/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ // Inspect Decoder // ================ // // This is a simple decoder loop that writes JSON stats to stdout. This tool // can also be compiled with Emscripten and used as a library. #include #include #include #ifdef __EMSCRIPTEN__ #include #else #define EMSCRIPTEN_KEEPALIVE #endif #include "config/aom_config.h" #include "aom/aom_decoder.h" #include "aom/aomdx.h" #include "av1/common/av1_common_int.h" #if CONFIG_ACCOUNTING #include "av1/decoder/accounting.h" #endif #include "av1/decoder/inspection.h" #include "common/args.h" #include "common/tools_common.h" #include "common/video_common.h" #include "common/video_reader.h" // Max JSON buffer size. const int MAX_BUFFER = 1024 * 1024 * 256; typedef enum { ACCOUNTING_LAYER = 1, BLOCK_SIZE_LAYER = 1 << 1, TRANSFORM_SIZE_LAYER = 1 << 2, TRANSFORM_TYPE_LAYER = 1 << 3, MODE_LAYER = 1 << 4, SKIP_LAYER = 1 << 5, FILTER_LAYER = 1 << 6, CDEF_LAYER = 1 << 7, REFERENCE_FRAME_LAYER = 1 << 8, MOTION_VECTORS_LAYER = 1 << 9, UV_MODE_LAYER = 1 << 10, CFL_LAYER = 1 << 11, DUAL_FILTER_LAYER = 1 << 12, Q_INDEX_LAYER = 1 << 13, SEGMENT_ID_LAYER = 1 << 14, MOTION_MODE_LAYER = 1 << 15, COMPOUND_TYPE_LAYER = 1 << 16, INTRABC_LAYER = 1 << 17, PALETTE_LAYER = 1 << 18, UV_PALETTE_LAYER = 1 << 19, ALL_LAYERS = (1 << 20) - 1 } LayerType; static LayerType layers = 0; static int stop_after = 0; static int compress = 0; static const arg_def_t limit_arg = ARG_DEF(NULL, "limit", 1, "Stop decoding after n frames"); static const arg_def_t dump_all_arg = ARG_DEF("A", "all", 0, "Dump All"); static const arg_def_t compress_arg = ARG_DEF("x", "compress", 0, "Compress JSON using RLE"); static const arg_def_t dump_accounting_arg = ARG_DEF("a", "accounting", 0, "Dump Accounting"); static const arg_def_t dump_block_size_arg = ARG_DEF("bs", "blockSize", 0, "Dump Block Size"); static const arg_def_t dump_motion_vectors_arg = ARG_DEF("mv", "motionVectors", 0, "Dump Motion Vectors"); static const arg_def_t dump_transform_size_arg = ARG_DEF("ts", "transformSize", 0, "Dump Transform Size"); static const arg_def_t dump_transform_type_arg = ARG_DEF("tt", "transformType", 0, "Dump Transform Type"); static const arg_def_t dump_mode_arg = ARG_DEF("m", "mode", 0, "Dump Mode"); static const arg_def_t dump_motion_mode_arg = ARG_DEF("mm", "motion_mode", 0, "Dump Motion Modes"); static const arg_def_t dump_compound_type_arg = ARG_DEF("ct", "compound_type", 0, "Dump Compound Types"); static const arg_def_t dump_uv_mode_arg = ARG_DEF("uvm", "uv_mode", 0, "Dump UV Intra Prediction Modes"); static const arg_def_t dump_skip_arg = ARG_DEF("s", "skip", 0, "Dump Skip"); static const arg_def_t dump_filter_arg = ARG_DEF("f", "filter", 0, "Dump Filter"); static const arg_def_t dump_cdef_arg = ARG_DEF("c", "cdef", 0, "Dump CDEF"); static const arg_def_t dump_cfl_arg = ARG_DEF("cfl", "chroma_from_luma", 0, "Dump Chroma from Luma Alphas"); static const arg_def_t dump_dual_filter_type_arg = ARG_DEF("df", "dualFilterType", 0, "Dump Dual Filter Type"); static const arg_def_t dump_reference_frame_arg = ARG_DEF("r", "referenceFrame", 0, "Dump Reference Frame"); static const arg_def_t dump_delta_q_arg = ARG_DEF("dq", "delta_q", 0, "Dump QIndex"); static const arg_def_t dump_seg_id_arg = ARG_DEF("si", "seg_id", 0, "Dump Segment ID"); static const arg_def_t