/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include #include "config/av1_rtcd.h" #include "aom_ports/aom_timer.h" #include "av1/common/av1_inv_txfm1d_cfg.h" #include "av1/common/scan.h" #include "test/acm_random.h" #include "test/av1_txfm_test.h" #include "test/util.h" using libaom_test::ACMRandom; using libaom_test::bd; using libaom_test::compute_avg_abs_error; using libaom_test::input_base; using libaom_test::InvTxfm2dFunc; using libaom_test::LbdInvTxfm2dFunc; using libaom_test::tx_type_name; using ::testing::Combine; using ::testing::Range; using ::testing::Values; using std::vector; typedef TX_TYPE TxType; typedef TX_SIZE TxSize; namespace { // AV1InvTxfm2dParam argument list: // tx_type_, tx_size_, max_error_, max_avg_error_ typedef std::tuple AV1InvTxfm2dParam; class AV1InvTxfm2d : public ::testing::TestWithParam { public: void SetUp() override { tx_type_ = GET_PARAM(0); tx_size_ = GET_PARAM(1); max_error_ = GET_PARAM(2); max_avg_error_ = GET_PARAM(3); } void RunRoundtripCheck() { int tx_w = tx_size_wide[tx_size_]; int tx_h = tx_size_high[tx_size_]; int txfm2d_size = tx_w * tx_h; const FwdTxfm2dFunc fwd_txfm_func = libaom_test::fwd_txfm_func_ls[tx_size_]; const InvTxfm2dFunc inv_txfm_func = libaom_test::inv_txfm_func_ls[tx_size_]; double avg_abs_error = 0; ACMRandom rnd(ACMRandom::DeterministicSeed()); const int count = 500; for (int ci = 0; ci < count; ci++) { DECLARE_ALIGNED(16, int16_t, input[64 * 64]) = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(input)); for (int ni = 0; ni < txfm2d_size; ++ni) { if (ci == 0) { int extreme_input = input_base - 1; input[ni] = extreme_input; // extreme case } else { input[ni] = rnd.Rand16() % input_base; } } DECLARE_ALIGNED(16, uint16_t, expected[64 * 64]) = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(expected)); if (TxfmUsesApproximation()) { // Compare reference forward HT + inverse HT vs forward HT + inverse HT. double ref_input[64 * 64]; ASSERT_LE(txfm2d_size, NELEMENTS(ref_input)); for (int ni = 0; ni < txfm2d_size; ++ni) { ref_input[ni] = input[ni]; } double ref_coeffs[64 * 64] = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs)); ASSERT_EQ(tx_type_, static_cast(DCT_DCT)); libaom_test::reference_hybrid_2d(ref_input, ref_coeffs, tx_type_, tx_size_); DECLARE_ALIGNED(16, int32_t, ref_coeffs_int[64 * 64]) = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(ref_coeffs_int)); for (int ni = 0; ni < txfm2d_size; ++ni) { ref_coeffs_int[ni] = (int32_t)round(ref_coeffs[ni]); } inv_txfm_func(ref_coeffs_int, expected, tx_w, tx_type_, bd); } else { // Compare original input vs forward HT + inverse HT. for (int ni = 0; ni < txfm2d_size; ++ni) { expected[ni] = input[ni]; } } DECLARE_ALIGNED(16, int32_t, coeffs[64 * 64]) = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(coeffs)); fwd_txfm_func(input, coeffs, tx_w, tx_type_, bd); DECLARE_ALIGNED(16, uint16_t, actual[64 * 64]) = { 0 }; ASSERT_LE(txfm2d_size, NELEMENTS(actual)); inv_txfm_func(coeffs, actual, tx_w, tx_type_, bd); double actual_max_error = 0; for (int ni = 0; ni < txfm2d_size; ++ni) { const double this_error = abs(expected[ni] - actual[ni]); actual_max_error = AOMMAX(actual_max_error, this_error); } EXPECT_GE(max_error_, actual_max_error) << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_name[tx_type_]; if (actual_max_error > max_error_) { // exit early. break; } avg_abs_error += compute_avg_abs_error( expected, actual, txfm2d_size); } avg_abs_error /= count; EXPECT_GE(max_avg_error_, avg_abs_error) << " tx_w: " << tx_w << " tx_h " << tx_h << " tx_type: " << tx_type_name[tx_type_]; } private: bool TxfmUsesApproximation() { if (tx_size_wide[tx_size_] == 64 || tx_size_high[tx_size_] == 64) { return true; } return false; } int