/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include "config/av1_rtcd.h" #include "test/acm_random.h" #include "test/util.h" #include "test/av1_txfm_test.h" #include "av1/common/av1_txfm.h" #include "av1/encoder/hybrid_fwd_txfm.h" using libaom_test::ACMRandom; using libaom_test::bd; using libaom_test::compute_avg_abs_error; using libaom_test::input_base; using libaom_test::tx_type_name; using libaom_test::TYPE_TXFM; using std::vector; namespace { // tx_type_, tx_size_, max_error_, max_avg_error_ typedef std::tuple AV1FwdTxfm2dParam; class AV1FwdTxfm2d : public ::testing::TestWithParam { public: void SetUp() override { tx_type_ = GET_PARAM(0); tx_size_ = GET_PARAM(1); max_error_ = GET_PARAM(2); max_avg_error_ = GET_PARAM(3); count_ = 500; TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg; av1_get_fwd_txfm_cfg(tx_type_, tx_size_, &fwd_txfm_flip_cfg); amplify_factor_ = libaom_test::get_amplification_factor(tx_type_, tx_size_); tx_width_ = tx_size_wide[fwd_txfm_flip_cfg.tx_size]; tx_height_ = tx_size_high[fwd_txfm_flip_cfg.tx_size]; ud_flip_ = fwd_txfm_flip_cfg.ud_flip; lr_flip_ = fwd_txfm_flip_cfg.lr_flip; fwd_txfm_ = libaom_test::fwd_txfm_func_ls[tx_size_]; txfm2d_size_ = tx_width_ * tx_height_; input_ = reinterpret_cast( aom_memalign(16, sizeof(input_[0]) * txfm2d_size_)); ASSERT_NE(input_, nullptr); output_ = reinterpret_cast( aom_memalign(16, sizeof(output_[0]) * txfm2d_size_)); ASSERT_NE(output_, nullptr); ref_input_ = reinterpret_cast( aom_memalign(16, sizeof(ref_input_[0]) * txfm2d_size_)); ASSERT_NE(ref_input_, nullptr); ref_output_ = reinterpret_cast( aom_memalign(16, sizeof(ref_output_[0]) * txfm2d_size_)); ASSERT_NE(ref_output_, nullptr); } void RunFwdAccuracyCheck() { ACMRandom rnd(ACMRandom::DeterministicSeed()); double avg_abs_error = 0; for (int ci = 0; ci < count_; ci++) { for (int ni = 0; ni < txfm2d_size_; ++ni) { input_[ni] = rnd.Rand16() % input_base; ref_input_[ni] = static_cast(input_[ni]); output_[ni] = 0; ref_output_[ni] = 0; } fwd_txfm_(input_, output_, tx_width_, tx_type_, bd); if (lr_flip_ && ud_flip_) { libaom_test::fliplrud(ref_input_, tx_width_, tx_height_, tx_width_); } else if (lr_flip_) { libaom_test::fliplr(ref_input_, tx_width_, tx_height_, tx_width_); } else if (ud_flip_) { libaom_test::flipud(ref_input_, tx_width_, tx_height_, tx_width_); } libaom_test::reference_hybrid_2d(ref_input_, ref_output_, tx_type_, tx_size_); double actual_max_error = 0; for (int ni = 0; ni < txfm2d_size_; ++ni) { ref_output_[ni] = round(ref_output_[ni]); const double this_error = fabs(output_[ni] - ref_output_[ni]) / amplify_factor_; actual_max_error = AOMMAX(actual_max_error, this_error); } EXPECT_GE(max_error_, actual_max_error) << "tx_w: " << tx_width_ << " tx_h: " << tx_height_ << ", tx_type = " << (int)tx_type_; if (actual_max_error > max_error_) { // exit early. break; } avg_abs_error += compute_avg_abs_error( output_, ref_output_, txfm2d_size_); } avg_abs_error /= amplify_factor_; avg_abs_error /= count_; EXPECT_GE(max_avg_error_, avg_abs_error) << "tx_size = " << tx_size_ << ", tx_type = " << tx_type_; } void TearDown() override { aom_free(input_); aom_free(output_); aom_free(ref_input_); aom_free(ref_output_); } private: double max_error_; double max_avg_error_; int count_; double amplify_factor_; TX_TYPE tx_type_; TX_SIZE tx_size_; int tx_width_; int tx_height_; int txfm2d_size_; FwdTxfm2dFunc fwd_txfm_; int16_t *input_; int32_t *output_; double *ref_input_; double *ref_output_; int ud_flip_; // flip upside down int lr_flip_; // flip left to right }; static double avg_error_ls[TX_SIZES_ALL] = { 0.5, // 4x4 transform 0.5, // 8x8 transform 1.2, // 16x16 transform 6.1, // 32x32 transform 3.4, // 64x64 transform 0.57, // 4x8 transform 0.68, // 8x4 transform 0.92, // 8x16 transform 1.1, // 16x8 transform 4.1, // 16x32 transform 6, // 32x16 transform 3.5, // 32x64 transform 5.7, // 64x32 transform 0.6, // 4x16 transform 0.9, // 16x4 transform 1.2, // 8x32 transform 1.7, // 32x8 transform 2.0, // 16x64 transform 4.7, // 64x16 transform }; static double max_error_ls[TX_SIZES_ALL] = { 3, // 4x4 transform 5, // 8x8 transform 11, // 16x16 transform 70, // 32x32 transform 64, // 64x64 transform 3.9, // 4x8 transform 4.3, // 8x4 transform 12, // 8x16 transform 12, // 16x8 transform 32, // 16x32 transform 46, // 32x16 transform 136, // 32x64 transform 136, // 64x32 transform 5, // 4x16 transform 6, // 16x4 transform 21, // 8x32 transform 13, // 32x8 transform 30, // 16x64 transform 36, // 64x16 transform }; vector GetTxfm2dParamList() { vector param_list; for (int s = 0; s < TX_SIZES; ++s) { const double max_error = max_error_ls[s]; const double avg_error = avg_error_ls[s]; for (int t = 0; t < TX_TYPES; ++t) { const TX_TYPE tx_type = static_cast(t); const TX_SIZE tx_size = static_cast(s); if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { param_list.push_back( AV1FwdTxfm2dParam(tx_type, tx_size, max_error, avg_error)); } } } return param_list; } INSTANTIATE_TEST_SUITE_P(C, AV1FwdTxfm2d, ::testing::ValuesIn(GetTxfm2dParamList())); TEST_P(AV1FwdTxfm2d, RunFwdAccuracyCheck) { RunFwdAccuracyCheck(); } TEST(AV1FwdTxfm2d, CfgTest) { for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { int bd = libaom_test::bd_arr[bd_idx]; int8_t low_range = libaom_test::low_range_arr[bd_idx]; int8_t high_range = libaom_test::high_range_arr[bd_idx]; for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid(static_cast(tx_size), static_cast(tx_type)) == false) { continue; } TXFM_2D_FLIP_CFG cfg; av1_get_fwd_txfm_cfg(static_cast(tx_type), static_cast(tx_size), &cfg); int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; av1_gen_fwd_stage_range(stage_range_col, stage_range_row, &cfg, bd); libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, cfg.cos_bit_col, low_range, high_range); libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, cfg.cos_bit_row, low_range, high_range); } } } } typedef void (*lowbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff, int diff_stride, TxfmParam *txfm_param); void AV1FwdTxfm2dMatchTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) { const int bd = 8; TxfmParam param; memset(¶m, 0, sizeof(param)); const int rows = tx_size_high[tx_size]; const int cols = tx_size_wide[tx_size]; // printf("%d x %d\n", cols, rows); for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid( tx_size, static_cast(tx_type)) == false) { continue; } FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; if (ref_func != nullptr) { DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; DECLARE_ALIGNED(32, int32_t, output[64 * 64]); DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); int input_stride = 64; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int cnt = 0; cnt < 500; ++cnt) { if (cnt == 0) { for (int c = 0; c < cols; ++c) { for (int r = 0; r < rows; ++r) { input[r * input_stride + c] = (1 << bd) - 1; } } } else { for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { input[r * input_stride + c] = rnd.Rand16() % (1 << bd); } } } param.tx_type = (TX_TYPE)tx_type; param.tx_size = (TX_SIZE)tx_size; param.tx_set_type = EXT_TX_SET_ALL16; param.bd = bd; ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); target_func(input, output, input_stride, ¶m); const int check_cols = AOMMIN(32, cols); const int check_rows = AOMMIN(32, rows * cols / check_cols); for (int r = 0; r < check_rows; ++r) { for (int c = 0; c < check_cols; ++c) { ASSERT_EQ(ref_output[r * check_cols + c], output[r * check_cols + c]) << "[" << r << "," << c << "] cnt:" << cnt << " tx_size: " << cols << "x" << rows << " tx_type: " << tx_type_name[tx_type]; } } } } } } void AV1FwdTxfm2dSpeedTest(TX_SIZE tx_size, lowbd_fwd_txfm_func target_func) { TxfmParam param; memset(¶m, 0, sizeof(param)); const int rows = tx_size_high[tx_size]; const int cols = tx_size_wide[tx_size]; const int num_loops = 1000000 / (rows * cols); const int bd = 8; for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid( tx_size, static_cast(tx_type)) == false) { continue; } FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; if (ref_func != nullptr) { DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; DECLARE_ALIGNED(32, int32_t, output[64 * 64]); DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); int input_stride = 64; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { input[r * input_stride + c] = rnd.Rand16() % (1 << bd); } } param.tx_type = (TX_TYPE)tx_type; param.tx_size = (TX_SIZE)tx_size; param.tx_set_type = EXT_TX_SET_ALL16; param.bd = bd; aom_usec_timer ref_timer, test_timer; aom_usec_timer_start(&ref_timer); for (int i = 0; i < num_loops; ++i) { ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); } aom_usec_timer_mark(&ref_timer); const int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int i = 0; i < num_loops; ++i) { target_func(input, output, input_stride, ¶m); } aom_usec_timer_mark(&test_timer); const int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t" "simd_time=%d \t gain=%d \n", rows, cols, tx_type, elapsed_time_c, elapsed_time_simd, (elapsed_time_c / elapsed_time_simd)); } } } typedef std::tuple LbdFwdTxfm2dParam; class AV1FwdTxfm2dTest : public ::testing::TestWithParam {}; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1FwdTxfm2dTest); TEST_P(AV1FwdTxfm2dTest, match) { AV1FwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1FwdTxfm2dTest, DISABLED_Speed) { AV1FwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1)); } TEST(AV1FwdTxfm2dTest, DCTScaleTest) { BitDepthInfo bd_info; bd_info.bit_depth = 8; bd_info.use_highbitdepth_buf = 0; DECLARE_ALIGNED(32, int16_t, src_diff[1024]); DECLARE_ALIGNED(32, tran_low_t, coeff[1024]); const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 }; const int stride_list[4] = { 4, 8, 16, 32 }; const int ref_scale_list[4] = { 64, 64, 64, 16 }; for (int i = 0; i < 4; i++) { TX_SIZE tx_size = tx_size_list[i]; int stride = stride_list[i]; int array_size = stride * stride; for (int j = 0; j < array_size; j++) { src_diff[j] = 8; coeff[j] = 0; } av1_quick_txfm(/*use_hadamard=*/0, tx_size, bd_info, src_diff, stride, coeff); double input_sse = 0; double output_sse = 0; for (int j = 0; j < array_size; j++) { input_sse += pow(src_diff[j], 2); output_sse += pow(coeff[j], 2); } double scale = output_sse / input_sse; EXPECT_NEAR(scale, ref_scale_list[i], 5); } } TEST(AV1FwdTxfm2dTest, HadamardScaleTest) { BitDepthInfo