/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "aom/aom_integer.h" #include "aom_ports/aom_timer.h" #include "av1/encoder/ml.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "config/av1_rtcd.h" #include "test/util.h" #include "test/register_state_check.h" #include "test/acm_random.h" namespace { typedef void (*NnPredict_Func)(const float *const input_nodes, const NN_CONFIG *const nn_config, int reduce_prec, float *const output); typedef std::tuple NnPredictTestParam; const float epsilon = 1e-3f; // Error threshold for functional equivalence class NnPredictTest : public ::testing::TestWithParam { public: void SetUp() override { const int MAX_NODES2 = NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; // Allocate two massive buffers on the heap for edge weights and node bias // Then set-up the double-dimension arrays pointing into the big buffers weights_buf = (float *)aom_malloc(MAX_NODES2 * (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*weights_buf)); bias_buf = (float *)aom_malloc(NN_MAX_NODES_PER_LAYER * (NN_MAX_HIDDEN_LAYERS + 1) * sizeof(*bias_buf)); ASSERT_NE(weights_buf, nullptr); ASSERT_NE(bias_buf, nullptr); for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { weights[i] = &weights_buf[i * MAX_NODES2]; bias[i] = &bias_buf[i * NN_MAX_NODES_PER_LAYER]; } target_func_ = GET_PARAM(0); } void TearDown() override { aom_free(weights_buf); aom_free(bias_buf); } void RunNnPredictTest(const NN_CONFIG *const shape); void RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times); void RunNnPredictTest_all(const NN_CONFIG *const shapes, const int num_shapes); void RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, const int num_shapes, const int run_times); private: NnPredict_Func target_func_; libaom_test::ACMRandom rng_; float *weights[NN_MAX_HIDDEN_LAYERS + 1] = {}; float *bias[NN_MAX_HIDDEN_LAYERS + 1] = {}; float *weights_buf = nullptr, *bias_buf = nullptr; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(NnPredictTest); void NnPredictTest::RunNnPredictTest(const NN_CONFIG *const shape) { float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; NN_CONFIG nn_config; memcpy(&nn_config, shape, sizeof(nn_config)); char shape_str[32] = { 0 }; snprintf(shape_str, sizeof(shape_str), "%d", shape->num_inputs); for (int layer = 0; layer < shape->num_hidden_layers; layer++) snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str), "x%d", shape->num_hidden_nodes[layer]); snprintf(&shape_str[strlen(shape_str)], sizeof(shape_str) - strlen(shape_str), "x%d", shape->num_outputs); for (int i = 0; i < NN_MAX_HIDDEN_LAYERS + 1; i++) { nn_config.weights[i] = weights[i]; nn_config.bias[i] = bias[i]; } for (int iter = 0; iter < 10000 && !HasFatalFailure(); ++iter) { for (int node = 0; node < shape->num_inputs; node++) { inputs[node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); } for (int layer = 0; layer < shape->num_hidden_layers; layer++) { for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); } for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; node++) { weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); } } // Now the outputs: int layer = shape->num_hidden_layers; for (int node = 0; node < NN_MAX_NODES_PER_LAYER; node++) { bias[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); } for (int node = 0; node < NN_MAX_NODES_PER_LAYER * NN_MAX_NODES_PER_LAYER; node++) { weights[layer][node] = ((float)rng_.Rand31() - (1 << 30)) / (1u << 31); } av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); target_func_(inputs, &nn_config, 