max_error_; double max_avg_error_; TxType tx_type_; TxSize tx_size_; }; static int max_error_ls[TX_SIZES_ALL] = { 2, // 4x4 transform 2, // 8x8 transform 2, // 16x16 transform 4, // 32x32 transform 3, // 64x64 transform 2, // 4x8 transform 2, // 8x4 transform 2, // 8x16 transform 2, // 16x8 transform 3, // 16x32 transform 3, // 32x16 transform 5, // 32x64 transform 5, // 64x32 transform 2, // 4x16 transform 2, // 16x4 transform 2, // 8x32 transform 2, // 32x8 transform 3, // 16x64 transform 3, // 64x16 transform }; static double avg_error_ls[TX_SIZES_ALL] = { 0.002, // 4x4 transform 0.05, // 8x8 transform 0.07, // 16x16 transform 0.4, // 32x32 transform 0.3, // 64x64 transform 0.02, // 4x8 transform 0.02, // 8x4 transform 0.04, // 8x16 transform 0.07, // 16x8 transform 0.4, // 16x32 transform 0.5, // 32x16 transform 0.38, // 32x64 transform 0.39, // 64x32 transform 0.2, // 4x16 transform 0.2, // 16x4 transform 0.2, // 8x32 transform 0.2, // 32x8 transform 0.38, // 16x64 transform 0.38, // 64x16 transform }; vector GetInvTxfm2dParamList() { vector param_list; for (int s = 0; s < TX_SIZES; ++s) { const int max_error = max_error_ls[s]; const double avg_error = avg_error_ls[s]; for (int t = 0; t < TX_TYPES; ++t) { const TxType tx_type = static_cast(t); const TxSize tx_size = static_cast(s); if (libaom_test::IsTxSizeTypeValid(tx_size, tx_type)) { param_list.push_back( AV1InvTxfm2dParam(tx_type, tx_size, max_error, avg_error)); } } } return param_list; } INSTANTIATE_TEST_SUITE_P(C, AV1InvTxfm2d, ::testing::ValuesIn(GetInvTxfm2dParamList())); TEST_P(AV1InvTxfm2d, RunRoundtripCheck) { RunRoundtripCheck(); } TEST(AV1InvTxfm2d, CfgTest) { for (int bd_idx = 0; bd_idx < BD_NUM; ++bd_idx) { int bd = libaom_test::bd_arr[bd_idx]; int8_t low_range = libaom_test::low_range_arr[bd_idx]; int8_t high_range = libaom_test::high_range_arr[bd_idx]; for (int tx_size = 0; tx_size < TX_SIZES_ALL; ++tx_size) { for (int tx_type = 0; tx_type < TX_TYPES; ++tx_type) { if (libaom_test::IsTxSizeTypeValid(static_cast(tx_size), static_cast(tx_type)) == false) { continue; } TXFM_2D_FLIP_CFG cfg; av1_get_inv_txfm_cfg(static_cast(tx_type), static_cast(tx_size), &cfg); int8_t stage_range_col[MAX_TXFM_STAGE_NUM]; int8_t stage_range_row[MAX_TXFM_STAGE_NUM]; av1_gen_inv_stage_range(stage_range_col, stage_range_row, &cfg, static_cast(tx_size), bd); libaom_test::txfm_stage_range_check(stage_range_col, cfg.stage_num_col, cfg.cos_bit_col, low_range, high_range); libaom_test::txfm_stage_range_check(stage_range_row, cfg.stage_num_row, cfg.cos_bit_row, low_range, high_range); } } } } typedef std::tuple AV1LbdInvTxfm2dParam; class AV1LbdInvTxfm2d : public ::testing::TestWithParam { public: void SetUp() override { target_func_ = GET_PARAM(0); } void RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, int run_times, int gt_int16 = 0); private: LbdInvTxfm2dFunc target_func_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1LbdInvTxfm2d); void AV1LbdInvTxfm2d::RunAV1InvTxfm2dTest(TxType tx_type, TxSize tx_size, int run_times, int gt_int16) { FwdTxfm2dFunc fwd_func_ = libaom_test::fwd_txfm_func_ls[tx_size]; InvTxfm2dFunc ref_func_ = libaom_test::inv_txfm_func_ls[tx_size]; if (fwd_func_ == nullptr || ref_func_ == nullptr || target_func_ == nullptr) { return; } const int bd = 8; const int BLK_WIDTH = 64; const int BLK_SIZE = BLK_WIDTH * BLK_WIDTH; DECLARE_ALIGNED(16, int16_t, input[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(32, int32_t, inv_input[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(16, uint8_t, output[BLK_SIZE]) = { 0 }; DECLARE_ALIGNED(16, uint16_t, ref_output[BLK_SIZE]) = { 0 }; int stride = BLK_WIDTH; int rows = tx_size_high[tx_size]; int cols = tx_size_wide[tx_size]; const int rows_nonezero = AOMMIN(32, rows); const int cols_nonezero = AOMMIN(32, cols); run_times /= (rows * cols); run_times = AOMMAX(1, run_times); const SCAN_ORDER *scan_order = get_default_scan(tx_size, tx_type); const int16_t *scan = scan_order->scan; const int16_t eobmax = rows_nonezero * cols_nonezero; ACMRandom rnd(ACMRandom::DeterministicSeed()); int randTimes = run_times == 1 ? (eobmax + 500) : 1; for (int cnt = 0; cnt < randTimes; ++cnt) { const int16_t max_in = (1 << (bd)) - 1; for (int r = 0; r < BLK_WIDTH; ++r) { for (int c = 0; c < BLK_WIDTH; ++c) { input[r * cols + c] = (cnt == 0) ? max_in : rnd.Rand8Extremes(); output[r * stride + c] = (cnt == 0) ? 128 : rnd.Rand8(); ref_output[r * stride + c] = output[r * stride + c]; } } fwd_func_(input, inv_input, stride, tx_type, bd); // produce eob input by setting high freq coeffs to zero const int eob = AOMMIN(cnt + 1, eobmax); for (int i = eob; i < eobmax; i++) { inv_input[scan[i]] = 0; } if (gt_int16) { inv_input[scan[eob - 1]] = ((int32_t)INT16_MAX * 100 / 141); } aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { ref_func_(inv_input, ref_output, stride, tx_type, bd); } aom_usec_timer_mark(&timer); const double time1 = static_cast(aom_usec_timer_elapsed(&timer)); aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { target_func_(inv_input, output, stride, tx_type, tx_size, eob); } aom_usec_timer_mark(&timer); const double time2 = static_cast(aom_usec_timer_elapsed(&timer)); if (run_times > 10) { printf("txfm[%d] %3dx%-3d:%7.2f/%7.2fns", tx_type, cols, rows, time1, time2); printf("(%3.2f)\n", time1 / time2); } for (int r = 0; r < rows; ++r) { for (int c = 0; c < cols; ++c) { uint8_t ref_value = static_cast(ref_output[r * stride + c]); if (ref_value != output[r * stride + c]) { printf(" "); } ASSERT_EQ(ref_value, output[r * stride + c]) << "[" << r << "," << c << "] " << cnt << " tx_size: " << cols << "x" << rows << " tx_type: " << tx_type_name[tx_type] << " eob " << eob; } } } } TEST_P(AV1LbdInvTxfm2d, match) { for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { for (int i = 0; i < (int)TX_TYPES; ++i) { if (libaom_test::IsTxSizeTypeValid(static_cast(j), static_cast(i))) { RunAV1InvTxfm2dTest(static_cast(i), static_cast(j), 1); } } } } TEST_P(AV1LbdInvTxfm2d, gt_int16) { static const TxType types[] = { DCT_DCT, ADST_DCT, FLIPADST_DCT, IDTX, V_DCT, H_DCT, H_ADST, H_FLIPADST }; for (int j = 0; j < (int)(TX_SIZES_ALL); ++j) { const TxSize sz = static_cast(j); for (uint8_t i = 0; i < sizeof(types) / sizeof(types[0]); ++i) { const TxType tp = types[i]; if (libaom_test::IsTxSizeTypeValid(sz, tp)) { RunAV1InvTxfm2dTest(tp, sz, 1, 1); } } } } TEST_P(AV1LbdInvTxfm2d, DISABLED_Speed) { for (int j = 1; j < (int)(TX_SIZES_ALL); ++j) { for (int i = 0; i < (int)TX_TYPES; ++i) { if (libaom_test::IsTxSizeTypeValid(static_cast(j), static_cast(i))) { RunAV1InvTxfm2dTest(static_cast(i), static_cast(j), 10000000); } } } } #if HAVE_SSSE3 extern "C" void av1_lowbd_inv_txfm2d_add_ssse3(const int32_t *input, uint8_t *output, int stride, TxType tx_type, TxSize tx_size, int eob); INSTANTIATE_TEST_SUITE_P(SSSE3, AV1LbdInvTxfm2d, ::testing::Values(av1_lowbd_inv_txfm2d_add_ssse3)); #endif // HAVE_SSSE3 #if HAVE_AVX2 extern "C" void av1_lowbd_inv_txfm2d_add_avx2(const int32_t *input, uint8_t *output, int stride, TxType tx_type, TxSize tx_size, int eob); INSTANTIATE_TEST_SUITE_P(AVX2, AV1LbdInvTxfm2d, ::testing::Values(av1_lowbd_inv_txfm2d_add_avx2)); #endif // HAVE_AVX2 #if HAVE_NEON extern "C" void av1_lowbd_inv_txfm2d_add_neon(const int32_t *input, uint8_t *output, int stride, TX_TYPE tx_type, TX_SIZE tx_size, int eob); INSTANTIATE_TEST_SUITE_P(NEON, AV1LbdInvTxfm2d, ::testing::Values(av1_lowbd_inv_txfm2d_add_neon)); #endif // HAVE_NEON } // namespace