/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom/aom_codec.h" #include "aom/aom_integer.h" #include "aom_dsp/variance.h" #include "aom_mem/aom_mem.h" #include "aom_ports/aom_timer.h" #include "aom_ports/mem.h" #include "av1/common/reconinter.h" #include "av1/encoder/reconinter_enc.h" #include "test/acm_random.h" #include "test/register_state_check.h" #include "test/util.h" #include "third_party/googletest/src/googletest/include/gtest/gtest.h" namespace { typedef void (*comp_mask_pred_func)(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask); typedef void (*comp_avg_pred_func)(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride); #if HAVE_SSSE3 || HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON const BLOCK_SIZE kCompMaskPredParams[] = { BLOCK_8X8, BLOCK_8X16, BLOCK_8X32, BLOCK_16X8, BLOCK_16X16, BLOCK_16X32, BLOCK_32X8, BLOCK_32X16, BLOCK_32X32 }; #endif class AV1CompMaskPredBase : public ::testing::Test { public: ~AV1CompMaskPredBase() override; void SetUp() override; void TearDown() override; protected: bool CheckResult(int width, int height) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const int idx = y * width + x; if (comp_pred1_[idx] != comp_pred2_[idx]) { printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, y, x); printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]); return false; } } } return true; } libaom_test::ACMRandom rnd_; uint8_t *comp_pred1_; uint8_t *comp_pred2_; uint8_t *pred_; uint8_t *ref_buffer_; uint8_t *ref_; }; AV1CompMaskPredBase::~AV1CompMaskPredBase() = default; void AV1CompMaskPredBase::SetUp() { rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed()); av1_init_wedge_masks(); comp_pred1_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(comp_pred1_, nullptr); comp_pred2_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(comp_pred2_, nullptr); pred_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(pred_, nullptr); // The biggest block size is MAX_SB_SQUARE(128*128), however for the // convolution we need to access 3 bytes before and 4 bytes after (for an // 8-tap filter), in both directions, so we need to allocate // (128 + 7) * (128 + 7) = MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49 ref_buffer_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49); ASSERT_NE(ref_buffer_, nullptr); // Start of the actual block where the convolution will be computed ref_ = ref_buffer_ + (3 * MAX_SB_SIZE + 3); for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand8(); } for (int i = 0; i < MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49; ++i) { ref_buffer_[i] = rnd_.Rand8(); } } void AV1CompMaskPredBase::TearDown() { aom_free(comp_pred1_); aom_free(comp_pred2_); aom_free(pred_); aom_free(ref_buffer_); } typedef std::tuple CompMaskPredParam; class AV1CompMaskPredTest : public AV1CompMaskPredBase, public ::testing::WithParamInterface { protected: void RunCheckOutput(comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv); void RunSpeedTest(comp_mask_pred_func test_impl, BLOCK_SIZE bsize); }; void AV1CompMaskPredTest::RunCheckOutput(comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int wedge_types = get_wedge_types_lookup(bsize); for (int wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize); aom_comp_mask_pred_c(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w, inv); test_impl(comp_pred2_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w, inv); ASSERT_EQ(CheckResult(w, h), true) << " wedge " << wedge_index << " inv " << inv; } } void AV1CompMaskPredTest::RunSpeedTest(comp_mask_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int wedge_types = get_wedge_types_lookup(bsize); int wedge_index = wedge_types / 2; const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize); const int num_loops = 1000000000 / (w + h); comp_mask_pred_func funcs[2] = { aom_comp_mask_pred_c, test_impl }; double elapsed_time[2] = { 0 }; for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); comp_mask_pred_func func = funcs[i]; for (int j = 0; j < num_loops; ++j) { func(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE, mask, w, 0); } aom_usec_timer_mark(&timer); double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time / num_loops; } printf("compMask %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CompMaskPredTest); TEST_P(AV1CompMaskPredTest, CheckOutput) { // inv = 0, 1 RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 0); RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 1); } TEST_P(AV1CompMaskPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1)); } #if