bd_info; bd_info.bit_depth = 8; bd_info.use_highbitdepth_buf = 0; DECLARE_ALIGNED(32, int16_t, src_diff[1024]); DECLARE_ALIGNED(32, tran_low_t, coeff[1024]); const TX_SIZE tx_size_list[4] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32 }; const int stride_list[4] = { 4, 8, 16, 32 }; const int ref_scale_list[4] = { 1, 64, 64, 16 }; for (int i = 0; i < 4; i++) { TX_SIZE tx_size = tx_size_list[i]; int stride = stride_list[i]; int array_size = stride * stride; for (int j = 0; j < array_size; j++) { src_diff[j] = 8; coeff[j] = 0; } av1_quick_txfm(/*use_hadamard=*/1, tx_size, bd_info, src_diff, stride, coeff); double input_sse = 0; double output_sse = 0; for (int j = 0; j < array_size; j++) { input_sse += pow(src_diff[j], 2); output_sse += pow(coeff[j], 2); } double scale = output_sse / input_sse; EXPECT_NEAR(scale, ref_scale_list[i], 5); } } using ::testing::Combine; using ::testing::Values; using ::testing::ValuesIn; #if AOM_ARCH_X86 && HAVE_SSE2 static TX_SIZE fwd_txfm_for_sse2[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, // TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, // TX_32X64, // TX_64X32, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16, }; INSTANTIATE_TEST_SUITE_P(SSE2, AV1FwdTxfm2dTest, Combine(ValuesIn(fwd_txfm_for_sse2), Values(av1_lowbd_fwd_txfm_sse2))); #endif // AOM_ARCH_X86 && HAVE_SSE2 #if HAVE_SSE4_1 static TX_SIZE fwd_txfm_for_sse41[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16 }; INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1FwdTxfm2dTest, Combine(ValuesIn(fwd_txfm_for_sse41), Values(av1_lowbd_fwd_txfm_sse4_1))); #endif // HAVE_SSE4_1 #if HAVE_AVX2 static TX_SIZE fwd_txfm_for_avx2[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16, }; INSTANTIATE_TEST_SUITE_P(AVX2, AV1FwdTxfm2dTest, Combine(ValuesIn(fwd_txfm_for_avx2), Values(av1_lowbd_fwd_txfm_avx2))); #endif // HAVE_AVX2 #if HAVE_NEON static TX_SIZE fwd_txfm_for_neon[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16 }; INSTANTIATE_TEST_SUITE_P(NEON, AV1FwdTxfm2dTest, Combine(ValuesIn(fwd_txfm_for_neon), Values(av1_lowbd_fwd_txfm_neon))); #endif // HAVE_NEON typedef void (*Highbd_fwd_txfm_func)(const int16_t *src_diff, tran_low_t *coeff, int diff_stride, TxfmParam *txfm_param); void AV1HighbdFwdTxfm2dMatchTest(TX_SIZE tx_size, Highbd_fwd_txfm_func target_func) { const int bd_ar[2] = { 10, 12 }; TxfmParam param; memset(¶m, 0, sizeof(param)); const int rows = tx_size_high[tx_size]; const int cols = tx_size_wide[tx_size]; for (int i = 0; i < 2; ++i) { const int bd = bd_ar[i]; for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid( tx_size, static_cast(tx_type)) == false) { continue; } FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; if (ref_func != nullptr) { DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; DECLARE_ALIGNED(32, int32_t, output[64 * 64]); DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); int input_stride = 64; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int cnt = 0; cnt < 500; ++cnt) { if (cnt == 0) { for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { input[r * input_stride + c] = (1 << bd) - 1; } } } else { for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { input[r * input_stride + c] = rnd.Rand16() % (1 << bd); } } } param.tx_type = (TX_TYPE)tx_type; param.tx_size = (TX_SIZE)tx_size; param.tx_set_type = EXT_TX_SET_ALL16; param.bd = bd; ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); target_func(input, output, input_stride, ¶m); const