0, outputs_test); for (int node = 0; node < shape->num_outputs; node++) { if (outputs_ref[node] < epsilon) { ASSERT_LE(outputs_test[node], epsilon) << "Reference output was near-zero, test output was not (" << shape_str << ")"; } else { const float error = outputs_ref[node] - outputs_test[node]; const float relative_error = fabsf(error / outputs_ref[node]); ASSERT_LE(relative_error, epsilon) << "Excessive relative error between reference and test (" << shape_str << ")"; } } } } void NnPredictTest::RunNnPredictSpeedTest(const NN_CONFIG *const shape, const int run_times) { float inputs[NN_MAX_NODES_PER_LAYER] = { 0 }; float outputs_test[NN_MAX_NODES_PER_LAYER] = { 0 }; float outputs_ref[NN_MAX_NODES_PER_LAYER] = { 0 }; NN_CONFIG nn_config; memcpy(&nn_config, shape, sizeof(nn_config)); for (int i = 0; i < NN_MAX_HIDDEN_LAYERS; i++) { nn_config.weights[i] = weights[i]; nn_config.bias[i] = bias[i]; } // Don't bother actually changing the values for inputs/weights/bias: it // shouldn't make any difference for a speed test. aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { av1_nn_predict_c(inputs, &nn_config, 0, outputs_ref); } aom_usec_timer_mark(&timer); const double time1 = static_cast(aom_usec_timer_elapsed(&timer)); aom_usec_timer_start(&timer); for (int i = 0; i < run_times; ++i) { target_func_(inputs, &nn_config, 0, outputs_test); } aom_usec_timer_mark(&timer); const double time2 = static_cast(aom_usec_timer_elapsed(&timer)); printf("%d", shape->num_inputs); for (int layer = 0; layer < shape->num_hidden_layers; layer++) printf("x%d", shape->num_hidden_nodes[layer]); printf("x%d: ", shape->num_outputs); printf("%7.2f/%7.2fns (%3.2f)\n", time1, time2, time1 / time2); } // This is all the neural network shapes observed executed in a few different // runs of the encoder. It also conveniently covers all the kernels // implemented. static const NN_CONFIG kShapes[] = { { 37, 1, 2, { 16, 24 }, {}, {} }, { 24, 24, 1, { 12 }, {}, {} }, { 10, 16, 1, { 64 }, {}, {} }, { 12, 1, 1, { 12 }, {}, {} }, { 12, 1, 1, { 24 }, {}, {} }, { 12, 1, 1, { 32 }, {}, {} }, { 18, 4, 1, { 24 }, {}, {} }, { 18, 4, 1, { 32 }, {}, {} }, { 4, 1, 1, { 16 }, {}, {} }, { 8, 1, 0, { 0 }, {}, {} }, { 8, 4, 1, { 16 }, {}, {} }, { 8, 1, 1, { 32 }, {}, {} }, { 9, 3, 1, { 32 }, {}, {} }, { 8, 4, 0, { 0 }, {}, {} }, { 8, 8, 0, { 0 }, {}, {} }, { 4, 4, 1, { 8 }, {}, {} }, { 4, 3, 0, { 64 }, {}, {} }, }; void NnPredictTest::RunNnPredictTest_all(const NN_CONFIG *const shapes, const int num_shapes) { for (int i = 0; i < num_shapes; i++) RunNnPredictTest(&shapes[i]); } void NnPredictTest::RunNnPredictSpeedTest_all(const NN_CONFIG *const shapes, const int num_shapes, const int run_times) { for (int i = 0; i < num_shapes; i++) NnPredictTest::RunNnPredictSpeedTest(&shapes[i], run_times); } TEST_P(NnPredictTest, RandomValues) { RunNnPredictTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0])); } TEST_P(NnPredictTest, DISABLED_Speed) { RunNnPredictSpeedTest_all(kShapes, sizeof(kShapes) / sizeof(kShapes[0]), 10000000); } #if !CONFIG_EXCLUDE_SIMD_MISMATCH #if HAVE_SSE3 INSTANTIATE_TEST_SUITE_P(SSE3, NnPredictTest, ::testing::Values(av1_nn_predict_sse3)); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P(AVX2, NnPredictTest, ::testing::Values(av1_nn_predict_avx2)); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P(NEON, NnPredictTest, ::testing::Values(av1_nn_predict_neon)); #endif #endif // !CONFIG_EXCLUDE_SIMD_MISMATCH } // namespace