/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "test/av1_txfm_test.h" #include #include #include namespace libaom_test { const char *tx_type_name[] = { "DCT_DCT", "ADST_DCT", "DCT_ADST", "ADST_ADST", "FLIPADST_DCT", "DCT_FLIPADST", "FLIPADST_FLIPADST", "ADST_FLIPADST", "FLIPADST_ADST", "IDTX", "V_DCT", "H_DCT", "V_ADST", "H_ADST", "V_FLIPADST", "H_FLIPADST", }; int get_txfm1d_size(TX_SIZE tx_size) { return tx_size_wide[tx_size]; } void get_txfm1d_type(TX_TYPE txfm2d_type, TYPE_TXFM *type0, TYPE_TXFM *type1) { switch (txfm2d_type) { case DCT_DCT: *type0 = TYPE_DCT; *type1 = TYPE_DCT; break; case ADST_DCT: *type0 = TYPE_ADST; *type1 = TYPE_DCT; break; case DCT_ADST: *type0 = TYPE_DCT; *type1 = TYPE_ADST; break; case ADST_ADST: *type0 = TYPE_ADST; *type1 = TYPE_ADST; break; case FLIPADST_DCT: *type0 = TYPE_ADST; *type1 = TYPE_DCT; break; case DCT_FLIPADST: *type0 = TYPE_DCT; *type1 = TYPE_ADST; break; case FLIPADST_FLIPADST: *type0 = TYPE_ADST; *type1 = TYPE_ADST; break; case ADST_FLIPADST: *type0 = TYPE_ADST; *type1 = TYPE_ADST; break; case FLIPADST_ADST: *type0 = TYPE_ADST; *type1 = TYPE_ADST; break; case IDTX: *type0 = TYPE_IDTX; *type1 = TYPE_IDTX; break; case H_DCT: *type0 = TYPE_IDTX; *type1 = TYPE_DCT; break; case V_DCT: *type0 = TYPE_DCT; *type1 = TYPE_IDTX; break; case H_ADST: *type0 = TYPE_IDTX; *type1 = TYPE_ADST; break; case V_ADST: *type0 = TYPE_ADST; *type1 = TYPE_IDTX; break; case H_FLIPADST: *type0 = TYPE_IDTX; *type1 = TYPE_ADST; break; case V_FLIPADST: *type0 = TYPE_ADST; *type1 = TYPE_IDTX; break; default: *type0 = TYPE_DCT; *type1 = TYPE_DCT; assert(0); break; } } double Sqrt2 = pow(2, 0.5); double invSqrt2 = 1 / pow(2, 0.5); double dct_matrix(double n, double k, int size) { return cos(PI * (2 * n + 1) * k / (2 * size)); } void reference_dct_1d(const double *in, double *out, int size) { for (int k = 0; k < size; ++k) { out[k] = 0; for (int n = 0; n < size; ++n) { out[k] += in[n] * dct_matrix(n, k, size); } if (k == 0) out[k] = out[k] * invSqrt2; } } void reference_idct_1d(const double *in, double *out, int size) { for (int k = 0; k < size; ++k) { out[k] = 0; for (int n = 0; n < size; ++n) { if (n == 0) out[k] += invSqrt2 * in[n] * dct_matrix(k, n, size); else out[k] += in[n] * dct_matrix(k, n, size); } } } // TODO(any): Copied from the old 'fadst4' (same as the new 'av1_fadst4' // function). Should be replaced by a proper reference function that takes // 'double' input & output. static void fadst4_new(const tran_low_t *input, tran_low_t *output) { tran_high_t x0, x1, x2, x3; tran_high_t s0, s1, s2, s3, s4, s5, s6, s7; x0 = input[0]; x1 = input[1]; x2 = input[2]; x3 = input[3]; if (!(x0 | x1 | x2 | x3)) { output[0] = output[1] = output[2] = output[3] = 0; return; } s0 = sinpi_1_9 * x0; s1 = sinpi_4_9 * x0; s2 = sinpi_2_9 * x1; s3 = sinpi_1_9 * x1; s4 = sinpi_3_9 * x2; s5 = sinpi_4_9 * x3; s6 = sinpi_2_9 * x3; s7 = x0 + x1 - x3; x0 = s0 + s2 + s5; x1 = sinpi_3_9 * s7; x2 = s1 - s3 + s6; x3 = s4; s0 = x0 + x3; s1 = x1; s2 = x2 - x3; s3 = x2 - x0 + x3; // 1-D transform scaling factor is sqrt(2). output[0] = (tran_low_t)fdct_round_shift(s0); output[1] = (tran_low_t)fdct_round_shift(s1); output[2] = (tran_low_t)fdct_round_shift(s2); output[3] = (tran_low_t)fdct_round_shift(s3); } void