/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "aom/aom_integer.h" #include "third_party/googletest/src/googletest/include/gtest/gtest.h" namespace { const uint64_t kMaximumLeb128CodedSize = 8; const uint8_t kLeb128PadByte = 0x80; // Binary: 10000000 const uint64_t kMaximumLeb128Value = UINT32_MAX; const uint32_t kSizeTestNumValues = 6; const uint32_t kSizeTestExpectedSizes[kSizeTestNumValues] = { 1, 1, 2, 3, 4, 5 }; const uint64_t kSizeTestInputs[kSizeTestNumValues] = { 0, 0x7f, 0x3fff, 0x1fffff, 0xffffff, 0x10000000 }; const uint8_t kOutOfRangeLeb128Value[5] = { 0x80, 0x80, 0x80, 0x80, 0x10 }; // UINT32_MAX + 1 } // namespace TEST(AomLeb128, DecodeTest) { const size_t num_leb128_bytes = 3; const uint8_t leb128_bytes[num_leb128_bytes] = { 0xE5, 0x8E, 0x26 }; const uint64_t expected_value = 0x98765; // 624485 const size_t expected_length = 3; uint64_t value = ~0ULL; // make sure value is cleared by the function size_t length; ASSERT_EQ( aom_uleb_decode(&leb128_bytes[0], num_leb128_bytes, &value, &length), 0); ASSERT_EQ(expected_value, value); ASSERT_EQ(expected_length, length); // Make sure the decoder stops on the last marked LEB128 byte. aom_uleb_decode(&leb128_bytes[0], num_leb128_bytes + 1, &value, &length); ASSERT_EQ(expected_value, value); ASSERT_EQ(expected_length, length); } TEST(AomLeb128, EncodeTest) { const uint32_t test_value = 0x98765; // 624485 const uint8_t expected_bytes[3] = { 0xE5, 0x8E, 0x26 }; const size_t kWriteBufferSize = 4; uint8_t write_buffer[kWriteBufferSize] = { 0 }; size_t bytes_written = 0; ASSERT_EQ(aom_uleb_encode(test_value, kWriteBufferSize, &write_buffer[0], &bytes_written), 0); ASSERT_EQ(bytes_written, 3u); for (size_t i = 0; i < bytes_written; ++i) { ASSERT_EQ(write_buffer[i], expected_bytes[i]); } } TEST(AomLeb128, EncodeDecodeTest) { const uint32_t value = 0x98765; // 624485 const size_t kWriteBufferSize = 4; uint8_t write_buffer[kWriteBufferSize] = { 0 }; size_t bytes_written = 0; ASSERT_EQ(aom_uleb_encode(value, kWriteBufferSize, &write_buffer[0], &bytes_written), 0); ASSERT_EQ(bytes_written, 3u); uint64_t decoded_value; size_t decoded_length; aom_uleb_decode(&write_buffer[0], bytes_written, &decoded_value, &decoded_length); ASSERT_EQ(value, decoded_value); ASSERT_EQ(bytes_written, decoded_length); } TEST(AomLeb128, FixedSizeEncodeTest) { const uint32_t test_value = 0x123; const uint8_t expected_bytes[4] = { 0xa3, 0x82, 0x80, 0x00 }; const size_t kWriteBufferSize = 4; uint8_t write_buffer[kWriteBufferSize] = { 0 }; size_t bytes_written = 0; ASSERT_EQ(0, aom_uleb_encode_fixed_size(test_value, kWriteBufferSize, kWriteBufferSize, &write_buffer[0], &bytes_written)); ASSERT_EQ(kWriteBufferSize, bytes_written); for (size_t i = 0; i < bytes_written; ++i) { ASSERT_EQ(write_buffer[i], expected_bytes[i]); } } TEST(AomLeb128, FixedSizeEncodeDecodeTest) { const uint32_t value = 0x1; const size_t kWriteBufferSize = 4; uint8_t write_buffer[kWriteBufferSize] = { 0 }; size_t bytes_written = 0; ASSERT_EQ( aom_uleb_encode_fixed_size(value, kWriteBufferSize, kWriteBufferSize, &write_buffer[0], &bytes_written), 0); ASSERT_EQ(bytes_written, 4u); uint64_t decoded_value; size_t decoded_length; aom_uleb_decode(&write_buffer[0], bytes_written, &decoded_value, &decoded_length); ASSERT_EQ(value, decoded_value); ASSERT_EQ(bytes_written, decoded_length); } TEST(AomLeb128, SizeTest) { for (size_t i = 0; i < kSizeTestNumValues; ++i) { ASSERT_EQ(kSizeTestExpectedSizes[i], aom_uleb_size_in_bytes(kSizeTestInputs[i])); } } TEST(AomLeb128, DecodeFailTest) { // Input buffer containing what would be a valid 9 byte LEB128 encoded // unsigned integer. const uint8_t kAllPadBytesBuffer[kMaximumLeb128CodedSize + 1] = { kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, kLeb128PadByte, 0 }; uint64_t decoded_value; // Test that decode fails when result would be valid 9 byte integer. ASSERT_EQ(aom_uleb_decode(&kAllPadBytesBuffer[0], kMaximumLeb128CodedSize + 1, &decoded_value, nullptr), -1); // Test that encoded value missing terminator byte within available buffer // range causes decode error. ASSERT_EQ(aom_uleb_decode(&kAllPadBytesBuffer[0], kMaximumLeb128CodedSize, &decoded_value, nullptr), -1); // Test that LEB128 input that decodes to a value larger than 32-bits fails. size_t value_size = 0; ASSERT_EQ(aom_uleb_decode(&kOutOfRangeLeb128Value[0], sizeof(kOutOfRangeLeb128Value), &decoded_value, &value_size), -1); } TEST(AomLeb128, EncodeFailTest) { const size_t kWriteBufferSize = 4; const uint32_t kValidTestValue = 1; uint8_t write_buffer[kWriteBufferSize] = { 0 }; size_t coded_size = 0; ASSERT_EQ( aom_uleb_encode(kValidTestValue, kWriteBufferSize, nullptr, &coded_size), -1); ASSERT_EQ(aom_uleb_encode(kValidTestValue, kWriteBufferSize, &write_buffer[0], nullptr), -1); const uint32_t kValueOutOfRangeForBuffer = 0xFFFFFFFF; ASSERT_EQ(aom_uleb_encode(kValueOutOfRangeForBuffer, kWriteBufferSize, &write_buffer[0], &coded_size), -1); const uint64_t kValueOutOfRange = kMaximumLeb128Value + 1; ASSERT_EQ(aom_uleb_encode(kValueOutOfRange, kWriteBufferSize, &write_buffer[0], &coded_size), -1); const size_t kPadSizeOutOfRange = 5; ASSERT_EQ(aom_uleb_encode_fixed_size(kValidTestValue, kWriteBufferSize, kPadSizeOutOfRange, &write_buffer[0], &coded_size), -1); }