dump_intrabc_arg = ARG_DEF("ibc", "intrabc", 0, "Dump If IntraBC Is Used"); static const arg_def_t dump_palette_arg = ARG_DEF("plt", "palette", 0, "Dump Palette Size"); static const arg_def_t dump_uv_palette_arg = ARG_DEF("uvp", "uv_palette", 0, "Dump UV Palette Size"); static const arg_def_t usage_arg = ARG_DEF("h", "help", 0, "Help"); static const arg_def_t skip_non_transform_arg = ARG_DEF( "snt", "skip_non_transform", 1, "Skip is counted as a non transform."); static const arg_def_t combined_arg = ARG_DEF("comb", "combined", 1, "combinining parameters into one output."); int combined_parm_list[15]; int combined_parm_count = 0; static const arg_def_t *main_args[] = { &limit_arg, &dump_all_arg, &compress_arg, #if CONFIG_ACCOUNTING &dump_accounting_arg, #endif &dump_block_size_arg, &dump_transform_size_arg, &dump_transform_type_arg, &dump_mode_arg, &dump_uv_mode_arg, &dump_motion_mode_arg, &dump_compound_type_arg, &dump_skip_arg, &dump_filter_arg, &dump_cdef_arg, &dump_dual_filter_type_arg, &dump_cfl_arg, &dump_reference_frame_arg, &dump_motion_vectors_arg, &dump_delta_q_arg, &dump_seg_id_arg, &dump_intrabc_arg, &dump_palette_arg, &dump_uv_palette_arg, &usage_arg, &skip_non_transform_arg, &combined_arg, NULL }; #define ENUM(name) \ { #name, name } #define LAST_ENUM \ { NULL, 0 } typedef struct map_entry { const char *name; int value; } map_entry; const map_entry refs_map[] = { ENUM(INTRA_FRAME), ENUM(LAST_FRAME), ENUM(LAST2_FRAME), ENUM(LAST3_FRAME), ENUM(GOLDEN_FRAME), ENUM(BWDREF_FRAME), ENUM(ALTREF2_FRAME), ENUM(ALTREF_FRAME), LAST_ENUM }; const map_entry block_size_map[] = { ENUM(BLOCK_4X4), ENUM(BLOCK_4X8), ENUM(BLOCK_8X4), ENUM(BLOCK_8X8), ENUM(BLOCK_8X16), ENUM(BLOCK_16X8), ENUM(BLOCK_16X16), ENUM(BLOCK_16X32), ENUM(BLOCK_32X16), ENUM(BLOCK_32X32), ENUM(BLOCK_32X64), ENUM(BLOCK_64X32), ENUM(BLOCK_64X64), ENUM(BLOCK_64X128), ENUM(BLOCK_128X64), ENUM(BLOCK_128X128), ENUM(BLOCK_4X16), ENUM(BLOCK_16X4), ENUM(BLOCK_8X32), ENUM(BLOCK_32X8), ENUM(BLOCK_16X64), ENUM(BLOCK_64X16), LAST_ENUM }; #define TX_SKIP -1 const map_entry tx_size_map[] = { ENUM(TX_4X4), ENUM(TX_8X8), ENUM(TX_16X16), ENUM(TX_32X32), ENUM(TX_64X64), ENUM(TX_4X8), ENUM(TX_8X4), ENUM(TX_8X16), ENUM(TX_16X8), ENUM(TX_16X32), ENUM(TX_32X16), ENUM(TX_32X64), ENUM(TX_64X32), ENUM(TX_4X16), ENUM(TX_16X4), ENUM(TX_8X32), ENUM(TX_32X8), ENUM(TX_16X64), ENUM(TX_64X16), LAST_ENUM }; const map_entry tx_type_map[] = { ENUM(DCT_DCT), ENUM(ADST_DCT), ENUM(DCT_ADST), ENUM(ADST_ADST), ENUM(FLIPADST_DCT), ENUM(DCT_FLIPADST), ENUM(FLIPADST_FLIPADST), ENUM(ADST_FLIPADST), ENUM(FLIPADST_ADST), ENUM(IDTX), ENUM(V_DCT), ENUM(H_DCT), ENUM(V_ADST), ENUM(H_ADST), ENUM(V_FLIPADST), ENUM(H_FLIPADST), LAST_ENUM }; const map_entry dual_filter_map[] = { ENUM(REG_REG), ENUM(REG_SMOOTH), ENUM(REG_SHARP), ENUM(SMOOTH_REG), ENUM(SMOOTH_SMOOTH), ENUM(SMOOTH_SHARP), ENUM(SHARP_REG), ENUM(SHARP_SMOOTH), ENUM(SHARP_SHARP), LAST_ENUM }; const map_entry prediction_mode_map[] = { ENUM(DC_PRED), ENUM(V_PRED), ENUM(H_PRED), ENUM(D45_PRED), ENUM(D135_PRED), ENUM(D113_PRED), ENUM(D157_PRED), ENUM(D203_PRED), ENUM(D67_PRED), ENUM(SMOOTH_PRED), ENUM(SMOOTH_V_PRED), ENUM(SMOOTH_H_PRED), ENUM(PAETH_PRED), ENUM(NEARESTMV), ENUM(NEARMV), ENUM(GLOBALMV), ENUM(NEWMV), ENUM(NEAREST_NEARESTMV), ENUM(NEAR_NEARMV), ENUM(NEAREST_NEWMV), ENUM(NEW_NEARESTMV), ENUM(NEAR_NEWMV), ENUM(NEW_NEARMV), ENUM(GLOBAL_GLOBALMV), ENUM(NEW_NEWMV), ENUM(INTRA_INVALID), LAST_ENUM }; const map_entry motion_mode_map[] = { ENUM(SIMPLE_TRANSLATION), ENUM(OBMC_CAUSAL), // 2-sided OBMC ENUM(WARPED_CAUSAL), // 2-sided WARPED LAST_ENUM }; const map_entry compound_type_map[] = { ENUM(COMPOUND_AVERAGE), ENUM(COMPOUND_WEDGE), ENUM(COMPOUND_DIFFWTD), LAST_ENUM }; const map_entry uv_prediction_mode_map[] = { ENUM(UV_DC_PRED), ENUM(UV_V_PRED), ENUM(UV_H_PRED), ENUM(UV_D45_PRED), ENUM(UV_D135_PRED), ENUM(UV_D113_PRED), ENUM(UV_D157_PRED), ENUM(UV_D203_PRED), ENUM(UV_D67_PRED), ENUM(UV_SMOOTH_PRED), ENUM(UV_SMOOTH_V_PRED), ENUM(UV_SMOOTH_H_PRED), ENUM(UV_PAETH_PRED), ENUM(UV_CFL_PRED), ENUM(UV_MODE_INVALID), LAST_ENUM }; #define NO_SKIP 0 #define SKIP 1 const map_entry skip_map[] = { ENUM(SKIP), ENUM(NO_SKIP), LAST_ENUM }; const map_entry intrabc_map[] = { { "INTRABC", 1 }, { "NO_INTRABC", 0 }, LAST_ENUM }; const map_entry palette_map[] = { { "ZERO_COLORS", 0 }, { "TWO_COLORS", 2 }, { "THREE_COLORS", 3 }, { "FOUR_COLORS", 4 }, { "FIVE_COLORS", 5 }, { "SIX_COLORS", 6 }, { "SEVEN_COLORS", 7 }, { "EIGHT_COLORS", 8 }, LAST_ENUM }; const map_entry config_map[] = { ENUM(MI_SIZE), LAST_ENUM }; static const char *exec_name; struct parm_offset { char parm[60]; char offset; }; struct parm_offset parm_offsets[] = { { "blockSize", offsetof(insp_mi_data, bsize) }, { "transformSize", offsetof(insp_mi_data, tx_size) }, { "transformType", offsetof(insp_mi_data, tx_type) }, { "dualFilterType", offsetof(insp_mi_data, dual_filter_type) }, { "mode", offsetof(insp_mi_data, mode) }, { "uv_mode", offsetof(insp_mi_data, uv_mode) }, { "motion_mode", offsetof(insp_mi_data, motion_mode) }, { "compound_type", offsetof(insp_mi_data, compound_type) }, { "referenceFrame", offsetof(insp_mi_data, ref_frame) }, { "skip", offsetof(insp_mi_data, skip) }, }; int parm_count = sizeof(parm_offsets) / sizeof(parm_offsets[0]); int convert_to_indices(char *str, int *indices, int maxCount, int *count) { *count = 0; do { char *comma = strchr(str, ','); int length = (comma ? (int)(comma - str) : (int)strlen(str)); int i; for (i = 0; i < parm_count; ++i) { if (!strncmp(str, parm_offsets[i].parm, length)) { break; } } if (i == parm_count) return 0; indices[(*count)++] = i; if (*count > maxCount) return 0; str += length + 1; } while (strlen(str) > 0); return 1; } insp_frame_data frame_data; int frame_count = 0; int decoded_frame_count = 0; aom_codec_ctx_t codec; AvxVideoReader *reader = NULL; const AvxVideoInfo *info = NULL; aom_image_t *img = NULL; void on_frame_decoded_dump(char *json) { #ifdef __EMSCRIPTEN__ EM_ASM_({ Module.on_frame_decoded_json($0); }, json); #else printf("%s", json); #endif } // Writing out the JSON buffer using snprintf is very slow, especially when // compiled with emscripten, these functions speed things up quite a bit. int put_str(char *buffer, const char *str) { int i; for (i = 0; str[i] != '\0'; i++) { buffer[i] = str[i]; } return i; } int put_str_with_escape(char *buffer, const char *str) { int i; int j = 0; for (i = 0; str[i] != '\0'; i++) { if (str[i] < ' ') { continue; } else if (str[i] == '"' || str[i] == '\\') { buffer[j++] = '\\'; } buffer[j++] = str[i]; } return j; } int put_num(char *buffer, char prefix, int num, char suffix) { int i = 0; char *buf = buffer; int is_neg = 0; if (prefix) { buf[i++] = prefix; } if (num == 0) { buf[i++] = '0'; } else { if (num < 0) { num = -num; is_neg = 1; } int s = i; while (num != 0) { buf[i++] = '0' + (num % 10); num = num / 10; } if (is_neg) { buf[i++] = '-'; } int e = i - 1; while (s < e) { int t = buf[s]; buf[s] = buf[e]; buf[e] = t; s++; e--; } } if (suffix) { buf[i++] = suffix; } return i; } int put_map(char *buffer, const map_entry *map) { char *buf = buffer; const map_entry *entry = map; while (entry->name != NULL) { *(buf++) = '"'; buf += put_str(buf, entry->name); *(buf++) = '"'; buf += put_num(buf, ':', entry->value, 0); entry++; if (entry->name != NULL) { *(buf++) = ','; } } return (int)(buf - buffer); } int put_reference_frame(char *buffer) { const int mi_rows = frame_data.mi_rows; const int mi_cols = frame_data.mi_cols; char *buf = buffer; int r, c, t; buf += put_str(buf, " \"referenceFrameMap\": {"); buf += put_map(buf, refs_map); buf += put_str(buf, "},\n"); buf += put_str(buf, " \"referenceFrame\": ["); for (r = 0; r < mi_rows; ++r) { *(buf++) = '['; for (c = 0; c < mi_cols; ++c) { insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c]; buf += put_num(buf, '[', mi->ref_frame[0], 0); buf += put_num(buf, ',', mi->ref_frame[1], ']'); if (compress) { // RLE for (t = c + 1; t < mi_cols; ++t) { insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t]; if (mi->ref_frame[0] != next_mi->ref_frame[0] || mi->ref_frame[1] != next_mi->ref_frame[1]) { break; } } if (t - c > 1) { *(buf++) = ','; buf += put_num(buf, '[', t - c - 1, ']'); c = t - 1; } } if (c < mi_cols - 1) *(buf++) = ','; } *(buf++) = ']'; if (r < mi_rows - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); return (int)(buf - buffer); } int put_motion_vectors(char *buffer) { const int mi_rows = frame_data.mi_rows; const int mi_cols = frame_data.mi_cols; char *buf = buffer; int r, c, t; buf += put_str(buf, " \"motionVectors\": ["); for (r = 0; r < mi_rows; ++r) { *(buf++) = '['; for (c = 0; c < mi_cols; ++c) { insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c]; buf += put_num(buf, '[', mi->mv[0].col, 0); buf += put_num(buf, ',', mi->mv[0].row, 0); buf += put_num(buf, ',', mi->mv[1].col, 0); buf += put_num(buf, ',', mi->mv[1].row, ']'); if (compress) { // RLE for (t = c + 1; t < mi_cols; ++t) { insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t]; if (mi->mv[0].col != next_mi->mv[0].col || mi->mv[0].row != next_mi->mv[0].row || mi->mv[1].col != next_mi->mv[1].col || mi->mv[1].row != next_mi->mv[1].row) { break; } } if (t - c > 1) { *(buf++) = ','; buf += put_num(buf, '[', t - c - 1, ']'); c = t - 1; } } if (c < mi_cols - 1) *(buf++) = ','; } *(buf++) = ']'; if (r < mi_rows - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); return (int)(buf - buffer); } int put_combined(char *buffer) { const int mi_rows = frame_data.mi_rows; const int mi_cols = frame_data.mi_cols; char *buf = buffer; int r, c, p; buf += put_str(buf, " \""); for (p = 0; p < combined_parm_count; ++p) { if (p) buf += put_str(buf, "&"); buf += put_str(buf, parm_offsets[combined_parm_list[p]].parm); } buf += put_str(buf, "\": ["); for (r = 0; r < mi_rows; ++r) { *(buf++) = '['; for (c = 0; c < mi_cols; ++c) { insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c]; *(buf++) = '['; for (p = 0; p < combined_parm_count; ++p) { if (p) *(buf++) = ','; int16_t *v = (int16_t *)(((int8_t *)mi) + parm_offsets[combined_parm_list[p]].offset); buf += put_num(buf, 0, v[0], 0); } *(buf++) = ']'; if (c < mi_cols - 1) *(buf++) = ','; } *(buf++) = ']'; if (r < mi_rows - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); return (int)(buf - buffer); } int put_block_info(char *buffer, const map_entry *map, const char *name, size_t offset, int len) { const int mi_rows = frame_data.mi_rows; const int mi_cols = frame_data.mi_cols; char *buf = buffer; int r, c, t, i; if (compress && len == 1) { die("Can't encode scalars as arrays when RLE compression is enabled."); } if (map) { buf += snprintf(buf, MAX_BUFFER, " \"%sMap\": {", name); buf += put_map(buf, map); buf += put_str(buf, "},\n"); } buf += snprintf(buf, MAX_BUFFER, " \"%s\": [", name); for (r = 0; r < mi_rows; ++r) { *(buf++) = '['; for (c = 0; c < mi_cols; ++c) { insp_mi_data *mi = &frame_data.mi_grid[r * mi_cols + c]; int16_t *v = (int16_t *)(((int8_t *)mi) + offset); if (len == 0) { buf += put_num(buf, 0, v[0], 0); } else { buf += put_str(buf, "["); for (i = 0; i < len; i++) { buf += put_num(buf, 0, v[i], 0); if (i < len - 1) { buf += put_str(buf, ","); } } buf += put_str(buf, "]"); } if (compress) { // RLE for (t = c + 1; t < mi_cols; ++t) { insp_mi_data *next_mi = &frame_data.mi_grid[r * mi_cols + t]; int16_t *nv = (int16_t *)(((int8_t *)next_mi) + offset); int same = 0; if (len == 0) { same = v[0] == nv[0]; } else { for (i = 0; i < len; i++) { same = v[i] == nv[i]; if (!same) { break; } } } if (!same) { break; } } if (t - c > 1) { *(buf++) = ','; buf += put_num(buf, '[', t - c - 1, ']'); c = t - 1; } } if (c < mi_cols - 1) *(buf++) = ','; } *(buf++) = ']'; if (r < mi_rows - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); return (int)(buf - buffer); } #if CONFIG_ACCOUNTING int put_accounting(char *buffer) { char *buf = buffer; int i; const Accounting *accounting = frame_data.accounting; if (accounting == NULL) { printf("XXX\n"); return 0; } const int num_syms = accounting->syms.num_syms; const int num_strs = accounting->syms.dictionary.num_strs; buf += put_str(buf, " \"symbolsMap\": ["); for (i = 0; i < num_strs; i++) { buf += snprintf(buf, MAX_BUFFER, "\"%s\"", accounting->syms.dictionary.strs[i]); if (i < num_strs - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); buf += put_str(buf, " \"symbols\": [\n "); AccountingSymbolContext context; context.x = -2; context.y = -2; AccountingSymbol *sym; for (i = 0; i < num_syms; i++) { sym = &accounting->syms.syms[i]; if (memcmp(&context, &sym->context, sizeof(AccountingSymbolContext)) != 0) { buf += put_num(buf, '[', sym->context.x, 0); buf += put_num(buf, ',', sym->context.y, ']'); } else { buf += put_num(buf, '[', sym->id, 0); buf += put_num(buf, ',', sym->bits, 0); buf += put_num(buf, ',', sym->samples, ']'); } context = sym->context; if (i < num_syms - 1) *(buf++) = ','; } buf += put_str(buf, "],\n"); return (int)(buf - buffer); } #endif int skip_non_transform = 0; void inspect(void *pbi, void *data) { /* Fetch frame data. */ ifd_inspect(&frame_data, pbi, skip_non_transform); // Show existing frames just show a reference buffer we've already decoded. // There's no information to show. if (frame_data.show_existing_frame) return; (void)data; // We allocate enough space and hope we don't write out of bounds. Totally // unsafe but this speeds things up, especially when compiled to