reference_adst_1d(const double *in, double *out, int size) { if (size == 4) { // Special case. tran_low_t int_input[4]; for (int i = 0; i < 4; ++i) { int_input[i] = static_cast(round(in[i])); } tran_low_t int_output[4]; fadst4_new(int_input, int_output); for (int i = 0; i < 4; ++i) { out[i] = int_output[i]; } return; } for (int k = 0; k < size; ++k) { out[k] = 0; for (int n = 0; n < size; ++n) { out[k] += in[n] * sin(PI * (2 * n + 1) * (2 * k + 1) / (4 * size)); } } } void reference_idtx_1d(const double *in, double *out, int size) { double scale = 0; if (size == 4) scale = Sqrt2; else if (size == 8) scale = 2; else if (size == 16) scale = 2 * Sqrt2; else if (size == 32) scale = 4; else if (size == 64) scale = 4 * Sqrt2; for (int k = 0; k < size; ++k) { out[k] = in[k] * scale; } } void reference_hybrid_1d(double *in, double *out, int size, int type) { if (type == TYPE_DCT) reference_dct_1d(in, out, size); else if (type == TYPE_ADST) reference_adst_1d(in, out, size); else reference_idtx_1d(in, out, size); } double get_amplification_factor(TX_TYPE tx_type, TX_SIZE tx_size) { TXFM_2D_FLIP_CFG fwd_txfm_flip_cfg; av1_get_fwd_txfm_cfg(tx_type, tx_size, &fwd_txfm_flip_cfg); const int tx_width = tx_size_wide[fwd_txfm_flip_cfg.tx_size]; const int tx_height = tx_size_high[fwd_txfm_flip_cfg.tx_size]; const int8_t *shift = fwd_txfm_flip_cfg.shift; const int amplify_bit = shift[0] + shift[1] + shift[2]; double amplify_factor = amplify_bit >= 0 ? (1 << amplify_bit) : (1.0 / (1 << -amplify_bit)); // For rectangular transforms, we need to multiply by an extra factor. const int rect_type = get_rect_tx_log_ratio(tx_width, tx_height); if (abs(rect_type) == 1) { amplify_factor *= pow(2, 0.5); } return amplify_factor; } void reference_hybrid_2d(double *in, double *out, TX_TYPE tx_type, TX_SIZE tx_size) { // Get transform type and size of each dimension. TYPE_TXFM type0; TYPE_TXFM type1; get_txfm1d_type(tx_type, &type0, &type1); const int tx_width = tx_size_wide[tx_size]; const int tx_height = tx_size_high[tx_size]; std::unique_ptr temp_in( new (std::nothrow) double[AOMMAX(tx_width, tx_height)]); std::unique_ptr temp_out( new (std::nothrow) double[AOMMAX(tx_width, tx_height)]); std::unique_ptr out_interm( new (std::nothrow) double[tx_width * tx_height]); ASSERT_NE(temp_in, nullptr); ASSERT_NE(temp_out, nullptr); ASSERT_NE(out_interm, nullptr); // Transform columns. for (int c = 0; c < tx_width; ++c) { for (int r = 0; r < tx_height; ++r) { temp_in[r] = in[r * tx_width + c]; } reference_hybrid_1d(temp_in.get(), temp_out.get(), tx_height, type0); for (int r = 0; r < tx_height; ++r) { out_interm[r * tx_width + c] = temp_out[r]; } } // Transform rows. for (int r = 0; r < tx_height; ++r) { reference_hybrid_1d(out_interm.get() + r * tx_width, temp_out.get(), tx_width, type1); for (int c = 0; c < tx_width; ++c) { out[c * tx_height + r] = temp_out[c]; } } // These transforms use an approximate 2D DCT transform, by only keeping the // top-left quarter of the coefficients, and repacking them in the first // quarter indices. // TODO(urvang): Refactor this code. if (tx_width == 64 && tx_height == 64) { // tx_size == TX_64X64 // Zero out top-right 32x32 area. for (int col = 0; col < 32; ++col) { memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); } // Zero