/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "test/acm_random.h" #include "aom/aom_integer.h" #include "aom_dsp/bitreader.h" #include "aom_dsp/bitwriter.h" using libaom_test::ACMRandom; namespace { const int num_tests = 10; } // namespace TEST(AV1, TestBitIO) { ACMRandom rnd(ACMRandom::DeterministicSeed()); for (int n = 0; n < num_tests; ++n) { for (int method = 0; method <= 7; ++method) { // we generate various proba const int kBitsToTest = 1000; uint8_t probas[kBitsToTest]; for (int i = 0; i < kBitsToTest; ++i) { const int parity = i & 1; /* clang-format off */ probas[i] = (method == 0) ? 0 : (method == 1) ? 255 : (method == 2) ? 128 : (method == 3) ? rnd.Rand8() : (method == 4) ? (parity ? 0 : 255) : // alternate between low and high proba: (method == 5) ? (parity ? rnd(128) : 255 - rnd(128)) : (method == 6) ? (parity ? rnd(64) : 255 - rnd(64)) : (parity ? rnd(32) : 255 - rnd(32)); /* clang-format on */ } for (int bit_method = 0; bit_method <= 3; ++bit_method) { const int random_seed = 6432; const int kBufferSize = 10000; ACMRandom bit_rnd(random_seed); aom_writer bw; uint8_t bw_buffer[kBufferSize]; aom_start_encode(&bw, bw_buffer); int bit = (bit_method == 0) ? 0 : (bit_method == 1) ? 1 : 0; for (int i = 0; i < kBitsToTest; ++i) { if (bit_method == 2) { bit = (i & 1); } else if (bit_method == 3) { bit = bit_rnd(2); } aom_write(&bw, bit, static_cast(probas[i])); } GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); aom_reader br; aom_reader_init(&br, bw_buffer, bw.pos); bit_rnd.Reset(random_seed); for (int i = 0; i < kBitsToTest; ++i) { if (bit_method == 2) { bit = (i & 1); } else if (bit_method == 3) { bit = bit_rnd(2); } GTEST_ASSERT_EQ(aom_read(&br, probas[i], nullptr), bit) << "pos: " << i << " / " << kBitsToTest << " bit_method: " << bit_method << " method: " << method; } } } } } #define FRAC_DIFF_TOTAL_ERROR 0.18 TEST(AV1, TestTell) { const int kBufferSize = 10000; aom_writer bw; uint8_t bw_buffer[kBufferSize]; const int kSymbols = 1024; // Coders are noisier at low probabilities, so we start at p = 4. for (int p = 4; p < 256; p++) { double probability = p / 256.; aom_start_encode(&bw, bw_buffer); for (int i = 0; i < kSymbols; i++) { aom_write(&bw, 0, p); } GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); aom_reader br; aom_reader_init(&br, bw_buffer, bw.pos); uint32_t last_tell = aom_reader_tell(&br); uint32_t last_tell_frac = aom_reader_tell_frac(&br); double frac_diff_total = 0; GTEST_ASSERT_GE(aom_reader_tell(&br), 0u); GTEST_ASSERT_LE(aom_reader_tell(&br), 1u); ASSERT_FALSE(aom_reader_has_overflowed(&br)); for (int i = 0; i < kSymbols; i++) { aom_read(&br, p, nullptr); uint32_t tell = aom_reader_tell(&br); uint32_t tell_frac = aom_reader_tell_frac(&br); GTEST_ASSERT_GE(tell, last_tell) << "tell: " << tell << ", last_tell: " << last_tell; GTEST_ASSERT_GE(tell_frac, last_tell_frac) << "tell_frac: " << tell_frac << ", last_tell_frac: " << last_tell_frac; // Frac tell should round up to tell. GTEST_ASSERT_EQ(tell, (tell_frac + 7) >> 3); last_tell = tell; frac_diff_total += fabs(((tell_frac - last_tell_frac) / 8.0) + log2(probability)); last_tell_frac = tell_frac; } const uint32_t expected = (uint32_t)(-kSymbols * log2(probability)); // Last tell should be close to the expected value. GTEST_ASSERT_LE(last_tell, expected + 20) << " last_tell: " << last_tell; // The average frac_diff error should be pretty small. GTEST_ASSERT_LE(frac_diff_total / kSymbols, FRAC_DIFF_TOTAL_ERROR) << " frac_diff_total: " << frac_diff_total; ASSERT_FALSE(aom_reader_has_overflowed(&br)); } } TEST(AV1, TestHasOverflowed) { const int kBufferSize = 10000; aom_writer bw; uint8_t bw_buffer[kBufferSize]; const int kSymbols = 1024; // Coders are noisier at low probabilities, so we start at p = 4. for (int p = 4; p < 256; p++) { aom_start_encode(&bw, bw_buffer); for (int i = 0; i < kSymbols; i++) { aom_write(&bw, 1, p); } GTEST_ASSERT_GE(aom_stop_encode(&bw), 0); aom_reader br; aom_reader_init(&br, bw_buffer, bw.pos); ASSERT_FALSE(aom_reader_has_overflowed(&br)); for (int i = 0; i < kSymbols; i++) { GTEST_ASSERT_EQ(aom_read(&br, p, nullptr), 1); ASSERT_FALSE(aom_reader_has_overflowed(&br)); } // In the worst case, the encoder uses just a tiny fraction of the last // byte in the buffer. So to guarantee that aom_reader_has_overflowed() // returns true, we have to consume very nearly 8 additional bits of data. // In the worse case, one of the bits in that byte will be 1, and the rest // will be zero. Once we are past that 1 bit, when the probability of // reading zero symbol from aom_read() is high, each additional symbol read // will consume very little additional data (in the case that p == 255, // approximately -log_2(255/256) ~= 0.0056 bits). In that case it would // take around 178 calls to consume more than 8 bits. That is only an upper // bound. In practice we are not guaranteed to hit the worse case and can // get away with 174 calls. for (int i = 0; i < 174; i++) { aom_read(&br, p, nullptr); } ASSERT_TRUE(aom_reader_has_overflowed(&br)); } }