Javascript. char *buffer = aom_malloc(MAX_BUFFER); if (!buffer) { fprintf(stderr, "Error allocating inspect info buffer\n"); abort(); } char *buf = buffer; buf += put_str(buf, "{\n"); if (layers & BLOCK_SIZE_LAYER) { buf += put_block_info(buf, block_size_map, "blockSize", offsetof(insp_mi_data, bsize), 0); } if (layers & TRANSFORM_SIZE_LAYER) { buf += put_block_info(buf, tx_size_map, "transformSize", offsetof(insp_mi_data, tx_size), 0); } if (layers & TRANSFORM_TYPE_LAYER) { buf += put_block_info(buf, tx_type_map, "transformType", offsetof(insp_mi_data, tx_type), 0); } if (layers & DUAL_FILTER_LAYER) { buf += put_block_info(buf, dual_filter_map, "dualFilterType", offsetof(insp_mi_data, dual_filter_type), 0); } if (layers & MODE_LAYER) { buf += put_block_info(buf, prediction_mode_map, "mode", offsetof(insp_mi_data, mode), 0); } if (layers & UV_MODE_LAYER) { buf += put_block_info(buf, uv_prediction_mode_map, "uv_mode", offsetof(insp_mi_data, uv_mode), 0); } if (layers & MOTION_MODE_LAYER) { buf += put_block_info(buf, motion_mode_map, "motion_mode", offsetof(insp_mi_data, motion_mode), 0); } if (layers & COMPOUND_TYPE_LAYER) { buf += put_block_info(buf, compound_type_map, "compound_type", offsetof(insp_mi_data, compound_type), 0); } if (layers & SKIP_LAYER) { buf += put_block_info(buf, skip_map, "skip", offsetof(insp_mi_data, skip), 0); } if (layers & FILTER_LAYER) { buf += put_block_info(buf, NULL, "filter", offsetof(insp_mi_data, filter), 2); } if (layers & CDEF_LAYER) { buf += put_block_info(buf, NULL, "cdef_level", offsetof(insp_mi_data, cdef_level), 0); buf += put_block_info(buf, NULL, "cdef_strength", offsetof(insp_mi_data, cdef_strength), 0); } if (layers & CFL_LAYER) { buf += put_block_info(buf, NULL, "cfl_alpha_idx", offsetof(insp_mi_data, cfl_alpha_idx), 0); buf += put_block_info(buf, NULL, "cfl_alpha_sign", offsetof(insp_mi_data, cfl_alpha_sign), 0); } if (layers & Q_INDEX_LAYER) { buf += put_block_info(buf, NULL, "delta_q", offsetof(insp_mi_data, current_qindex), 0); } if (layers & SEGMENT_ID_LAYER) { buf += put_block_info(buf, NULL, "seg_id", offsetof(insp_mi_data, segment_id), 0); } if (layers & MOTION_VECTORS_LAYER) { buf += put_motion_vectors(buf); } if (layers & INTRABC_LAYER) { buf += put_block_info(buf, intrabc_map, "intrabc", offsetof(insp_mi_data, intrabc), 0); } if (layers & PALETTE_LAYER) { buf += put_block_info(buf, palette_map, "palette", offsetof(insp_mi_data, palette), 0); } if (layers & UV_PALETTE_LAYER) { buf += put_block_info(buf, palette_map, "uv_palette", offsetof(insp_mi_data, uv_palette), 0); } if (combined_parm_count > 0) buf += put_combined(buf); if (layers & REFERENCE_FRAME_LAYER) { buf += put_block_info(buf, refs_map, "referenceFrame", offsetof(insp_mi_data, ref_frame), 2); } #if CONFIG_ACCOUNTING if (layers & ACCOUNTING_LAYER) { buf += put_accounting(buf); } #endif buf += snprintf(buf, MAX_BUFFER, " \"frame\": %d,\n", frame_data.frame_number); buf += snprintf(buf, MAX_BUFFER, " \"showFrame\": %d,\n", frame_data.show_frame); buf += snprintf(buf, MAX_BUFFER, " \"frameType\": %d,\n", frame_data.frame_type); buf += snprintf(buf, MAX_BUFFER, " \"baseQIndex\": %d,\n", frame_data.base_qindex); buf += snprintf(buf, MAX_BUFFER, " \"tileCols\": %d,\n", frame_data.tile_mi_cols); buf += snprintf(buf, MAX_BUFFER, " \"tileRows\": %d,\n", frame_data.tile_mi_rows); buf += snprintf(buf, MAX_BUFFER, " \"deltaQPresentFlag\": %d,\n", frame_data.delta_q_present_flag); buf += snprintf(buf, MAX_BUFFER, " \"deltaQRes\": %d,\n", frame_data.delta_q_res); buf += put_str(buf, " \"config\": {"); buf += put_map(buf, config_map); buf += put_str(buf, "},\n"); buf += put_str(buf, " \"configString\": \""); buf += put_str_with_escape(buf, aom_codec_build_config()); buf += put_str(buf, "\"\n"); decoded_frame_count++; buf += put_str(buf, "},\n"); *(buf++) = 0; on_frame_decoded_dump(buffer); aom_free(buffer); } void ifd_init_cb(void) { aom_inspect_init ii; ii.inspect_cb = inspect; ii.inspect_ctx = NULL; aom_codec_control(&codec, AV1_SET_INSPECTION_CALLBACK, &ii); } EMSCRIPTEN_KEEPALIVE int open_file(char *file) { if (file == NULL) { // The JS analyzer puts the .ivf file at this location. file = "/tmp/input.ivf"; } reader = aom_video_reader_open(file); if (!reader) die("Failed to open %s for reading.", file); info = aom_video_reader_get_info(reader); aom_codec_iface_t *decoder = get_aom_decoder_by_fourcc(info->codec_fourcc); if (!decoder) die("Unknown input codec."); fprintf(stderr, "Using %s\n", aom_codec_iface_name(decoder)); if (aom_codec_dec_init(&codec, decoder, NULL, 0)) die("Failed to initialize decoder."); ifd_init(&frame_data, info->frame_width, info->frame_height); ifd_init_cb(); return EXIT_SUCCESS; } Av1DecodeReturn adr; int have_frame = 0; const unsigned char *frame; const unsigned char *end_frame; size_t frame_size = 0; EMSCRIPTEN_KEEPALIVE int read_frame(void) { img = NULL; // This loop skips over any frames that are show_existing_frames, as // there is nothing to analyze. do { if (!have_frame) { if (!aom_video_reader_read_frame(reader)) return EXIT_FAILURE; frame = aom_video_reader_get_frame(reader, &frame_size); have_frame = 1; end_frame = frame + frame_size; } if (aom_codec_decode(&codec, frame, (unsigned int)frame_size, &adr) != AOM_CODEC_OK) { die_codec(&codec, "Failed to decode frame."); } frame = adr.buf; frame_size = end_frame - frame; if (frame == end_frame) have_frame = 0; } while (adr.show_existing); int got_any_frames = 0; aom_image_t *frame_img; struct av1_ref_frame ref_dec; ref_dec.idx = adr.idx; // ref_dec.idx is the index to the reference buffer idx to AV1_GET_REFERENCE // if its -1 the decoder didn't update any reference buffer and the only // way to see the frame is aom_codec_get_frame. if (ref_dec.idx == -1) { aom_codec_iter_t iter = NULL; img = frame_img = aom_codec_get_frame(&codec, &iter); ++frame_count; got_any_frames = 1; } else if (!aom_codec_control(&codec, AV1_GET_REFERENCE, &ref_dec)) { img = frame_img = &ref_dec.img; ++frame_count; got_any_frames = 1; } if (!got_any_frames) { return EXIT_FAILURE; } return EXIT_SUCCESS; } EMSCRIPTEN_KEEPALIVE const char *get_aom_codec_build_config(void) { return aom_codec_build_config(); } EMSCRIPTEN_KEEPALIVE int get_bit_depth(void) { return img->bit_depth; } EMSCRIPTEN_KEEPALIVE int get_bits_per_sample(void) { return img->bps; } EMSCRIPTEN_KEEPALIVE int get_image_format(void) { return img->fmt; } EMSCRIPTEN_KEEPALIVE unsigned char *get_plane(int plane) { return img->planes[plane]; } EMSCRIPTEN_KEEPALIVE int get_plane_stride(int plane) { return img->stride[plane]; } EMSCRIPTEN_KEEPALIVE int get_plane_width(int plane) { return aom_img_plane_width(img, plane); } EMSCRIPTEN_KEEPALIVE int get_plane_height(int