HAVE_SSSE3 INSTANTIATE_TEST_SUITE_P( SSSE3, AV1CompMaskPredTest, ::testing::Combine(::testing::Values(&aom_comp_mask_pred_ssse3), ::testing::ValuesIn(kCompMaskPredParams))); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, AV1CompMaskPredTest, ::testing::Combine(::testing::Values(&aom_comp_mask_pred_avx2), ::testing::ValuesIn(kCompMaskPredParams))); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1CompMaskPredTest, ::testing::Combine(::testing::Values(&aom_comp_mask_pred_neon), ::testing::ValuesIn(kCompMaskPredParams))); #endif #if HAVE_SSSE3 || HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON const BLOCK_SIZE kValidBlockSize[] = { BLOCK_4X4, BLOCK_8X8, BLOCK_8X16, BLOCK_8X32, BLOCK_16X8, BLOCK_16X16, BLOCK_16X32, BLOCK_32X8, BLOCK_32X16, BLOCK_32X32, BLOCK_32X64, BLOCK_64X32, BLOCK_64X64, BLOCK_64X128, BLOCK_128X64, BLOCK_128X128, BLOCK_16X64, BLOCK_64X16 }; #endif typedef void (*upsampled_pred_func)(MACROBLOCKD *xd, const AV1_COMMON *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref, int ref_stride, int subpel_search); typedef std::tuple UpsampledPredParam; class AV1UpsampledPredTest : public AV1CompMaskPredBase, public ::testing::WithParamInterface { protected: void RunCheckOutput(upsampled_pred_func test_impl, BLOCK_SIZE bsize); void RunSpeedTest(upsampled_pred_func test_impl, BLOCK_SIZE bsize, int havSub); }; void AV1UpsampledPredTest::RunCheckOutput(upsampled_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; for (int subpel_search = USE_4_TAPS; subpel_search <= USE_8_TAPS; ++subpel_search) { // loop through subx and suby for (int sub = 0; sub < 8 * 8; ++sub) { int subx = sub & 0x7; int suby = (sub >> 3); aom_upsampled_pred_c(nullptr, nullptr, 0, 0, nullptr, comp_pred1_, w, h, subx, suby, ref_, MAX_SB_SIZE, subpel_search); test_impl(nullptr, nullptr, 0, 0, nullptr, comp_pred2_, w, h, subx, suby, ref_, MAX_SB_SIZE, subpel_search); ASSERT_EQ(CheckResult(w, h), true) << "sub (" << subx << "," << suby << ")"; } } } void AV1UpsampledPredTest::RunSpeedTest(upsampled_pred_func test_impl, BLOCK_SIZE bsize, int havSub) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int subx = havSub ? 3 : 0; const int suby = havSub ? 4 : 0; const int num_loops = 1000000000 / (w + h); upsampled_pred_func funcs[2] = { aom_upsampled_pred_c, test_impl }; double elapsed_time[2] = { 0 }; int subpel_search = USE_8_TAPS; // set to USE_4_TAPS to test 4-tap filter. for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); upsampled_pred_func func = funcs[i]; for (int j = 0; j < num_loops; ++j) { func(nullptr, nullptr, 0, 0, nullptr, comp_pred1_, w, h, subx, suby, ref_, MAX_SB_SIZE, subpel_search); } aom_usec_timer_mark(&timer); double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time / num_loops; } printf("UpsampledPred[%d] %3dx%-3d:%7.2f/%7.2fns", havSub, w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1UpsampledPredTest); TEST_P(AV1UpsampledPredTest, CheckOutput) { RunCheckOutput(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1UpsampledPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 1); } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P( SSE2, AV1UpsampledPredTest, ::testing::Combine(::testing::Values(&aom_upsampled_pred_sse2), ::testing::ValuesIn(kValidBlockSize))); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1UpsampledPredTest, ::testing::Combine(::testing::Values(&aom_upsampled_pred_neon), ::testing::ValuesIn(kValidBlockSize))); #endif typedef std::tuple CompAvgPredParam; class AV1CompAvgPredTest : public ::testing::TestWithParam { public: ~AV1CompAvgPredTest() override; void SetUp() override; void TearDown() override; protected: void RunCheckOutput(comp_avg_pred_func test_impl, BLOCK_SIZE bsize); void RunSpeedTest(comp_avg_pred_func test_impl, BLOCK_SIZE bsize); bool CheckResult(int width, int height) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const int idx = y * width + x; if (comp_pred1_[idx] != comp_pred2_[idx]) { printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, x, y); printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]); return false; } } } return true; } libaom_test::ACMRandom rnd_; uint8_t *comp_pred1_; uint8_t *comp_pred2_; uint8_t *pred_; uint8_t *ref_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CompAvgPredTest); AV1CompAvgPredTest::~AV1CompAvgPredTest() = default; void AV1CompAvgPredTest::SetUp() { rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed()); comp_pred1_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(comp_pred1_, nullptr); comp_pred2_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(comp_pred2_, nullptr); pred_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(pred_, nullptr); ref_ = (uint8_t *)aom_memalign(16, MAX_SB_SQUARE); ASSERT_NE(ref_, nullptr); for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand8(); } for (int i = 0; i < MAX_SB_SQUARE; ++i) { ref_[i] = rnd_.Rand8(); } } void AV1CompAvgPredTest::TearDown() { aom_free(comp_pred1_); aom_free(comp_pred2_); aom_free(pred_); aom_free(ref_); } void AV1CompAvgPredTest::RunCheckOutput(comp_avg_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; aom_comp_avg_pred_c(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE); test_impl(comp_pred2_, pred_, w, h, ref_, MAX_SB_SIZE); ASSERT_EQ(CheckResult(w, h), true); } void AV1CompAvgPredTest::RunSpeedTest(comp_avg_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int num_loops = 1000000000 / (w + h); comp_avg_pred_func functions[2] = { aom_comp_avg_pred_c, test_impl }; double elapsed_time[2] = { 0.0 }; for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); comp_avg_pred_func func = functions[i]; for (int j = 0; j < num_loops; ++j) { func(comp_pred1_, pred_, w, h, ref_, MAX_SB_SIZE); } aom_usec_timer_mark(&timer); const double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time; } printf("CompAvgPred %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } TEST_P(AV1CompAvgPredTest, CheckOutput) { RunCheckOutput(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1CompAvgPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1)); } #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, AV1CompAvgPredTest, ::testing::Combine(::testing::Values(&aom_comp_avg_pred_avx2), ::testing::ValuesIn(kValidBlockSize))); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1CompAvgPredTest, ::testing::Combine(::testing::Values(&aom_comp_avg_pred_neon), ::testing::ValuesIn(kValidBlockSize))); #endif #if CONFIG_AV1_HIGHBITDEPTH class AV1HighbdCompMaskPredTestBase : public ::testing::Test { public: ~AV1HighbdCompMaskPredTestBase() override; void SetUp() override; void TearDown() override; protected: bool CheckResult(int width, int height) { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const int idx = y * width + x; if (comp_pred1_[idx] != comp_pred2_[idx]) { printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, y, x); printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]); return false; } } } return true; } libaom_test::ACMRandom rnd_; uint16_t *comp_pred1_; uint16_t *comp_pred2_; uint16_t *pred_; uint16_t *ref_buffer_; uint16_t *ref_; }; AV1HighbdCompMaskPredTestBase::~AV1HighbdCompMaskPredTestBase() = default; void AV1HighbdCompMaskPredTestBase::SetUp() { rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed()); av1_init_wedge_masks(); comp_pred1_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred1_)); ASSERT_NE(comp_pred1_, nullptr); comp_pred2_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred2_)); ASSERT_NE(comp_pred2_, nullptr); pred_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*pred_)); ASSERT_NE(pred_, nullptr); // The biggest block size is MAX_SB_SQUARE(128*128), however for the // convolution we need to access 3 elements before and 4 elements after (for // an 8-tap filter), in both directions, so we need to allocate (128 + 7) * // (128 + 7) = (MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49) * // sizeof(*ref_buffer_) ref_buffer_ = (uint16_t *)aom_memalign( 16, (MAX_SB_SQUARE + (14 * MAX_SB_SIZE) + 49) * sizeof(*ref_buffer_)); ASSERT_NE(ref_buffer_, nullptr); // Start of the actual block where the convolution will be computed ref_ = ref_buffer_ + (3 * MAX_SB_SIZE + 3); } void AV1HighbdCompMaskPredTestBase::TearDown() { aom_free(comp_pred1_); aom_free(comp_pred2_); aom_free(pred_); aom_free(ref_buffer_); } typedef void (*highbd_comp_mask_pred_func)(uint8_t *comp_pred8, const uint8_t *pred8, int width, int height, const uint8_t *ref8, int ref_stride, const uint8_t *mask, int mask_stride, int invert_mask); typedef std::tuple HighbdCompMaskPredParam; class AV1HighbdCompMaskPredTest : public AV1HighbdCompMaskPredTestBase, public ::testing::WithParamInterface { public: ~AV1HighbdCompMaskPredTest() override; protected: void RunCheckOutput(comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv); void RunSpeedTest(comp_mask_pred_func test_impl, BLOCK_SIZE bsize); }; AV1HighbdCompMaskPredTest::~AV1HighbdCompMaskPredTest() = default; void AV1HighbdCompMaskPredTest::RunCheckOutput( highbd_comp_mask_pred_func test_impl, BLOCK_SIZE bsize, int inv) { int bd_ = GET_PARAM(2); const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int