/* * Copyright (c) 2019, Alliance for Open Media. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ // This is an example demonstrating how to implement a multi-layer AOM // encoding scheme for RTC video applications. #include #include #include #include #include #include #include #include "config/aom_config.h" #if CONFIG_AV1_DECODER #include "aom/aom_decoder.h" #endif #include "aom/aom_encoder.h" #include "aom/aomcx.h" #include "common/args.h" #include "common/tools_common.h" #include "common/video_writer.h" #include "examples/encoder_util.h" #include "aom_ports/aom_timer.h" #include "av1/ratectrl_rtc.h" #define OPTION_BUFFER_SIZE 1024 typedef struct { const char *output_filename; char options[OPTION_BUFFER_SIZE]; struct AvxInputContext input_ctx; int speed; int aq_mode; int layering_mode; int output_obu; int decode; int tune_content; int show_psnr; bool use_external_rc; } AppInput; typedef enum { QUANTIZER = 0, BITRATE, SCALE_FACTOR, AUTO_ALT_REF, ALL_OPTION_TYPES } LAYER_OPTION_TYPE; static const arg_def_t outputfile = ARG_DEF("o", "output", 1, "Output filename"); static const arg_def_t frames_arg = ARG_DEF("f", "frames", 1, "Number of frames to encode"); static const arg_def_t threads_arg = ARG_DEF("th", "threads", 1, "Number of threads to use"); static const arg_def_t width_arg = ARG_DEF("w", "width", 1, "Source width"); static const arg_def_t height_arg = ARG_DEF("h", "height", 1, "Source height"); static const arg_def_t timebase_arg = ARG_DEF("t", "timebase", 1, "Timebase (num/den)"); static const arg_def_t bitrate_arg = ARG_DEF( "b", "target-bitrate", 1, "Encoding bitrate, in kilobits per second"); static const arg_def_t spatial_layers_arg = ARG_DEF("sl", "spatial-layers", 1, "Number of spatial SVC layers"); static const arg_def_t temporal_layers_arg = ARG_DEF("tl", "temporal-layers", 1, "Number of temporal SVC layers"); static const arg_def_t layering_mode_arg = ARG_DEF("lm", "layering-mode", 1, "Temporal layering scheme."); static const arg_def_t kf_dist_arg = ARG_DEF("k", "kf-dist", 1, "Number of frames between keyframes"); static const arg_def_t scale_factors_arg = ARG_DEF("r", "scale-factors", 1, "Scale factors (lowest to highest layer)"); static const arg_def_t min_q_arg = ARG_DEF(NULL, "min-q", 1, "Minimum quantizer"); static const arg_def_t max_q_arg = ARG_DEF(NULL, "max-q", 1, "Maximum quantizer"); static const arg_def_t speed_arg = ARG_DEF("sp", "speed", 1, "Speed configuration"); static const arg_def_t aqmode_arg = ARG_DEF("aq", "aqmode", 1, "AQ mode off/on"); static const arg_def_t bitrates_arg = ARG_DEF("bl", "bitrates", 1, "Bitrates[spatial_layer * num_temporal_layer + temporal_layer]"); static const arg_def_t dropframe_thresh_arg = ARG_DEF(NULL, "drop-frame", 1, "Temporal resampling threshold (buf %)"); static const arg_def_t error_resilient_arg = ARG_DEF(NULL, "error-resilient", 1, "Error resilient flag"); static const arg_def_t output_obu_arg = ARG_DEF(NULL, "output-obu", 1, "Write OBUs when set to 1. Otherwise write IVF files."); static const arg_def_t test_decode_arg = ARG_DEF(NULL, "test-decode", 1, "Attempt to test decoding the output when set to 1. Default is 1."); static const arg_def_t psnr_arg = ARG_DEF(NULL, "psnr", -1, "Show PSNR in status line."); static const arg_def_t ext_rc_arg = ARG_DEF(NULL, "use-ext-rc", 0, "Use external rate control."); static const struct arg_enum_list tune_content_enum[] = { { "default", AOM_CONTENT_DEFAULT }, { "screen", AOM_CONTENT_SCREEN }, { "film", AOM_CONTENT_FILM }, { NULL, 0 } }; static const arg_def_t tune_content_arg = ARG_DEF_ENUM( NULL, "tune-content", 1, "Tune content type", tune_content_enum); #if CONFIG_AV1_HIGHBITDEPTH static const struct arg_enum_list bitdepth_enum[] = { { "8", AOM_BITS_8 }, { "10", AOM_BITS_10 }, { NULL, 0 } }; static const arg_def_t bitdepth_arg = ARG_DEF_ENUM( "d", "bit-depth", 1, "Bit depth for codec 8 or 10. ", bitdepth_enum); #endif // CONFIG_AV1_HIGHBITDEPTH static const arg_def_t *svc_args[] = { &frames_arg, &outputfile, &width_arg, &height_arg, &timebase_arg, &bitrate_arg, &spatial_layers_arg, &kf_dist_arg, &scale_factors_arg, &min_q_arg, &max_q_arg, &temporal_layers_arg, &layering_mode_arg, &threads_arg, &aqmode_arg, #if CONFIG_AV1_HIGHBITDEPTH &bitdepth_arg, #endif &speed_arg, &bitrates_arg, &dropframe_thresh_arg, &error_resilient_arg, &output_obu_arg, &test_decode_arg, &tune_content_arg, &psnr_arg, NULL, }; #define zero(Dest) memset(&(Dest), 0, sizeof(Dest)) static const char *exec_name; void usage_exit(void) { fprintf(stderr, "Usage: %s input_filename -o output_filename\n", exec_name); fprintf(stderr, "Options:\n"); arg_show_usage(stderr, svc_args); exit(EXIT_FAILURE); } static int file_is_y4m(const char detect[4]) { return memcmp(detect, "YUV4", 4) == 0; } static int fourcc_is_ivf(const char detect[4]) { if (memcmp(detect, "DKIF", 4) == 0) { return 1; } return 0; } static const int option_max_values[ALL_OPTION_TYPES] = { 63, INT_MAX, INT_MAX, 1 }; static const int option_min_values[ALL_OPTION_TYPES] = { 0, 0, 1, 0 }; static void open_input_file(struct AvxInputContext *input, aom_chroma_sample_position_t csp) { /* Parse certain options from the input file, if possible */ input->file = strcmp(input->filename, "-") ? fopen(input->filename, "rb") : set_binary_mode(stdin); if (!input->file) fatal("Failed to open input file"); if (!fseeko(input->file, 0, SEEK_END)) { /* Input file is seekable. Figure out how long it is, so we can get * progress info. */ input->length = ftello(input->file); rewind(input->file); } /* Default to 1:1 pixel aspect ratio. */ input->pixel_aspect_ratio.numerator = 1; input->pixel_aspect_ratio.denominator = 1; /* For RAW input sources, these bytes will applied on the first frame * in read_frame(). */ input->detect.buf_read = fread(input->detect.buf, 1, 4, input->file); input->detect.position = 0; if (input->detect.buf_read == 4 && file_is_y4m(input->detect.buf)) { if (y4m_input_open(&input->y4m, input->file, input->detect.buf, 4, csp, input->only_i420) >= 0) { input->file_type = FILE_TYPE_Y4M; input->width = input->y4m.pic_w; input->height = input->y4m.pic_h; input->pixel_aspect_ratio.numerator = input->y4m.par_n; input->pixel_aspect_ratio.denominator = input->y4m.par_d; input->framerate.numerator = input->y4m.fps_n; input->framerate.denominator = input->y4m.fps_d; input->fmt = input->y4m.aom_fmt; input->bit_depth = static_cast(input->y4m.bit_depth); } else { fatal("Unsupported Y4M stream."); } } else if (input->detect.buf_read == 4 && fourcc_is_ivf(input->detect.buf)) { fatal("IVF is not supported as input."); } else { input->file_type = FILE_TYPE_RAW; } } static aom_codec_err_t extract_option(LAYER_OPTION_TYPE type, char *input, int *value0, int *value1) { if (type == SCALE_FACTOR) { *value0 = (int)strtol(input, &input, 10); if (*input++ != '/') return AOM_CODEC_INVALID_PARAM; *value1 = (int)strtol(input, &input, 10); if (*value0 < option_min_values[SCALE_FACTOR] || *value1 < option_min_values[SCALE_FACTOR] || *value0 > option_max_values[SCALE_FACTOR] || *value1 > option_max_values[SCALE_FACTOR] || *value0 > *value1) // num shouldn't be greater than den return AOM_CODEC_INVALID_PARAM; } else { *value0 = atoi(input); if (*value0 < option_min_values[type] || *value0 > option_max_values[type]) return AOM_CODEC_INVALID_PARAM; } return AOM_CODEC_OK; } static aom_codec_err_t parse_layer_options_from_string( aom_svc_params_t *svc_params, LAYER_OPTION_TYPE type, const char *input, int *option0, int *option1) { aom_codec_err_t res = AOM_CODEC_OK; char *input_string; char *token; const char *delim = ","; int num_layers = svc_params->number_spatial_layers; int i = 0; if (type == BITRATE) num_layers = svc_params->number_spatial_layers * svc_params->number_temporal_layers; if (input == NULL || option0 == NULL || (option1 == NULL && type == SCALE_FACTOR)) return AOM_CODEC_INVALID_PARAM; const size_t input_length = strlen(input); input_string = reinterpret_cast(malloc(input_length + 1)); if (input_string == NULL) return AOM_CODEC_MEM_ERROR; memcpy(input_string, input, input_length + 1); token = strtok(input_string, delim); // NOLINT for (i = 0; i < num_layers; ++i) { if (token != NULL) { res = extract_option(type, token, option0 + i, option1 + i); if (res != AOM_CODEC_OK) break; token = strtok(NULL, delim); // NOLINT } else { res = AOM_CODEC_INVALID_PARAM; break; } } free(input_string); return res; } static void parse_command_line(int argc, const char **argv_, AppInput *app_input, aom_svc_params_t *svc_params, aom_codec_enc_cfg_t *enc_cfg) { struct arg arg; char **argv = NULL; char **argi = NULL; char **argj = NULL; char string_options[1024] = { 0 }; // Default settings svc_params->number_spatial_layers = 1; svc_params->number_temporal_layers = 1; app_input->layering_mode = 0; app_input->output_obu = 0; app_input->decode = 1; enc_cfg->g_threads = 1; enc_cfg->rc_end_usage = AOM_CBR; // process command line options argv = argv_dup(argc - 1, argv_ + 1); if (!argv) { fprintf(stderr, "Error allocating argument list\n"); exit(EXIT_FAILURE); } for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &outputfile, argi)) { app_input->output_filename = arg.val; } else if (arg_match(&arg, &width_arg, argi)) { enc_cfg->g_w = arg_parse_uint(&arg); } else if (arg_match(&arg, &height_arg, argi)) { enc_cfg->g_h = arg_parse_uint(&arg); } else if (arg_match(&arg, &timebase_arg, argi)) { enc_cfg->g_timebase = arg_parse_rational(&arg); } else if (arg_match(&arg, &bitrate_arg, argi)) { enc_cfg->rc_target_bitrate = arg_parse_uint(&arg); } else if (arg_match(&arg, &spatial_layers_arg, argi)) { svc_params->number_spatial_layers = arg_parse_uint(&arg); } else if (arg_match(&arg, &temporal_layers_arg, argi)) { svc_params->number_temporal_layers = arg_parse_uint(&arg); } else if (arg_match(&arg, &speed_arg, argi)) { app_input->speed = arg_parse_uint(&arg); if (app_input->speed > 11) { aom_tools_warn("Mapping speed %d to speed 11.\n", app_input->speed); } } else if (arg_match(&arg, &aqmode_arg, argi)) { app_input->aq_mode = arg_parse_uint(&arg); } else if (arg_match(&arg, &threads_arg, argi)) { enc_cfg->g_threads = arg_parse_uint(&arg); } else if (arg_match(&arg, &layering_mode_arg, argi)) { app_input->layering_mode = arg_parse_int(&arg); } else if (arg_match(&arg, &kf_dist_arg, argi)) { enc_cfg->kf_min_dist = arg_parse_uint(&arg); enc_cfg->kf_max_dist = enc_cfg->kf_min_dist; } else if (arg_match(&arg, &scale_factors_arg, argi)) { aom_codec_err_t res = parse_layer_options_from_string( svc_params, SCALE_FACTOR, arg.val, svc_params->scaling_factor_num, svc_params->scaling_factor_den); if (res != AOM_CODEC_OK) { die("Failed to parse scale factors: %s\n", aom_codec_err_to_string(res)); } } else if (arg_match(&arg, &min_q_arg, argi)) { enc_cfg->rc_min_quantizer = arg_parse_uint(&arg); } else if (arg_match(&arg, &max_q_arg, argi)) { enc_cfg->rc_max_quantizer = arg_parse_uint(&arg); #if CONFIG_AV1_HIGHBITDEPTH } else if (arg_match(&arg, &bitdepth_arg, argi)) { enc_cfg->g_bit_depth = static_cast(arg_parse_enum_or_int(&arg)); switch (enc_cfg->g_bit_depth) { case AOM_BITS_8: enc_cfg->g_input_bit_depth = 8; enc_cfg->g_profile = 0; break; case AOM_BITS_10: enc_cfg->g_input_bit_depth = 10; enc_cfg->g_profile = 0; break; default: die("Error: Invalid bit depth selected (%d)\n", enc_cfg->g_bit_depth); } #endif // CONFIG_VP9_HIGHBITDEPTH } else if (arg_match(&arg, &dropframe_thresh_arg, argi)) { enc_cfg->rc_dropframe_thresh = arg_parse_uint(&arg); } else if (arg_match(&arg, &error_resilient_arg, argi)) { enc_cfg->g_error_resilient = arg_parse_uint(&arg); if (enc_cfg->g_error_resilient != 0 && enc_cfg->g_error_resilient != 1) die("Invalid value for error resilient (0, 1): %d.", enc_cfg->g_error_resilient); } else if (arg_match(&arg, &output_obu_arg, argi)) { app_input->output_obu = arg_parse_uint(&arg); if (app_input->output_obu != 0 && app_input->output_obu != 1) die("Invalid value for obu output flag (0, 1): %d.", app_input->output_obu); } else if (arg_match(&arg, &test_decode_arg, argi)) { app_input->decode = arg_parse_uint(&arg); if (app_input->decode != 0 && app_input->decode != 1) die("Invalid value for test decode flag (0, 1): %d.", app_input->decode); } else if (arg_match(&arg, &tune_content_arg, argi)) { app_input->tune_content = arg_parse_enum_or_int(&arg); printf("tune content %d\n", app_input->tune_content); } else if (arg_match(&arg, &psnr_arg, argi)) { app_input->show_psnr = 1; } else if (arg_match(&arg, &ext_rc_arg, argi)) { app_input->use_external_rc = true; } else { ++argj; } } // Total bitrate needs to be parsed after the number of layers. for (argi = argj = argv; (*argj = *argi); argi += arg.argv_step) { arg.argv_step = 1; if (arg_match(&arg, &bitrates_arg, argi)) { aom_codec_err_t res = parse_layer_options_from_string( svc_params, BITRATE, arg.val, svc_params->layer_target_bitrate, NULL); if (res != AOM_CODEC_OK) { die("Failed to parse bitrates: %s\n", aom_codec_err_to_string(res)); } } else { ++argj; } } // There will be a space in front of the string options if (strlen(string_options) > 0) strncpy(app_input->options, string_options, OPTION_BUFFER_SIZE); // Check for unrecognized options for (argi = argv; *argi; ++argi) if (argi[0][0] == '-' && strlen(argi[0]) > 1) die("Error: Unrecognized option %s\n", *argi); if (argv[0] == NULL) { usage_exit(); } app_input->input_ctx.filename = argv[0]; free(argv); open_input_file(&app_input->input_ctx, AOM_CSP_UNKNOWN); if (app_input->input_ctx.file_type == FILE_TYPE_Y4M) { enc_cfg->g_w = app_input->input_ctx.width; enc_cfg->g_h = app_input->input_ctx.height; } if (enc_cfg->g_w < 16 || enc_cfg->g_w % 2 || enc_cfg->g_h < 16 || enc_cfg->g_h % 2) die("Invalid resolution: %d x %d\n", enc_cfg->g_w, enc_cfg->g_h); printf( "Codec %s\n" "layers: %d\n" "width %u, height: %u\n" "num: %d, den: %d, bitrate: %u\n" "gop size: %u\n", aom_codec_iface_name(aom_codec_av1_cx()), svc_params->number_spatial_layers, enc_cfg->g_w, enc_cfg->g_h, enc_cfg->g_timebase.num, enc_cfg->g_timebase.den, enc_cfg->rc_target_bitrate, enc_cfg->kf_max_dist); } static int mode_to_num_temporal_layers[12] = { 1, 2, 3, 3, 2, 1, 1, 3, 3, 3, 3, 3, }; static int mode_to_num_spatial_layers[12] = { 1, 1, 1, 1, 1, 2, 3, 2, 3, 3, 3, 3, }; // For rate control encoding stats. struct RateControlMetrics { // Number of input frames per layer. int layer_input_frames[AOM_MAX_TS_LAYERS]; // Number of encoded non-key frames per layer. int layer_enc_frames[AOM_MAX_TS_LAYERS]; // Framerate per layer layer (cumulative). double layer_framerate[AOM_MAX_TS_LAYERS]; // Target average frame size per layer (per-frame-bandwidth per layer). double layer_pfb[AOM_MAX_LAYERS]; // Actual average frame size per layer. double layer_avg_frame_size[AOM_MAX_LAYERS]; // Average rate mismatch per layer (|target - actual| / target). double layer_avg_rate_mismatch[AOM_MAX_LAYERS]; // Actual encoding bitrate per layer (cumulative across temporal layers). double layer_encoding_bitrate[AOM_MAX_LAYERS]; // Average of the short-time encoder actual bitrate. // TODO(marpan): Should we add these short-time stats for each layer? double avg_st_encoding_bitrate; // Variance of the short-time encoder actual bitrate. double variance_st_encoding_bitrate; // Window (number of frames) for computing short-timee encoding bitrate. int window_size; // Number of window measurements. int window_count; int layer_target_bitrate[AOM_MAX_LAYERS]; }; static const int REF_FRAMES = 8; static const int INTER_REFS_PER_FRAME = 7; // Reference frames used in this example encoder. enum { SVC_LAST_FRAME = 0, SVC_LAST2_FRAME, SVC_LAST3_FRAME, SVC_GOLDEN_FRAME, SVC_BWDREF_FRAME, SVC_ALTREF2_FRAME, SVC_ALTREF_FRAME }; static int read_frame(struct AvxInputContext *input_ctx, aom_image_t *img) { FILE *f = input_ctx->file; y4m_input *y4m = &input_ctx->y4m; int shortread = 0; if (input_ctx->file_type == FILE_TYPE_Y4M) { if (y4m_input_fetch_frame(y4m, f, img) < 1) return 0; } else { shortread = read_yuv_frame(input_ctx, img); } return !shortread; } static void close_input_file(struct AvxInputContext *input) { fclose(input->file); if (input->file_type == FILE_TYPE_Y4M) y4m_input_close(&input->y4m); } // Note: these rate control metrics assume only 1 key frame in the // sequence (i.e., first frame only). So for temporal pattern# 7 // (which has key frame for every frame on base layer), the metrics // computation will be off/wrong. // TODO(marpan): Update these metrics to account for multiple key frames // in the stream. static void set_rate_control_metrics(struct RateControlMetrics *rc, double framerate, int ss_number_layers, int ts_number_layers) { int ts_rate_decimator[AOM_MAX_TS_LAYERS] = { 1 }; ts_rate_decimator[0] = 1; if (ts_number_layers == 2) { ts_rate_decimator[0] = 2; ts_rate_decimator[1] = 1; } if (ts_number_layers == 3) { ts_rate_decimator[0] = 4; ts_rate_decimator[1] = 2; ts_rate_decimator[2] = 1; } // Set the layer (cumulative) framerate and the target layer (non-cumulative) // per-frame-bandwidth, for the rate control encoding stats below. for (int sl = 0; sl < ss_number_layers; ++sl) { int i = sl * ts_number_layers; rc->layer_framerate[0] = framerate / ts_rate_decimator[0]; rc->layer_pfb[i] = 1000.0 * rc->layer_target_bitrate[i] / rc->layer_framerate[0]; for (int tl = 0; tl < ts_number_layers; ++tl) { i = sl * ts_number_layers + tl; if (tl > 0) { rc->layer_framerate[tl] = framerate / ts_rate_decimator[tl]; rc->layer_pfb[i] = 1000.0 * (rc->layer_target_bitrate[i] - rc->layer_target_bitrate[i - 1]) / (rc->layer_framerate[tl] - rc->layer_framerate[tl - 1]); } rc->layer_input_frames[tl] = 0; rc->layer_enc_frames[tl] = 0; rc->layer_encoding_bitrate[i] = 0.0; rc->layer_avg_frame_size[i] = 0.0; rc->layer_avg_rate_mismatch[i] = 0.0; } } rc->window_count = 0; rc->window_size = 15; rc->avg_st_encoding_bitrate = 0.0; rc->variance_st_encoding_bitrate = 0.0; } static void printout_rate_control_summary(struct RateControlMetrics *rc, int frame_cnt, int ss_number_layers, int ts_number_layers) { int tot_num_frames = 0; double perc_fluctuation = 0.0; printf("Total number of processed frames: %d\n\n", frame_cnt - 1); printf("Rate control layer stats for %d layer(s):\n\n", ts_number_layers); for (int sl = 0; sl < ss_number_layers; ++sl) { tot_num_frames = 0; for (int tl = 0; tl < ts_number_layers; ++tl) { int i = sl * ts_number_layers + tl; const int num_dropped = tl > 0 ? rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] : rc->layer_input_frames[tl] - rc->layer_enc_frames[tl] - 1; tot_num_frames += rc->layer_input_frames[tl]; rc->layer_encoding_bitrate[i] = 0.001 * rc->layer_framerate[tl] * rc->layer_encoding_bitrate[i] / tot_num_frames; rc->layer_avg_frame_size[i] = rc->layer_avg_frame_size[i] / rc->layer_enc_frames[tl]; rc->layer_avg_rate_mismatch[i] = 100.0 * rc->layer_avg_rate_mismatch[i] / rc->layer_enc_frames[tl]; printf("For layer#: %d %d \n", sl, tl); printf("Bitrate (target vs actual): %d %f\n", rc->layer_target_bitrate[i], rc->layer_encoding_bitrate[i]); printf("Average frame size (target vs actual): %f %f\n", rc->layer_pfb[i], rc->layer_avg_frame_size[i]); printf("Average rate_mismatch: %f\n", rc->layer_avg_rate_mismatch[i]); printf( "Number of input frames, encoded (non-key) frames, " "and perc dropped frames: %d %d %f\n", rc->layer_input_frames[tl], rc->layer_enc_frames[tl], 100.0 * num_dropped / rc->layer_input_frames[tl]); printf("\n"); } } rc->avg_st_encoding_bitrate = rc->avg_st_encoding_bitrate / rc->window_count; rc->variance_st_encoding_bitrate = rc->variance_st_encoding_bitrate / rc->window_count - (rc->avg_st_encoding_bitrate * rc->avg_st_encoding_bitrate); perc_fluctuation = 100.0 * sqrt(rc->variance_st_encoding_bitrate) / rc->avg_st_encoding_bitrate; printf("Short-time stats, for window of %d frames:\n", rc->window_size); printf("Average, rms-variance, and percent-fluct: %f %f %f\n", rc->avg_st_encoding_bitrate, sqrt(rc->variance_st_encoding_bitrate), perc_fluctuation); if (frame_cnt - 1 != tot_num_frames) die("Error: Number of input frames not equal to output!\n"); } // Layer pattern configuration. static void set_layer_pattern( int layering_mode, int superframe_cnt, aom_svc_layer_id_t *layer_id, aom_svc_ref_frame_config_t *ref_frame_config, aom_svc_ref_frame_comp_pred_t *ref_frame_comp_pred, int *use_svc_control, int spatial_layer_id, int is_key_frame, int ksvc_mode, int speed) { // Setting this flag to 1 enables simplex example of // RPS (Reference Picture Selection) for 1 layer. int use_rps_example = 0; int i; int enable_longterm_temporal_ref = 1; int shift = (layering_mode == 8) ? 2 : 0; int simulcast_mode = (layering_mode == 11); *use_svc_control = 1; layer_id->spatial_layer_id = spatial_layer_id; int lag_index = 0; int base_count = superframe_cnt >> 2; ref_frame_comp_pred->use_comp_pred[0] = 0; // GOLDEN_LAST ref_frame_comp_pred->use_comp_pred[1] = 0; // LAST2_LAST ref_frame_comp_pred->use_comp_pred[2] = 0; // ALTREF_LAST // Set the reference map buffer idx for the 7 references: // LAST_FRAME (0), LAST2_FRAME(1), LAST3_FRAME(2), GOLDEN_FRAME(3), // BWDREF_FRAME(4), ALTREF2_FRAME(5), ALTREF_FRAME(6). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = i; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0; for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0; if (ksvc_mode) { // Same pattern as case 9, but the reference strucutre will be constrained // below. layering_mode = 9; } switch (layering_mode) { case 0: if (use_rps_example == 0) { // 1-layer: update LAST on every frame, reference LAST. layer_id->temporal_layer_id = 0; layer_id->spatial_layer_id = 0; ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else { // Pattern of 2 references (ALTREF and GOLDEN) trailing // LAST by 4 and 8 frames, with some switching logic to // sometimes only predict from the longer-term reference //(golden here). This is simple example to test RPS // (reference picture selection). int last_idx = 0; int last_idx_refresh = 0; int gld_idx = 0; int alt_ref_idx = 0; int lag_alt = 4; int lag_gld = 8; layer_id->temporal_layer_id = 0; layer_id->spatial_layer_id = 0; int sh = 8; // slots 0 - 7. // Moving index slot for last: 0 - (sh - 1) if (superframe_cnt > 1) last_idx = (superframe_cnt - 1) % sh; // Moving index for refresh of last: one ahead for next frame. last_idx_refresh = superframe_cnt % sh; // Moving index for gld_ref, lag behind current by lag_gld if (superframe_cnt > lag_gld) gld_idx = (superframe_cnt - lag_gld) % sh; // Moving index for alt_ref, lag behind LAST by lag_alt frames. if (superframe_cnt > lag_alt) alt_ref_idx = (superframe_cnt - lag_alt) % sh; // Set the ref_idx. // Default all references to slot for last. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = last_idx; // Set the ref_idx for the relevant references. ref_frame_config->ref_idx[SVC_LAST_FRAME] = last_idx; ref_frame_config->ref_idx[SVC_LAST2_FRAME] = last_idx_refresh; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = gld_idx; ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = alt_ref_idx; // Refresh this slot, which will become LAST on next frame. ref_frame_config->refresh[last_idx_refresh] = 1; // Reference LAST, ALTREF, and GOLDEN ref_frame_config->reference[SVC_LAST_FRAME] = 1; ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; // Switch to only GOLDEN every 300 frames. if (superframe_cnt % 200 == 0 && superframe_cnt > 0) { ref_frame_config->reference[SVC_LAST_FRAME] = 0; ref_frame_config->reference[SVC_ALTREF_FRAME] = 0; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; // Test if the long-term is LAST instead, this is just a renaming // but its tests if encoder behaves the same, whether its // LAST or GOLDEN. if (superframe_cnt % 400 == 0 && superframe_cnt > 0) { ref_frame_config->ref_idx[SVC_LAST_FRAME] = gld_idx; ref_frame_config->reference[SVC_LAST_FRAME] = 1; ref_frame_config->reference[SVC_ALTREF_FRAME] = 0; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0; } } } break; case 1: // 2-temporal layer. // 1 3 5 // 0 2 4 // Keep golden fixed at slot 3. base_count = superframe_cnt >> 1; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; // Cyclically refresh slots 5, 6, 7, for lag alt ref. lag_index = 5; if (base_count > 0) { lag_index = 5 + (base_count % 3); if (superframe_cnt % 2 != 0) lag_index = 5 + ((base_count + 1) % 3); } // Set the altref slot to lag_index. ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index; if (superframe_cnt % 2 == 0) { layer_id->temporal_layer_id = 0; // Update LAST on layer 0, reference LAST. ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; // Refresh lag_index slot, needed for lagging golen. ref_frame_config->refresh[lag_index] = 1; // Refresh GOLDEN every x base layer frames. if (base_count % 32 == 0) ref_frame_config->refresh[3] = 1; } else { layer_id->temporal_layer_id = 1; // No updates on layer 1, reference LAST (TL0). ref_frame_config->reference[SVC_LAST_FRAME] = 1; } // Always reference golden and altref on TL0. if (layer_id->temporal_layer_id == 0) { ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; } break; case 2: // 3-temporal layer: // 1 3 5 7 // 2 6 // 0 4 8 if (superframe_cnt % 4 == 0) { // Base layer. layer_id->temporal_layer_id = 0; // Update LAST on layer 0, reference LAST. ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 1) % 4 == 0) { layer_id->temporal_layer_id = 2; // First top layer: no updates, only reference LAST (TL0). ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 2) % 4 == 0) { layer_id->temporal_layer_id = 1; // Middle layer (TL1): update LAST2, only reference LAST (TL0). ref_frame_config->refresh[1] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 3) % 4 == 0) { layer_id->temporal_layer_id = 2; // Second top layer: no updates, only reference LAST. // Set buffer idx for LAST to slot 1, since that was the slot // updated in previous frame. So LAST is TL1 frame. ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } break; case 3: // 3 TL, same as above, except allow for predicting // off 2 more references (GOLDEN and ALTREF), with // GOLDEN updated periodically, and ALTREF lagging from // LAST from ~4 frames. Both GOLDEN and ALTREF // can only be updated on base temporal layer. // Keep golden fixed at slot 3. ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; // Cyclically refresh slots 5, 6, 7, for lag altref. lag_index = 5; if (base_count > 0) { lag_index = 5 + (base_count % 3); if (superframe_cnt % 4 != 0) lag_index = 5 + ((base_count + 1) % 3); } // Set the altref slot to lag_index. ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = lag_index; if (superframe_cnt % 4 == 0) { // Base layer. layer_id->temporal_layer_id = 0; // Update LAST on layer 0, reference LAST. ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; // Refresh GOLDEN every x ~10 base layer frames. if (base_count % 10 == 0) ref_frame_config->refresh[3] = 1; // Refresh lag_index slot, needed for lagging altref. ref_frame_config->refresh[lag_index] = 1; } else if ((superframe_cnt - 1) % 4 == 0) { layer_id->temporal_layer_id = 2; // First top layer: no updates, only reference LAST (TL0). ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 2) % 4 == 0) { layer_id->temporal_layer_id = 1; // Middle layer (TL1): update LAST2, only reference LAST (TL0). ref_frame_config->refresh[1] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 3) % 4 == 0) { layer_id->temporal_layer_id = 2; // Second top layer: no updates, only reference LAST. // Set buffer idx for LAST to slot 1, since that was the slot // updated in previous frame. So LAST is TL1 frame. ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 0; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } // Every frame can reference GOLDEN AND ALTREF. ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; // Allow for compound prediction for LAST-ALTREF and LAST-GOLDEN. if (speed >= 7) { ref_frame_comp_pred->use_comp_pred[2] = 1; ref_frame_comp_pred->use_comp_pred[0] = 1; } break; case 4: // 3-temporal layer: but middle layer updates GF, so 2nd TL2 will // only reference GF (not LAST). Other frames only reference LAST. // 1 3 5 7 // 2 6 // 0 4 8 if (superframe_cnt % 4 == 0) { // Base layer. layer_id->temporal_layer_id = 0; // Update LAST on layer 0, only reference LAST. ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 1) % 4 == 0) { layer_id->temporal_layer_id = 2; // First top layer: no updates, only reference LAST (TL0). ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 2) % 4 == 0) { layer_id->temporal_layer_id = 1; // Middle layer (TL1): update GF, only reference LAST (TL0). ref_frame_config->refresh[3] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if ((superframe_cnt - 3) % 4 == 0) { layer_id->temporal_layer_id = 2; // Second top layer: no updates, only reference GF. ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; } break; case 5: // 2 spatial layers, 1 temporal. layer_id->temporal_layer_id = 0; if (layer_id->spatial_layer_id == 0) { // Reference LAST, update LAST. ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1 // and GOLDEN to slot 0. Update slot 1 (LAST). ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 0; ref_frame_config->refresh[1] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; } break; case 6: // 3 spatial layers, 1 temporal. // Note for this case, we set the buffer idx for all references to be // either LAST or GOLDEN, which are always valid references, since decoder // will check if any of the 7 references is valid scale in // valid_ref_frame_size(). layer_id->temporal_layer_id = 0; if (layer_id->spatial_layer_id == 0) { // Reference LAST, update LAST. Set all buffer_idx to 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->refresh[0] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1 // and GOLDEN (and all other refs) to slot 0. // Update slot 1 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->refresh[1] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; } else if (layer_id->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2 // and GOLDEN (and all other refs) to slot 1. // Update slot 2 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 1; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->refresh[2] = 1; ref_frame_config->reference[SVC_LAST_FRAME] = 1; ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; // For 3 spatial layer case: allow for top spatial layer to use // additional temporal reference. Update every 10 frames. if (enable_longterm_temporal_ref) { ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1; ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; if (base_count % 10 == 0) ref_frame_config->refresh[REF_FRAMES - 1] = 1; } } break; case 7: // 2 spatial and 3 temporal layer. ref_frame_config->reference[SVC_LAST_FRAME] = 1; if (superframe_cnt % 4 == 0) { // Base temporal layer layer_id->temporal_layer_id = 0; if (layer_id->spatial_layer_id == 0) { // Reference LAST, update LAST // Set all buffer_idx to 0 for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->refresh[0] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->refresh[1] = 1; } } else if ((superframe_cnt - 1) % 4 == 0) { // First top temporal enhancement layer. layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 3. // No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 3; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; } } else if ((superframe_cnt - 2) % 4 == 0) { // Middle temporal enhancement layer. layer_id->temporal_layer_id = 1; if (layer_id->spatial_layer_id == 0) { // Reference LAST. // Set all buffer_idx to 0. // Set GOLDEN to slot 5 and update slot 5. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift; ref_frame_config->refresh[5 - shift] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 5. // Set LAST3 to slot 6 and update slot 6. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 5 - shift; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift; ref_frame_config->refresh[6 - shift] = 1; } } else if ((superframe_cnt - 3) % 4 == 0) { // Second top temporal enhancement layer. layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { // Set LAST to slot 5 and reference LAST. // Set GOLDEN to slot 3 and update slot 3. // Set all other buffer_idx to 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6, // GOLDEN to slot 3. No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; } } break; case 8: // 3 spatial and 3 temporal layer. // Same as case 9 but overalap in the buffer slot updates. // (shift = 2). The slots 3 and 4 updated by first TL2 are // reused for update in TL1 superframe. // Note for this case, frame order hint must be disabled for // lower resolutios (operating points > 0) to be decoedable. case 9: // 3 spatial and 3 temporal layer. // No overlap in buffer updates between TL2 and TL1. // TL2 updates slot 3 and 4, TL1 updates 5, 6, 7. // Set the references via the svc_ref_frame_config control. // Always reference LAST. ref_frame_config->reference[SVC_LAST_FRAME] = 1; if (superframe_cnt % 4 == 0) { // Base temporal layer. layer_id->temporal_layer_id = 0; if (layer_id->spatial_layer_id == 0) { // Reference LAST, update LAST. // Set all buffer_idx to 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->refresh[0] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 0. // Update slot 1 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->refresh[1] = 1; } else if (layer_id->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, // GOLDEN (and all other refs) to slot 1. // Update slot 2 (LAST). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 1; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->refresh[2] = 1; } } else if ((superframe_cnt - 1) % 4 == 0) { // First top temporal enhancement layer. layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { // Reference LAST (slot 0). // Set GOLDEN to slot 3 and update slot 3. // Set all other buffer_idx to slot 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 3. // Set LAST2 to slot 4 and Update slot 4. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 3; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4; ref_frame_config->refresh[4] = 1; } else if (layer_id->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, // GOLDEN (and all other refs) to slot 4. // No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 4; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; } } else if ((superframe_cnt - 2) % 4 == 0) { // Middle temporal enhancement layer. layer_id->temporal_layer_id = 1; if (layer_id->spatial_layer_id == 0) { // Reference LAST. // Set all buffer_idx to 0. // Set GOLDEN to slot 5 and update slot 5. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5 - shift; ref_frame_config->refresh[5 - shift] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 1, // GOLDEN (and all other refs) to slot 5. // Set LAST3 to slot 6 and update slot 6. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 5 - shift; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 6 - shift; ref_frame_config->refresh[6 - shift] = 1; } else if (layer_id->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 2, // GOLDEN (and all other refs) to slot 6. // Set LAST3 to slot 7 and update slot 7. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 6 - shift; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->ref_idx[SVC_LAST3_FRAME] = 7 - shift; ref_frame_config->refresh[7 - shift] = 1; } } else if ((superframe_cnt - 3) % 4 == 0) { // Second top temporal enhancement layer. layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { // Set LAST to slot 5 and reference LAST. // Set GOLDEN to slot 3 and update slot 3. // Set all other buffer_idx to 0. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5 - shift; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 1) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 6, // GOLDEN to slot 3. Set LAST2 to slot 4 and update slot 4. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 6 - shift; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->ref_idx[SVC_LAST2_FRAME] = 4; ref_frame_config->refresh[4] = 1; } else if (layer_id->spatial_layer_id == 2) { // Reference LAST and GOLDEN. Set buffer_idx for LAST to slot 7, // GOLDEN to slot 4. No update. for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 7 - shift; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 4; } } break; case 11: // Simulcast mode for 3 spatial and 3 temporal layers. // No inter-layer predicton, only prediction is temporal and single // reference (LAST). // No overlap in buffer slots between spatial layers. So for example, // SL0 only uses slots 0 and 1. // SL1 only uses slots 2 and 3. // SL2 only uses slots 4 and 5. // All 7 references for each inter-frame must only access buffer slots // for that spatial layer. // On key (super)frames: SL1 and SL2 must have no references set // and must refresh all the slots for that layer only (so 2 and 3 // for SL1, 4 and 5 for SL2). The base SL0 will be labelled internally // as a Key frame (refresh all slots). SL1/SL2 will be labelled // internally as Intra-only frames that allow that stream to be decoded. // These conditions will allow for each spatial stream to be // independently decodeable. // Initialize all references to 0 (don't use reference). for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->reference[i] = 0; // Initialize as no refresh/update for all slots. for (i = 0; i < REF_FRAMES; i++) ref_frame_config->refresh[i] = 0; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; if (is_key_frame) { if (layer_id->spatial_layer_id == 0) { // Assign LAST/GOLDEN to slot 0/1. // Refesh slots 0 and 1 for SL0. // SL0: this will get set to KEY frame internally. ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 1; ref_frame_config->refresh[0] = 1; ref_frame_config->refresh[1] = 1; } else if (layer_id->spatial_layer_id == 1) { // Assign LAST/GOLDEN to slot 2/3. // Refesh slots 2 and 3 for SL1. // This will get set to Intra-only frame internally. ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 3; ref_frame_config->refresh[2] = 1; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 2) { // Assign LAST/GOLDEN to slot 4/5. // Refresh slots 4 and 5 for SL2. // This will get set to Intra-only frame internally. ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4; ref_frame_config->ref_idx[SVC_GOLDEN_FRAME] = 5; ref_frame_config->refresh[4] = 1; ref_frame_config->refresh[5] = 1; } } else if (superframe_cnt % 4 == 0) { // Base temporal layer: TL0 layer_id->temporal_layer_id = 0; if (layer_id->spatial_layer_id == 0) { // SL0 // Reference LAST. Assign all references to either slot // 0 or 1. Here we assign LAST to slot 0, all others to 1. // Update slot 0 (LAST). ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 1; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0; ref_frame_config->refresh[0] = 1; } else if (layer_id->spatial_layer_id == 1) { // SL1 // Reference LAST. Assign all references to either slot // 2 or 3. Here we assign LAST to slot 2, all others to 3. // Update slot 2 (LAST). ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 3; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->refresh[2] = 1; } else if (layer_id->spatial_layer_id == 2) { // SL2 // Reference LAST. Assign all references to either slot // 4 or 5. Here we assign LAST to slot 4, all others to 5. // Update slot 4 (LAST). ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 5; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4; ref_frame_config->refresh[4] = 1; } } else if ((superframe_cnt - 1) % 4 == 0) { // First top temporal enhancement layer: TL2 layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { // SL0 // Reference LAST (slot 0). Assign other references to slot 1. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 1; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0; } else if (layer_id->spatial_layer_id == 1) { // SL1 // Reference LAST (slot 2). Assign other references to slot 3. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 3; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; } else if (layer_id->spatial_layer_id == 2) { // SL2 // Reference LAST (slot 4). Assign other references to slot 4. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 5; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4; } } else if ((superframe_cnt - 2) % 4 == 0) { // Middle temporal enhancement layer: TL1 layer_id->temporal_layer_id = 1; if (layer_id->spatial_layer_id == 0) { // SL0 // Reference LAST (slot 0). // Set GOLDEN to slot 1 and update slot 1. // This will be used as reference for next TL2. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 1; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 0; ref_frame_config->refresh[1] = 1; } else if (layer_id->spatial_layer_id == 1) { // SL1 // Reference LAST (slot 2). // Set GOLDEN to slot 3 and update slot 3. // This will be used as reference for next TL2. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 3; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 2; ref_frame_config->refresh[3] = 1; } else if (layer_id->spatial_layer_id == 2) { // SL2 // Reference LAST (slot 4). // Set GOLDEN to slot 5 and update slot 5. // This will be used as reference for next TL2. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 5; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 4; ref_frame_config->refresh[5] = 1; } } else if ((superframe_cnt - 3) % 4 == 0) { // Second top temporal enhancement layer: TL2 layer_id->temporal_layer_id = 2; if (layer_id->spatial_layer_id == 0) { // SL0 // Reference LAST (slot 1). Assign other references to slot 0. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 0; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 1; } else if (layer_id->spatial_layer_id == 1) { // SL1 // Reference LAST (slot 3). Assign other references to slot 2. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 2; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 3; } else if (layer_id->spatial_layer_id == 2) { // SL2 // Reference LAST (slot 5). Assign other references to slot 4. // No update/refresh on any slots. ref_frame_config->reference[SVC_LAST_FRAME] = 1; for (i = 0; i < INTER_REFS_PER_FRAME; i++) ref_frame_config->ref_idx[i] = 4; ref_frame_config->ref_idx[SVC_LAST_FRAME] = 5; } } if (!simulcast_mode && layer_id->spatial_layer_id > 0) { // Always reference GOLDEN (inter-layer prediction). ref_frame_config->reference[SVC_GOLDEN_FRAME] = 1; if (ksvc_mode) { // KSVC: only keep the inter-layer reference (GOLDEN) for // superframes whose base is key. if (!is_key_frame) ref_frame_config->reference[SVC_GOLDEN_FRAME] = 0; } if (is_key_frame && layer_id->spatial_layer_id > 1) { // On superframes whose base is key: remove LAST to avoid prediction // off layer two levels below. ref_frame_config->reference[SVC_LAST_FRAME] = 0; } } // For 3 spatial layer case 8 (where there is free buffer slot): // allow for top spatial layer to use additional temporal reference. // Additional reference is only updated on base temporal layer, every // 10 TL0 frames here. if (!simulcast_mode && enable_longterm_temporal_ref && layer_id->spatial_layer_id == 2 && layering_mode == 8) { ref_frame_config->ref_idx[SVC_ALTREF_FRAME] = REF_FRAMES - 1; if (!is_key_frame) ref_frame_config->reference[SVC_ALTREF_FRAME] = 1; if (base_count % 10 == 0 && layer_id->temporal_layer_id == 0) ref_frame_config->refresh[REF_FRAMES - 1] = 1; } break; default: assert(0); die("Error: Unsupported temporal layering mode!