plane) { return aom_img_plane_height(img, plane); } EMSCRIPTEN_KEEPALIVE int get_frame_width(void) { return info->frame_width; } EMSCRIPTEN_KEEPALIVE int get_frame_height(void) { return info->frame_height; } static void parse_args(char **argv) { char **argi, **argj; struct arg arg; (void)dump_accounting_arg; (void)dump_cdef_arg; for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &dump_block_size_arg, argi)) layers |= BLOCK_SIZE_LAYER; #if CONFIG_ACCOUNTING else if (arg_match(&arg, &dump_accounting_arg, argi)) layers |= ACCOUNTING_LAYER; #endif else if (arg_match(&arg, &dump_transform_size_arg, argi)) layers |= TRANSFORM_SIZE_LAYER; else if (arg_match(&arg, &dump_transform_type_arg, argi)) layers |= TRANSFORM_TYPE_LAYER; else if (arg_match(&arg, &dump_mode_arg, argi)) layers |= MODE_LAYER; else if (arg_match(&arg, &dump_uv_mode_arg, argi)) layers |= UV_MODE_LAYER; else if (arg_match(&arg, &dump_motion_mode_arg, argi)) layers |= MOTION_MODE_LAYER; else if (arg_match(&arg, &dump_compound_type_arg, argi)) layers |= COMPOUND_TYPE_LAYER; else if (arg_match(&arg, &dump_skip_arg, argi)) layers |= SKIP_LAYER; else if (arg_match(&arg, &dump_filter_arg, argi)) layers |= FILTER_LAYER; else if (arg_match(&arg, &dump_cdef_arg, argi)) layers |= CDEF_LAYER; else if (arg_match(&arg, &dump_cfl_arg, argi)) layers |= CFL_LAYER; else if (arg_match(&arg, &dump_reference_frame_arg, argi)) layers |= REFERENCE_FRAME_LAYER; else if (arg_match(&arg, &dump_motion_vectors_arg, argi)) layers |= MOTION_VECTORS_LAYER; else if (arg_match(&arg, &dump_dual_filter_type_arg, argi)) layers |= DUAL_FILTER_LAYER; else if (arg_match(&arg, &dump_delta_q_arg, argi)) layers |= Q_INDEX_LAYER; else if (arg_match(&arg, &dump_seg_id_arg, argi)) layers |= SEGMENT_ID_LAYER; else if (arg_match(&arg, &dump_intrabc_arg, argi)) layers |= INTRABC_LAYER; else if (arg_match(&arg, &dump_palette_arg, argi)) layers |= PALETTE_LAYER; else if (arg_match(&arg, &dump_uv_palette_arg, argi)) layers |= UV_PALETTE_LAYER; else if (arg_match(&arg, &dump_all_arg, argi)) layers |= ALL_LAYERS; else if (arg_match(&arg, &compress_arg, argi)) compress = 1; else if (arg_match(&arg, &usage_arg, argi)) usage_exit(); else if (arg_match(&arg, &limit_arg, argi)) stop_after = arg_parse_uint(&arg); else if (arg_match(&arg, &skip_non_transform_arg, argi)) skip_non_transform = arg_parse_uint(&arg); else if (arg_match(&arg, &combined_arg, argi)) convert_to_indices( (char *)arg.val, combined_parm_list, sizeof(combined_parm_list) / sizeof(combined_parm_list[0]), &combined_parm_count); else argj++; } } static const char *exec_name; void usage_exit(void) { fprintf(stderr, "Usage: %s src_filename \n", exec_name); fprintf(stderr, "\nOptions:\n"); arg_show_usage(stderr, main_args); exit(EXIT_FAILURE); } EMSCRIPTEN_KEEPALIVE int main(int argc, char **argv) { exec_name = argv[0]; parse_args(argv); if (argc >= 2) { open_file(argv[1]); printf("[\n"); while (1) { if (stop_after && (decoded_frame_count >= stop_after)) break; if (read_frame()) break; } printf("null\n"); printf("]"); } else { usage_exit(); } } EMSCRIPTEN_KEEPALIVE void quit(void) { if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy codec"); aom_video_reader_close(reader); } EMSCRIPTEN_KEEPALIVE void set_layers(LayerType v) { layers = v; } EMSCRIPTEN_KEEPALIVE void set_compress(int v) { compress = v; }