wedge_types = get_wedge_types_lookup(bsize); for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) { ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int wedge_index = 0; wedge_index < wedge_types; ++wedge_index) { const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize); aom_highbd_comp_mask_pred_c( CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, inv); test_impl(CONVERT_TO_BYTEPTR(comp_pred2_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, inv); ASSERT_EQ(CheckResult(w, h), true) << " wedge " << wedge_index << " inv " << inv; } } void AV1HighbdCompMaskPredTest::RunSpeedTest( highbd_comp_mask_pred_func test_impl, BLOCK_SIZE bsize) { int bd_ = GET_PARAM(2); const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int wedge_types = get_wedge_types_lookup(bsize); int wedge_index = wedge_types / 2; for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) { ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } const uint8_t *mask = av1_get_contiguous_soft_mask(wedge_index, 1, bsize); const int num_loops = 1000000000 / (w + h); highbd_comp_mask_pred_func funcs[2] = { aom_highbd_comp_mask_pred_c, test_impl }; double elapsed_time[2] = { 0 }; for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); highbd_comp_mask_pred_func func = funcs[i]; for (int j = 0; j < num_loops; ++j) { func(CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, mask, w, 0); } aom_usec_timer_mark(&timer); double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time / num_loops; } printf("compMask %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdCompMaskPredTest); TEST_P(AV1HighbdCompMaskPredTest, CheckOutput) { // inv = 0, 1 RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 0); RunCheckOutput(GET_PARAM(0), GET_PARAM(1), 1); } TEST_P(AV1HighbdCompMaskPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1)); } #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1HighbdCompMaskPredTest, ::testing::Combine(::testing::Values(&aom_highbd_comp_mask_pred_neon), ::testing::ValuesIn(kCompMaskPredParams), ::testing::Range(8, 13, 2))); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, AV1HighbdCompMaskPredTest, ::testing::Combine(::testing::Values(&aom_highbd_comp_mask_pred_avx2), ::testing::ValuesIn(kCompMaskPredParams), ::testing::Range(8, 13, 2))); #endif #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P( SSE2, AV1HighbdCompMaskPredTest, ::testing::Combine(::testing::Values(&aom_highbd_comp_mask_pred_sse2), ::testing::ValuesIn(kCompMaskPredParams), ::testing::Range(8, 13, 2))); #endif typedef void (*highbd_upsampled_pred_func)( MACROBLOCKD *xd, const struct AV1Common *const cm, int mi_row, int mi_col, const MV *const mv, uint8_t *comp_pred8, int width, int height, int subpel_x_q3, int subpel_y_q3, const uint8_t *ref8, int ref_stride, int bd, int subpel_search); typedef std::tuple HighbdUpsampledPredParam; class AV1HighbdUpsampledPredTest : public AV1HighbdCompMaskPredTestBase, public ::testing::WithParamInterface { public: ~AV1HighbdUpsampledPredTest() override; protected: void RunCheckOutput(highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize); void RunSpeedTest(highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize, int havSub); }; AV1HighbdUpsampledPredTest::~AV1HighbdUpsampledPredTest() = default; void AV1HighbdUpsampledPredTest::RunCheckOutput( highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize) { int bd_ = GET_PARAM(2); const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) { ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int subpel_search = 1; subpel_search <= 2; ++subpel_search) { // loop through subx and suby for (int sub = 0; sub < 8 * 8; ++sub) { int subx = sub & 0x7; int suby = (sub >> 3); aom_highbd_upsampled_pred_c(nullptr, nullptr, 0, 0, nullptr, CONVERT_TO_BYTEPTR(comp_pred1_), w, h, subx, suby, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, bd_, subpel_search); test_impl(nullptr, nullptr, 0, 0, nullptr, CONVERT_TO_BYTEPTR(comp_pred2_), w, h, subx, suby, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, bd_, subpel_search); ASSERT_EQ(CheckResult(w, h), true) << "sub (" << subx << "," << suby << ")"; } } } void AV1HighbdUpsampledPredTest::RunSpeedTest( highbd_upsampled_pred_func test_impl, BLOCK_SIZE bsize, int havSub) { int bd_ = GET_PARAM(2); const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int subx = havSub ? 3 : 0; const int suby = havSub ? 