\n"); } } #if CONFIG_AV1_DECODER // Returns whether there is a mismatch between the encoder's new frame and the // decoder's new frame. static int test_decode(aom_codec_ctx_t *encoder, aom_codec_ctx_t *decoder, const int frames_out) { aom_image_t enc_img, dec_img; int mismatch = 0; /* Get the internal new frame */ AOM_CODEC_CONTROL_TYPECHECKED(encoder, AV1_GET_NEW_FRAME_IMAGE, &enc_img); AOM_CODEC_CONTROL_TYPECHECKED(decoder, AV1_GET_NEW_FRAME_IMAGE, &dec_img); #if CONFIG_AV1_HIGHBITDEPTH if ((enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) != (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH)) { if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { aom_image_t enc_hbd_img; aom_img_alloc( &enc_hbd_img, static_cast(enc_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH), enc_img.d_w, enc_img.d_h, 16); aom_img_truncate_16_to_8(&enc_hbd_img, &enc_img); enc_img = enc_hbd_img; } if (dec_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { aom_image_t dec_hbd_img; aom_img_alloc( &dec_hbd_img, static_cast(dec_img.fmt - AOM_IMG_FMT_HIGHBITDEPTH), dec_img.d_w, dec_img.d_h, 16); aom_img_truncate_16_to_8(&dec_hbd_img, &dec_img); dec_img = dec_hbd_img; } } #endif if (!aom_compare_img(&enc_img, &dec_img)) { int y[4], u[4], v[4]; #if CONFIG_AV1_HIGHBITDEPTH if (enc_img.fmt & AOM_IMG_FMT_HIGHBITDEPTH) { aom_find_mismatch_high(&enc_img, &dec_img, y, u, v); } else { aom_find_mismatch(&enc_img, &dec_img, y, u, v); } #else aom_find_mismatch(&enc_img, &dec_img, y, u, v); #endif fprintf(stderr, "Encode/decode mismatch on frame %d at" " Y[%d, %d] {%d/%d}," " U[%d, %d] {%d/%d}," " V[%d, %d] {%d/%d}\n", frames_out, y[0], y[1], y[2], y[3], u[0], u[1], u[2], u[3], v[0], v[1], v[2], v[3]); mismatch = 1; } aom_img_free(&enc_img); aom_img_free(&dec_img); return mismatch; } #endif // CONFIG_AV1_DECODER struct psnr_stats { // The second element of these arrays is reserved for high bitdepth. uint64_t psnr_sse_total[2]; uint64_t psnr_samples_total[2]; double psnr_totals[2][4]; int psnr_count[2]; }; static void show_psnr(struct psnr_stats *psnr_stream, double peak) { double ovpsnr; if (!psnr_stream->psnr_count[0]) return; fprintf(stderr, "\nPSNR (Overall/Avg/Y/U/V)"); ovpsnr = sse_to_psnr((double)psnr_stream->psnr_samples_total[0], peak, (double)psnr_stream->psnr_sse_total[0]); fprintf(stderr, " %.3f", ovpsnr); for (int i = 0; i < 4; i++) { fprintf(stderr, " %.3f", psnr_stream->psnr_totals[0][i] / psnr_stream->psnr_count[0]); } fprintf(stderr, "\n"); } static aom::AV1RateControlRtcConfig create_rtc_rc_config( const aom_codec_enc_cfg_t &cfg, const AppInput &app_input) { aom::AV1RateControlRtcConfig rc_cfg; rc_cfg.width = cfg.g_w; rc_cfg.height = cfg.g_h; rc_cfg.max_quantizer = cfg.rc_max_quantizer; rc_cfg.min_quantizer = cfg.rc_min_quantizer; rc_cfg.target_bandwidth = cfg.rc_target_bitrate; rc_cfg.buf_initial_sz = cfg.rc_buf_initial_sz; rc_cfg.buf_optimal_sz = cfg.rc_buf_optimal_sz; rc_cfg.buf_sz = cfg.rc_buf_sz; rc_cfg.overshoot_pct = cfg.rc_overshoot_pct; rc_cfg.undershoot_pct = cfg.rc_undershoot_pct; // This is hardcoded as AOME_SET_MAX_INTRA_BITRATE_PCT rc_cfg.max_intra_bitrate_pct = 300; rc_cfg.framerate = cfg.g_timebase.den; // TODO(jianj): Add suppor for SVC. rc_cfg.ss_number_layers = 1; rc_cfg.ts_number_layers = 1; rc_cfg.scaling_factor_num[0] = 1; rc_cfg.scaling_factor_den[0] = 1; rc_cfg.layer_target_bitrate[0] = static_cast(rc_cfg.target_bandwidth); rc_cfg.max_quantizers[0] = rc_cfg.max_quantizer; rc_cfg.min_quantizers[0] = rc_cfg.min_quantizer; rc_cfg.aq_mode = app_input.aq_mode; return rc_cfg; } static int qindex_to_quantizer(int qindex) { // Table that converts 0-63 range Q values passed in outside to the 0-255 // range Qindex used internally. static const int quantizer_to_qindex[] = { 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 249, 255, }; for (int quantizer = 0; quantizer < 64; ++quantizer) if (quantizer_to_qindex[quantizer] >= qindex) return quantizer; return 63; } int main(int argc, const char **argv) { AppInput app_input; AvxVideoWriter *outfile[AOM_MAX_LAYERS] = { NULL }; FILE *obu_files[AOM_MAX_LAYERS] = { NULL }; AvxVideoWriter *total_layer_file = NULL; FILE *total_layer_obu_file = NULL; aom_codec_enc_cfg_t cfg; int frame_cnt = 0; aom_image_t raw; int frame_avail; int got_data = 0; int flags = 0; int i; int pts = 0; // PTS starts at 0. int frame_duration = 1; // 1 timebase tick per frame. aom_svc_layer_id_t layer_id; aom_svc_params_t svc_params; aom_svc_ref_frame_config_t ref_frame_config; aom_svc_ref_frame_comp_pred_t ref_frame_comp_pred; #if CONFIG_INTERNAL_STATS FILE *stats_file = fopen("opsnr.stt", "a"); if (stats_file == NULL) { die("Cannot open opsnr.stt\n"); } #endif #if CONFIG_AV1_DECODER aom_codec_ctx_t decoder; #endif struct RateControlMetrics rc; int64_t cx_time = 0; int64_t cx_time_layer[AOM_MAX_LAYERS]; // max number of layers. int frame_cnt_layer[AOM_MAX_LAYERS]; double sum_bitrate = 0.0; double sum_bitrate2 = 0.0; double framerate = 30.0; int use_svc_control = 1; int set_err_resil_frame = 0; int test_changing_bitrate = 0; zero(rc.layer_target_bitrate); memset(&layer_id, 0, sizeof(aom_svc_layer_id_t)); memset(&app_input, 0, sizeof(AppInput)); memset(&svc_params, 0, sizeof(svc_params)); // Flag to test dynamic scaling of source frames for single // spatial stream, using the scaling_mode control. const int test_dynamic_scaling_single_layer = 0; // Flag to test setting speed per layer. const int test_speed_per_layer = 0; /* Setup default input stream settings */ app_input.input_ctx.framerate.numerator = 30; app_input.input_ctx.framerate.denominator = 1; app_input.input_ctx.only_i420 = 0; app_input.input_ctx.bit_depth = AOM_BITS_8; app_input.speed = 7; exec_name = argv[0]; // start with default encoder configuration aom_codec_err_t res = aom_codec_enc_config_default(aom_codec_av1_cx(), &cfg, AOM_USAGE_REALTIME); if (res != AOM_CODEC_OK) { die("Failed to get config: %s\n", aom_codec_err_to_string(res)); } // Real time parameters. cfg.g_usage = AOM_USAGE_REALTIME; cfg.rc_end_usage = AOM_CBR; cfg.rc_min_quantizer = 2; cfg.rc_max_quantizer = 52; cfg.rc_undershoot_pct = 50; cfg.rc_overshoot_pct = 50; cfg.rc_buf_initial_sz = 600; cfg.rc_buf_optimal_sz = 600; cfg.rc_buf_sz = 1000; cfg.rc_resize_mode = 0; // Set to RESIZE_DYNAMIC for dynamic resize. cfg.g_lag_in_frames = 0; cfg.kf_mode = AOM_KF_AUTO; parse_command_line(argc, argv, &app_input, &svc_params, &cfg); int ts_number_layers = svc_params.number_temporal_layers; int ss_number_layers = svc_params.number_spatial_layers; unsigned int width = cfg.g_w; unsigned int height = cfg.g_h; if (app_input.layering_mode >= 0) { if (ts_number_layers != mode_to_num_temporal_layers[app_input.layering_mode] || ss_number_layers != mode_to_num_spatial_layers[app_input.layering_mode]) { die("Number of layers doesn't match layering mode."); } } // Y4M reader has its own allocation. if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { if (!aom_img_alloc(&raw, AOM_IMG_FMT_I420, width, height, 32)) { die("Failed to allocate image (%dx%d)", width, height); } } aom_codec_iface_t *encoder = aom_codec_av1_cx(); memcpy(&rc.layer_target_bitrate[0], &svc_params.layer_target_bitrate[0], sizeof(svc_params.layer_target_bitrate)); unsigned int total_rate = 0; for (i = 0; i < ss_number_layers; i++) { total_rate += svc_params .layer_target_bitrate[i * ts_number_layers + ts_number_layers - 1]; } if (total_rate != cfg.rc_target_bitrate) { die("Incorrect total target bitrate"); } svc_params.framerate_factor[0] = 1; if (ts_number_layers == 2) { svc_params.framerate_factor[0] = 2; svc_params.framerate_factor[1] = 1; } else if (ts_number_layers == 3) { svc_params.framerate_factor[0] = 4; svc_params.framerate_factor[1] = 