int check_cols = AOMMIN(32, cols); const int check_rows = AOMMIN(32, rows * cols / check_cols); for (int r = 0; r < check_rows; ++r) { for (int c = 0; c < check_cols; ++c) { ASSERT_EQ(ref_output[c * check_rows + r], output[c * check_rows + r]) << "[" << r << "," << c << "] cnt:" << cnt << " tx_size: " << cols << "x" << rows << " tx_type: " << tx_type; } } } } } } } void AV1HighbdFwdTxfm2dSpeedTest(TX_SIZE tx_size, Highbd_fwd_txfm_func target_func) { const int bd_ar[2] = { 10, 12 }; TxfmParam param; memset(¶m, 0, sizeof(param)); const int rows = tx_size_high[tx_size]; const int cols = tx_size_wide[tx_size]; const int num_loops = 1000000 / (rows * cols); for (int i = 0; i < 2; ++i) { const int bd = bd_ar[i]; for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid( tx_size, static_cast(tx_type)) == false) { continue; } FwdTxfm2dFunc ref_func = libaom_test::fwd_txfm_func_ls[tx_size]; if (ref_func != nullptr) { DECLARE_ALIGNED(32, int16_t, input[64 * 64]) = { 0 }; DECLARE_ALIGNED(32, int32_t, output[64 * 64]); DECLARE_ALIGNED(32, int32_t, ref_output[64 * 64]); int input_stride = 64; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { input[r * input_stride + c] = rnd.Rand16() % (1 << bd); } } param.tx_type = (TX_TYPE)tx_type; param.tx_size = (TX_SIZE)tx_size; param.tx_set_type = EXT_TX_SET_ALL16; param.bd = bd; aom_usec_timer ref_timer, test_timer; aom_usec_timer_start(&ref_timer); for (int j = 0; j < num_loops; ++j) { ref_func(input, ref_output, input_stride, (TX_TYPE)tx_type, bd); } aom_usec_timer_mark(&ref_timer); const int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int j = 0; j < num_loops; ++j) { target_func(input, output, input_stride, ¶m); } aom_usec_timer_mark(&test_timer); const int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "txfm_size[%2dx%-2d] \t txfm_type[%d] \t c_time=%d \t" "simd_time=%d \t gain=%d \n", cols, rows, tx_type, elapsed_time_c, elapsed_time_simd, (elapsed_time_c / elapsed_time_simd)); } } } } typedef std::tuple HighbdFwdTxfm2dParam; class AV1HighbdFwdTxfm2dTest : public ::testing::TestWithParam {}; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdFwdTxfm2dTest); TEST_P(AV1HighbdFwdTxfm2dTest, match) { AV1HighbdFwdTxfm2dMatchTest(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1HighbdFwdTxfm2dTest, DISABLED_Speed) { AV1HighbdFwdTxfm2dSpeedTest(GET_PARAM(0), GET_PARAM(1)); } using ::testing::Combine; using ::testing::Values; using ::testing::ValuesIn; #if HAVE_SSE4_1 static TX_SIZE Highbd_fwd_txfm_for_sse4_1[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, #if !CONFIG_REALTIME_ONLY TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16, #endif }; INSTANTIATE_TEST_SUITE_P(SSE4_1, AV1HighbdFwdTxfm2dTest, Combine(ValuesIn(Highbd_fwd_txfm_for_sse4_1), Values(av1_highbd_fwd_txfm))); #endif // HAVE_SSE4_1 #if HAVE_AVX2 static TX_SIZE Highbd_fwd_txfm_for_avx2[] = { TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_8X16, TX_16X8 }; INSTANTIATE_TEST_SUITE_P(AVX2, AV1HighbdFwdTxfm2dTest, Combine(ValuesIn(Highbd_fwd_txfm_for_avx2), Values(av1_highbd_fwd_txfm))); #endif // HAVE_AVX2 #if HAVE_NEON static TX_SIZE Highbd_fwd_txfm_for_neon[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_32X64, TX_64X32, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16 }; INSTANTIATE_TEST_SUITE_P(NEON, AV1HighbdFwdTxfm2dTest, Combine(ValuesIn(Highbd_fwd_txfm_for_neon), Values(av1_highbd_fwd_txfm))); #endif // HAVE_NEON } // namespace