 0) { fatal("Unsupported image conversion"); } switch (dst->fmt) { case AOM_IMG_FMT_I420: case AOM_IMG_FMT_I422: case AOM_IMG_FMT_I444: break; default: fatal("Unsupported image conversion"); } for (plane = 0; plane < 3; plane++) { int w = src->d_w; int h = src->d_h; int x, y; if (plane) { w = (w + src->x_chroma_shift) >> src->x_chroma_shift; h = (h + src->y_chroma_shift) >> src->y_chroma_shift; } for (y = 0; y < h; y++) { const uint16_t *p_src = (const uint16_t *)(src->planes[plane] + y * src->stride[plane]); uint8_t *p_dst = dst->planes[plane] + y * dst->stride[plane]; for (x = 0; x < w; x++) { *p_dst++ = *p_src++ >> down_shift; } } } } void aom_img_downshift(aom_image_t *dst, const aom_image_t *src, int down_shift) { if (dst->fmt & AOM_IMG_FMT_HIGHBITDEPTH) { highbd_img_downshift(dst, src, down_shift); } else { lowbd_img_downshift(dst, src, down_shift); } } static int img_shifted_realloc_required(const aom_image_t *img, const aom_image_t *shifted, aom_img_fmt_t required_fmt) { return img->d_w != shifted->d_w || img->d_h != shifted->d_h || required_fmt != shifted->fmt; } bool aom_shift_img(unsigned int output_bit_depth, aom_image_t **img_ptr, aom_image_t **img_shifted_ptr) { aom_image_t *img = *img_ptr; aom_image_t *img_shifted = *img_shifted_ptr; const aom_img_fmt_t shifted_fmt = output_bit_depth == 8 ? img->fmt & ~AOM_IMG_FMT_HIGHBITDEPTH : img->fmt | AOM_IMG_FMT_HIGHBITDEPTH; if (shifted_fmt != img->fmt || output_bit_depth != img->bit_depth) { if (img_shifted && img_shifted_realloc_required(img, img_shifted, shifted_fmt)) { aom_img_free(img_shifted); img_shifted = NULL; } if (img_shifted) { img_shifted->monochrome = img->monochrome; } if (!img_shifted) { img_shifted = aom_img_alloc(NULL, shifted_fmt, img->d_w, img->d_h, 16); if (!img_shifted) { *img_shifted_ptr = NULL; return false; } img_shifted->bit_depth = output_bit_depth; img_shifted->monochrome = img->monochrome; img_shifted->csp = img->csp; } if (output_bit_depth > img->bit_depth) { aom_img_upshift(img_shifted, img, output_bit_depth - img->bit_depth); } else { aom_img_downshift(img_shifted, img, img->bit_depth - output_bit_depth); } *img_shifted_ptr = img_shifted; *img_ptr = img_shifted; } return true; } // Related to I420, NV12 format has one luma "luminance" plane Y and one plane // with U and V values interleaved. void aom_img_write_nv12(const aom_image_t *img, FILE *file) { // Y plane const unsigned char *buf = img->planes[0]; int stride = img->stride[0]; int w = aom_img_plane_width(img, 0) * ((img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1); int h = aom_img_plane_height(img, 0); int x, y; for (y = 0; y < h; ++y) { fwrite(buf, 1, w, file); buf += stride; } // Interleaved U and V plane const unsigned char *ubuf = img->planes[1]; const unsigned char *vbuf = img->planes[2]; const size_t size = (img->fmt & AOM_IMG_FMT_HIGHBITDEPTH) ? 2 : 1; stride = img->stride[1]; w = aom_img_plane_width(img, 1); h = aom_img_plane_height(img, 1); for (y = 0; y < h; ++y) { for (x = 0; x < w; ++x) { fwrite(ubuf, size, 1, file); fwrite(vbuf, size, 1, file); ubuf += size; vbuf += size; } ubuf += (stride - w * size); vbuf += (stride - w * size); } } size_t read_from_input(struct AvxInputContext *input_ctx, size_t n, unsigned char *buf) { const size_t buffered_bytes = input_ctx->detect.buf_read - input_ctx->detect.position; size_t read_n; if (buffered_bytes == 0) { read_n = fread(buf, 1, n, input_ctx->file); } else if (n <= buffered_bytes) { memcpy(buf, input_ctx->detect.buf + input_ctx->detect.position, n); input_ctx->detect.position += n; read_n = n; } else { memcpy(buf, input_ctx->detect.buf + input_ctx->detect.position, buffered_bytes); input_ctx->detect.position += buffered_bytes; read_n = buffered_bytes; read_n += fread(buf + buffered_bytes, 1, n - buffered_bytes, input_ctx->file); } return read_n; } size_t input_to_detect_buf(struct AvxInputContext *input_ctx, size_t n) { if (n + input_ctx->detect.position > DETECT_BUF_SZ) { die("Failed to store in the detect buffer, maximum size exceeded."); } const size_t buffered_bytes = input_ctx->detect.buf_read - input_ctx->detect.position; size_t read_n; if (buffered_bytes == 0) { read_n = fread(input_ctx->detect.buf + input_ctx->detect.buf_read, 1, n, input_ctx->file); input_ctx->detect.buf_read += read_n; } else if (n <= buffered_bytes) { // In this case, don't need to do anything as the data is already in // the detect buffer read_n = n; } else { read_n = fread(input_ctx->detect.buf + input_ctx->detect.buf_read, 1, n - buffered_bytes, input_ctx->file); input_ctx->detect.buf_read += read_n; read_n += buffered_bytes; } return read_n; } // Read from detect buffer to a buffer. If not enough, read from input and also // buffer them first. size_t buffer_input(struct AvxInputContext *input_ctx, size_t n, unsigned char *buf, bool buffered) { if (!buffered) { return read_from_input(input_ctx, n, buf); } const size_t buf_n = input_to_detect_buf(input_ctx, n); if (buf_n < n) { return buf_n; } return read_from_input(input_ctx, n, buf); } void rewind_detect(struct AvxInputContext *input_ctx) { input_ctx->detect.position = 0; } bool input_eof(struct AvxInputContext *input_ctx) { return feof(input_ctx->file) && input_ctx->detect.position == input_ctx->detect.buf_read; }