2; svc_params.framerate_factor[2] = 1; } if (app_input.input_ctx.file_type == FILE_TYPE_Y4M) { // Override these settings with the info from Y4M file. cfg.g_w = app_input.input_ctx.width; cfg.g_h = app_input.input_ctx.height; // g_timebase is the reciprocal of frame rate. cfg.g_timebase.num = app_input.input_ctx.framerate.denominator; cfg.g_timebase.den = app_input.input_ctx.framerate.numerator; } framerate = cfg.g_timebase.den / cfg.g_timebase.num; set_rate_control_metrics(&rc, framerate, ss_number_layers, ts_number_layers); AvxVideoInfo info; info.codec_fourcc = get_fourcc_by_aom_encoder(encoder); info.frame_width = cfg.g_w; info.frame_height = cfg.g_h; info.time_base.numerator = cfg.g_timebase.num; info.time_base.denominator = cfg.g_timebase.den; // Open an output file for each stream. for (int sl = 0; sl < ss_number_layers; ++sl) { for (int tl = 0; tl < ts_number_layers; ++tl) { i = sl * ts_number_layers + tl; char file_name[PATH_MAX]; snprintf(file_name, sizeof(file_name), "%s_%d.av1", app_input.output_filename, i); if (app_input.output_obu) { obu_files[i] = fopen(file_name, "wb"); if (!obu_files[i]) die("Failed to open %s for writing", file_name); } else { outfile[i] = aom_video_writer_open(file_name, kContainerIVF, &info); if (!outfile[i]) die("Failed to open %s for writing", file_name); } } } if (app_input.output_obu) { total_layer_obu_file = fopen(app_input.output_filename, "wb"); if (!total_layer_obu_file) die("Failed to open %s for writing", app_input.output_filename); } else { total_layer_file = aom_video_writer_open(app_input.output_filename, kContainerIVF, &info); if (!total_layer_file) die("Failed to open %s for writing", app_input.output_filename); } // Initialize codec. aom_codec_ctx_t codec; aom_codec_flags_t flag = 0; flag |= cfg.g_input_bit_depth == AOM_BITS_8 ? 0 : AOM_CODEC_USE_HIGHBITDEPTH; flag |= app_input.show_psnr ? AOM_CODEC_USE_PSNR : 0; if (aom_codec_enc_init(&codec, encoder, &cfg, flag)) die_codec(&codec, "Failed to initialize encoder"); #if CONFIG_AV1_DECODER if (app_input.decode) { if (aom_codec_dec_init(&decoder, get_aom_decoder_by_index(0), NULL, 0)) die_codec(&decoder, "Failed to initialize decoder"); } #endif aom_codec_control(&codec, AOME_SET_CPUUSED, app_input.speed); aom_codec_control(&codec, AV1E_SET_AQ_MODE, app_input.aq_mode ? 3 : 0); aom_codec_control(&codec, AV1E_SET_GF_CBR_BOOST_PCT, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_CDEF, 1); aom_codec_control(&codec, AV1E_SET_LOOPFILTER_CONTROL, 1); aom_codec_control(&codec, AV1E_SET_ENABLE_WARPED_MOTION, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_OBMC, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_GLOBAL_MOTION, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_ORDER_HINT, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_TPL_MODEL, 0); aom_codec_control(&codec, AV1E_SET_DELTAQ_MODE, 0); aom_codec_control(&codec, AV1E_SET_COEFF_COST_UPD_FREQ, 3); aom_codec_control(&codec, AV1E_SET_MODE_COST_UPD_FREQ, 3); aom_codec_control(&codec, AV1E_SET_MV_COST_UPD_FREQ, 3); aom_codec_control(&codec, AV1E_SET_DV_COST_UPD_FREQ, 3); aom_codec_control(&codec, AV1E_SET_CDF_UPDATE_MODE, 1); // Settings to reduce key frame encoding time. aom_codec_control(&codec, AV1E_SET_ENABLE_CFL_INTRA, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_SMOOTH_INTRA, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_ANGLE_DELTA, 0); aom_codec_control(&codec, AV1E_SET_ENABLE_FILTER_INTRA, 0); aom_codec_control(&codec, AV1E_SET_INTRA_DEFAULT_TX_ONLY, 1); if (cfg.g_threads > 1) { aom_codec_control(&codec, AV1E_SET_TILE_COLUMNS, (unsigned int)log2(cfg.g_threads)); } aom_codec_control(&codec, AV1E_SET_TUNE_CONTENT, app_input.tune_content); if (app_input.tune_content == AOM_CONTENT_SCREEN) { aom_codec_control(&codec, AV1E_SET_ENABLE_PALETTE, 1); aom_codec_control(&codec, AV1E_SET_ENABLE_CFL_INTRA, 1); // INTRABC is currently disabled for rt mode, as it's too slow. aom_codec_control(&codec, AV1E_SET_ENABLE_INTRABC, 0); } if (app_input.use_external_rc) { aom_codec_control(&codec, AV1E_SET_RTC_EXTERNAL_RC, 1); } aom_codec_control(&codec, AV1E_SET_MAX_CONSEC_FRAME_DROP_CBR, INT_MAX); aom_codec_control(&codec, AV1E_SET_SVC_FRAME_DROP_MODE, AOM_FULL_SUPERFRAME_DROP); svc_params.number_spatial_layers = ss_number_layers; svc_params.number_temporal_layers = ts_number_layers; for (i = 0; i < ss_number_layers * ts_number_layers; ++i) { svc_params.max_quantizers[i] = cfg.rc_max_quantizer; svc_params.min_quantizers[i] = cfg.rc_min_quantizer; } for (i = 0; i < ss_number_layers; ++i) { svc_params.scaling_factor_num[i] = 1; svc_params.scaling_factor_den[i] = 1; } if (ss_number_layers == 2) { svc_params.scaling_factor_num[0] = 1; svc_params.scaling_factor_den[0] = 2; } else if (ss_number_layers == 3) { svc_params.scaling_factor_num[0] = 1; svc_params.scaling_factor_den[0] = 4; svc_params.scaling_factor_num[1] = 1; svc_params.scaling_factor_den[1] = 2; } aom_codec_control(&codec, AV1E_SET_SVC_PARAMS, &svc_params); // TODO(aomedia:3032): Configure KSVC in fixed mode. // This controls the maximum target size of the key frame. // For generating smaller key frames, use a smaller max_intra_size_pct // value, like 100 or 200. { const int max_intra_size_pct = 300; aom_codec_control(&codec, AOME_SET_MAX_INTRA_BITRATE_PCT, max_intra_size_pct); } for (int lx = 0; lx < ts_number_layers * ss_number_layers; lx++) { cx_time_layer[lx] = 0; frame_cnt_layer[lx] = 0; } std::unique_ptr rc_api; if (app_input.use_external_rc) { const aom::AV1RateControlRtcConfig rc_cfg = create_rtc_rc_config(cfg, app_input); rc_api = aom::AV1RateControlRTC::Create(rc_cfg); } frame_avail = 1; struct psnr_stats psnr_stream; memset(&psnr_stream, 0, sizeof(psnr_stream)); while (frame_avail || got_data) { struct aom_usec_timer timer; frame_avail = read_frame(&(app_input.input_ctx), &raw); // Loop over spatial layers. for (int slx = 0; slx < ss_number_layers; slx++) { aom_codec_iter_t iter = NULL; const aom_codec_cx_pkt_t *pkt; int layer = 0; // Flag for superframe whose base is key. int is_key_frame = (frame_cnt % cfg.kf_max_dist) == 0; // For flexible mode: if (app_input.layering_mode >= 0) { // Set the reference/update flags, layer_id, and reference_map // buffer index. set_layer_pattern(app_input.layering_mode, frame_cnt, &layer_id, &ref_frame_config, &ref_frame_comp_pred, &use_svc_control, slx, is_key_frame, (app_input.layering_mode == 10), app_input.speed); aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id); if (use_svc_control) { aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG, &ref_frame_config); aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_COMP_PRED, &ref_frame_comp_pred); } // Set the speed per layer. if (test_speed_per_layer) { int speed_per_layer = 10; if (layer_id.spatial_layer_id == 0) { if (layer_id.temporal_layer_id == 0) speed_per_layer = 6; if (layer_id.temporal_layer_id == 1) speed_per_layer = 7; if (layer_id.temporal_layer_id == 2) speed_per_layer = 8; } else if (layer_id.spatial_layer_id == 1) { if (layer_id.temporal_layer_id == 0) speed_per_layer = 7; if (layer_id.temporal_layer_id == 1) speed_per_layer = 8; if (layer_id.temporal_layer_id == 2) speed_per_layer = 9; } else if (layer_id.spatial_layer_id == 2) { if (layer_id.temporal_layer_id == 0) speed_per_layer = 8; if (layer_id.temporal_layer_id == 1) speed_per_layer = 9; if (layer_id.temporal_layer_id == 2) speed_per_layer = 10; } aom_codec_control(&codec, AOME_SET_CPUUSED, speed_per_layer); } } else { // Only up to 3 temporal layers supported in fixed mode. // Only need to set spatial and temporal layer_id: reference // prediction, refresh, and buffer_idx are set internally. layer_id.spatial_layer_id = slx; layer_id.temporal_layer_id = 0; if (ts_number_layers == 2) { layer_id.temporal_layer_id = (frame_cnt % 2) != 0; } else if (ts_number_layers == 3) { if (frame_cnt % 2 != 0) layer_id.temporal_layer_id = 2; else if ((frame_cnt > 1) && ((frame_cnt - 2) % 4 == 0)) layer_id.temporal_layer_id = 1; } aom_codec_control(&codec, AV1E_SET_SVC_LAYER_ID, &layer_id); } if (set_err_resil_frame && cfg.g_error_resilient == 0) { // Set error_resilient per frame: off/0 for base layer and // on/1 for enhancement layer frames. // Note that this is can only be done on the fly/per-frame/layer // if the config error_resilience is off/0. See the logic for updating // in set_encoder_config(): // tool_cfg->error_resilient_mode = // cfg->g_error_resilient | extra_cfg->error_resilient_mode; const int err_resil_mode = layer_id.spatial_layer_id > 0 || layer_id.temporal_layer_id > 0; aom_codec_control(&codec, AV1E_SET_ERROR_RESILIENT_MODE, err_resil_mode); } layer = slx * ts_number_layers + layer_id.temporal_layer_id; if (frame_avail && slx == 0) ++rc.layer_input_frames[layer]; if (test_dynamic_scaling_single_layer) { // Example to scale source down by 2x2, then 4x4, and then back up to // 2x2, and then back to original. int frame_2x2 = 200; int frame_4x4 = 400; int frame_2x2up = 600; int frame_orig = 800; if (frame_cnt >= frame_2x2 && frame_cnt < frame_4x4) { // Scale source down by 2x2. struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO }; aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); } else if (frame_cnt >= frame_4x4 && frame_cnt < frame_2x2up) { // Scale source down by 4x4. struct aom_scaling_mode mode = { AOME_ONEFOUR, AOME_ONEFOUR }; aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); } else if (frame_cnt >= frame_2x2up && frame_cnt < frame_orig) { // Source back up to 2x2. struct aom_scaling_mode mode = { AOME_ONETWO, AOME_ONETWO }; aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); } else if (frame_cnt >= frame_orig) { // Source back up to original resolution (no scaling). struct aom_scaling_mode mode = { AOME_NORMAL, AOME_NORMAL }; aom_codec_control(&codec, AOME_SET_SCALEMODE, &mode); } if (frame_cnt == frame_2x2 || frame_cnt == frame_4x4 || frame_cnt == frame_2x2up || frame_cnt == frame_orig) { // For dynamic resize testing on single layer: refresh all references // on the resized frame: this is to avoid decode error: // if resize goes down by >= 4x4 then libaom decoder will throw an // error that some reference (even though not used) is beyond the // limit size (must be smaller than 4x4). for (i = 0; i < REF_FRAMES; i++) ref_frame_config.refresh[i] = 1; if (use_svc_control) { aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_CONFIG, &ref_frame_config); aom_codec_control(&codec, AV1E_SET_SVC_REF_FRAME_COMP_PRED, &ref_frame_comp_pred); } } } // Change target_bitrate every other frame. if (test_changing_bitrate && frame_cnt % 2 == 0) { if (frame_cnt < 500) cfg.rc_target_bitrate += 10; else cfg.rc_target_bitrate -= 10; // Do big increase and decrease. if (frame_cnt == 100) cfg.rc_target_bitrate <<= 1; if (frame_cnt == 600) cfg.rc_target_bitrate >>= 1; if (cfg.rc_target_bitrate < 100) cfg.rc_target_bitrate = 100; // Call change_config, or bypass with new control. // res = aom_codec_enc_config_set(&codec, &cfg); if (aom_codec_control(&codec, AV1E_SET_BITRATE_ONE_PASS_CBR, cfg.rc_target_bitrate)) die_codec(&codec, "Failed to SET_BITRATE_ONE_PASS_CBR"); } if (rc_api) { aom::AV1FrameParamsRTC frame_params; // TODO(jianj): Add support for SVC. frame_params.spatial_layer_id = 0; frame_params.temporal_layer_id = 0; frame_params.frame_type = is_key_frame ? aom::kKeyFrame : aom::kInterFrame; rc_api->ComputeQP(frame_params); const int current_qp = rc_api->GetQP(); if (aom_codec_control(&codec, AV1E_SET_QUANTIZER_ONE_PASS, qindex_to_quantizer(current_qp))) { die_codec(&codec, "Failed to SET_QUANTIZER_ONE_PASS"); } } // Do the layer encode. aom_usec_timer_start(&timer); if (aom_codec_encode(&codec, frame_avail ? &raw : NULL, pts, 1, flags)) die_codec(&codec, "Failed to encode frame"); aom_usec_timer_mark(&timer); cx_time += aom_usec_timer_elapsed(&timer); cx_time_layer[layer] += aom_usec_timer_elapsed(&timer); frame_cnt_layer[layer] += 1; got_data = 0; // For simulcast (mode 11): write out each spatial layer to the file. int ss_layers_write = (app_input.layering_mode == 11) ? layer_id.spatial_layer_id + 1 : ss_number_layers; while ((pkt = aom_codec_get_cx_data(&codec, &iter))) { switch (pkt->kind) { case AOM_CODEC_CX_FRAME_PKT: for (int sl = layer_id.spatial_layer_id; sl < ss_layers_write; ++sl) { for (int tl = layer_id.temporal_layer_id; tl < ts_number_layers; ++tl) { int j = sl * ts_number_layers + tl; if (app_input.output_obu) { fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, obu_files[j]); } else { aom_video_writer_write_frame( outfile[j], reinterpret_cast(pkt->data.frame.buf), pkt->data.frame.sz, pts); } if (sl == layer_id.spatial_layer_id) rc.layer_encoding_bitrate[j] += 8.0 * pkt->data.frame.sz; } } got_data = 1; // Write everything into the top layer. if (app_input.output_obu) { fwrite(pkt->data.frame.buf, 1, pkt->data.frame.sz, total_layer_obu_file); } else { aom_video_writer_write_frame( total_layer_file, reinterpret_cast(pkt->data.frame.buf), pkt->data.frame.sz, pts); } // Keep count of rate control stats per layer (for non-key). if (!(pkt->data.frame.flags & AOM_FRAME_IS_KEY)) { int j = layer_id.spatial_layer_id * ts_number_layers + layer_id.temporal_layer_id; assert(j >= 0); rc.layer_avg_frame_size[j] += 8.0 * pkt->data.frame.sz; rc.layer_avg_rate_mismatch[j] += fabs(8.0 * pkt->data.frame.sz - rc.layer_pfb[j]) / rc.layer_pfb[j]; if (slx == 0) ++rc.layer_enc_frames[layer_id.temporal_layer_id]; } if (rc_api) { rc_api->PostEncodeUpdate(pkt->data.frame.sz); } // Update for short-time encoding bitrate states, for moving window // of size rc->window, shifted by rc->window / 2. // Ignore first window segment, due to key frame. // For spatial layers: only do this for top/highest SL. if (frame_cnt > rc.window_size && slx == ss_number_layers - 1) { sum_bitrate += 0.001 * 8.0 * pkt->data.frame.sz * framerate; rc.window_size = (rc.window_size <= 0) ? 1 : rc.window_size; if (frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate / rc.window_size) * (sum_bitrate / rc.window_size); sum_bitrate = 0.0; } } // Second shifted window. if (frame_cnt > rc.window_size + rc.window_size / 2 && slx == ss_number_layers - 1) { sum_bitrate2 += 0.001 * 8.0 * pkt->data.frame.sz * framerate; if (frame_cnt > 2 * rc.window_size && frame_cnt % rc.window_size == 0) { rc.window_count += 1; rc.avg_st_encoding_bitrate += sum_bitrate2 / rc.window_size; rc.variance_st_encoding_bitrate += (sum_bitrate2 / rc.window_size) * (sum_bitrate2 / rc.window_size); sum_bitrate2 = 0.0; } } #if CONFIG_AV1_DECODER if (app_input.decode) { if (aom_codec_decode( &decoder, reinterpret_cast(pkt->data.frame.buf), pkt->data.frame.sz, NULL)) die_codec(&decoder, "Failed to decode frame"); } #endif break; case AOM_CODEC_PSNR_PKT: if (app_input.show_psnr) { psnr_stream.psnr_sse_total[0] += pkt->data.psnr.sse[0]; psnr_stream.psnr_samples_total[0] += pkt->data.psnr.samples[0]; for (int plane = 0; plane < 4; plane++) { psnr_stream.psnr_totals[0][plane] += pkt->data.psnr.psnr[plane]; } psnr_stream.psnr_count[0]++; } break; default: break; } } #if CONFIG_AV1_DECODER if (got_data && app_input.decode) { // Don't look for mismatch on top spatial and top temporal layers as // they are non reference frames. if ((ss_number_layers > 1 || ts_number_layers > 1) && !(layer_id.temporal_layer_id > 0 && layer_id.temporal_layer_id == ts_number_layers - 1)) { if (test_decode(&codec, &decoder, frame_cnt)) { #if CONFIG_INTERNAL_STATS fprintf(stats_file, "First mismatch occurred in frame %d\n", frame_cnt); fclose(stats_file); #endif fatal("Mismatch seen"); } } } #endif } // loop over spatial layers ++frame_cnt; pts += frame_duration; } close_input_file(&(app_input.input_ctx)); printout_rate_control_summary(&rc, frame_cnt, ss_number_layers, ts_number_layers); printf("\n"); for (int slx = 0; slx < ss_number_layers; slx++) for (int tlx = 0; tlx < ts_number_layers; tlx++) { int lx = slx * ts_number_layers + tlx; printf("Per layer encoding time/FPS stats for encoder: %d %d %d %f %f \n", slx, tlx, frame_cnt_layer[lx], (float)cx_time_layer[lx] / (double)(frame_cnt_layer[lx] * 1000), 1000000 * (double)frame_cnt_layer[lx] / (double)cx_time_layer[lx]); } printf("\n"); printf("Frame cnt and encoding time/FPS stats for encoding: %d %f %f\n", frame_cnt, 1000 * (float)cx_time / (double)(frame_cnt * 1000000), 1000000 * (double)frame_cnt / (double)cx_time); if (app_input.show_psnr) { show_psnr(&psnr_stream, 255.0); } if (aom_codec_destroy(&codec)) die_codec(&codec, "Failed to destroy encoder"); #if CONFIG_AV1_DECODER if (app_input.decode) { if (aom_codec_destroy(&decoder)) die_codec(&decoder, "Failed to destroy decoder"); } #endif #if CONFIG_INTERNAL_STATS fprintf(stats_file, "No mismatch detected in recon buffers\n"); fclose(stats_file); #endif // Try to rewrite the output file headers with the actual frame count. for (i = 0; i < ss_number_layers * ts_number_layers; ++i) aom_video_writer_close(outfile[i]); aom_video_writer_close(total_layer_file); if (app_input.input_ctx.file_type != FILE_TYPE_Y4M) { aom_img_free(&raw); } return EXIT_SUCCESS; }