out the bottom 64x32 area. memset(out + 32 * 64, 0, 32 * 64 * sizeof(*out)); // Re-pack non-zero coeffs in the first 32x32 indices. for (int col = 1; col < 32; ++col) { memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); } } else if (tx_width == 32 && tx_height == 64) { // tx_size == TX_32X64 // Zero out right 32x32 area. for (int col = 0; col < 32; ++col) { memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); } // Re-pack non-zero coeffs in the first 32x32 indices. for (int col = 1; col < 32; ++col) { memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); } } else if (tx_width == 64 && tx_height == 32) { // tx_size == TX_64X32 // Zero out the bottom 32x32 area. memset(out + 32 * 32, 0, 32 * 32 * sizeof(*out)); // Note: no repacking needed here. } else if (tx_width == 16 && tx_height == 64) { // tx_size == TX_16X64 // Note: no repacking needed here. // Zero out right 32x16 area. for (int col = 0; col < 16; ++col) { memset(out + col * 64 + 32, 0, 32 * sizeof(*out)); } // Re-pack non-zero coeffs in the first 32x16 indices. for (int col = 1; col < 16; ++col) { memcpy(out + col * 32, out + col * 64, 32 * sizeof(*out)); } } else if (tx_width == 64 && tx_height == 16) { // tx_size == TX_64X16 // Zero out the bottom 16x32 area. memset(out + 16 * 32, 0, 16 * 32 * sizeof(*out)); } // Apply appropriate scale. const double amplify_factor = get_amplification_factor(tx_type, tx_size); for (int c = 0; c < tx_width; ++c) { for (int r = 0; r < tx_height; ++r) { out[c * tx_height + r] *= amplify_factor; } } } template void fliplr(Type *dest, int width, int height, int stride) { for (int r = 0; r < height; ++r) { for (int c = 0; c < width / 2; ++c) { const Type tmp = dest[r * stride + c]; dest[r * stride + c] = dest[r * stride + width - 1 - c]; dest[r * stride + width - 1 - c] = tmp; } } } template void flipud(Type *dest, int width, int height, int stride) { for (int c = 0; c < width; ++c) { for (int r = 0; r < height / 2; ++r) { const Type tmp = dest[r * stride + c]; dest[r * stride + c] = dest[(height - 1 - r) * stride + c]; dest[(height - 1 - r) * stride + c] = tmp; } } } template void fliplrud(Type *dest, int width, int height, int stride) { for (int r = 0; r < height / 2; ++r) { for (int c = 0; c < width; ++c) { const Type tmp = dest[r * stride + c]; dest[r * stride + c] = dest[(height - 1 - r) * stride + width - 1 - c]; dest[(height - 1 - r) * stride + width - 1 - c] = tmp; } } } template void fliplr(double *dest, int width, int height, int stride); template void flipud(double *dest, int width, int height, int stride); template void fliplrud(double *dest, int width, int height, int stride); int bd_arr[BD_NUM] = { 8, 10, 12 }; int8_t low_range_arr[BD_NUM] = { 18, 32, 32 }; int8_t high_range_arr[BD_NUM] = { 32, 32, 32 }; void txfm_stage_range_check(const int8_t *stage_range, int stage_num, int8_t cos_bit, int low_range, int high_range) { for (int i = 0; i < stage_num; ++i) { EXPECT_LE(stage_range[i], low_range); ASSERT_LE(stage_range[i] + cos_bit, high_range) << "stage = " << i; } for (int i = 0; i < stage_num - 1; ++i) { // make sure there is no overflow while doing half_btf() ASSERT_LE(stage_range[i + 1] + cos_bit, high_range) << "stage = " << i; } } } // namespace libaom_test