4 : 0; for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int i = 0; i < MAX_SB_SQUARE + (8 * MAX_SB_SIZE); ++i) { ref_buffer_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } const int num_loops = 1000000000 / (w + h); highbd_upsampled_pred_func funcs[2] = { &aom_highbd_upsampled_pred_c, test_impl }; double elapsed_time[2] = { 0 }; for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); highbd_upsampled_pred_func func = funcs[i]; int subpel_search = 2; // set to 1 to test 4-tap filter. for (int j = 0; j < num_loops; ++j) { func(nullptr, nullptr, 0, 0, nullptr, CONVERT_TO_BYTEPTR(comp_pred1_), w, h, subx, suby, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE, bd_, subpel_search); } aom_usec_timer_mark(&timer); double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time / num_loops; } printf("CompMaskUp[%d] %3dx%-3d:%7.2f/%7.2fns", havSub, w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdUpsampledPredTest); TEST_P(AV1HighbdUpsampledPredTest, CheckOutput) { RunCheckOutput(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1HighbdUpsampledPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1), 1); } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P( SSE2, AV1HighbdUpsampledPredTest, ::testing::Combine(::testing::Values(&aom_highbd_upsampled_pred_sse2), ::testing::ValuesIn(kValidBlockSize), ::testing::Range(8, 13, 2))); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1HighbdUpsampledPredTest, ::testing::Combine(::testing::Values(&aom_highbd_upsampled_pred_neon), ::testing::ValuesIn(kValidBlockSize), ::testing::Range(8, 13, 2))); #endif typedef void (*highbd_comp_avg_pred_func)(uint8_t *comp_pred, const uint8_t *pred, int width, int height, const uint8_t *ref, int ref_stride); typedef std::tuple HighbdCompAvgPredParam; class AV1HighbdCompAvgPredTest : public ::testing::TestWithParam { public: ~AV1HighbdCompAvgPredTest() override; void SetUp() override; protected: void RunCheckOutput(highbd_comp_avg_pred_func test_impl, BLOCK_SIZE bsize); void RunSpeedTest(highbd_comp_avg_pred_func test_impl, BLOCK_SIZE bsize); bool CheckResult(int width, int height) const { for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { const int idx = y * width + x; if (comp_pred1_[idx] != comp_pred2_[idx]) { printf("%dx%d mismatch @%d(%d,%d) ", width, height, idx, x, y); printf("%d != %d ", comp_pred1_[idx], comp_pred2_[idx]); return false; } } } return true; } libaom_test::ACMRandom rnd_; uint16_t *comp_pred1_; uint16_t *comp_pred2_; uint16_t *pred_; uint16_t *ref_; }; AV1HighbdCompAvgPredTest::~AV1HighbdCompAvgPredTest() { aom_free(comp_pred1_); aom_free(comp_pred2_); aom_free(pred_); aom_free(ref_); } void AV1HighbdCompAvgPredTest::SetUp() { int bd_ = GET_PARAM(2); rnd_.Reset(libaom_test::ACMRandom::DeterministicSeed()); comp_pred1_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred1_)); ASSERT_NE(comp_pred1_, nullptr); comp_pred2_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*comp_pred2_)); ASSERT_NE(comp_pred2_, nullptr); pred_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*pred_)); ASSERT_NE(pred_, nullptr); ref_ = (uint16_t *)aom_memalign(16, MAX_SB_SQUARE * sizeof(*ref_)); ASSERT_NE(ref_, nullptr); for (int i = 0; i < MAX_SB_SQUARE; ++i) { pred_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } for (int i = 0; i < MAX_SB_SQUARE; ++i) { ref_[i] = rnd_.Rand16() & ((1 << bd_) - 1); } } void AV1HighbdCompAvgPredTest::RunCheckOutput( highbd_comp_avg_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; aom_highbd_comp_avg_pred_c(CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE); test_impl(CONVERT_TO_BYTEPTR(comp_pred2_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE); ASSERT_EQ(CheckResult(w, h), true); } void AV1HighbdCompAvgPredTest::RunSpeedTest(highbd_comp_avg_pred_func test_impl, BLOCK_SIZE bsize) { const int w = block_size_wide[bsize]; const int h = block_size_high[bsize]; const int num_loops = 1000000000 / (w + h); highbd_comp_avg_pred_func functions[2] = { aom_highbd_comp_avg_pred_c, test_impl }; double elapsed_time[2] = { 0.0 }; for (int i = 0; i < 2; ++i) { aom_usec_timer timer; aom_usec_timer_start(&timer); highbd_comp_avg_pred_func func = functions[i]; for (int j = 0; j < num_loops; ++j) { func(CONVERT_TO_BYTEPTR(comp_pred1_), CONVERT_TO_BYTEPTR(pred_), w, h, CONVERT_TO_BYTEPTR(ref_), MAX_SB_SIZE); } aom_usec_timer_mark(&timer); const double time = static_cast(aom_usec_timer_elapsed(&timer)); elapsed_time[i] = 1000.0 * time; } printf("HighbdCompAvg %3dx%-3d: %7.2f/%7.2fns", w, h, elapsed_time[0], elapsed_time[1]); printf("(%3.2f)\n", elapsed_time[0] / elapsed_time[1]); } GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdCompAvgPredTest); TEST_P(AV1HighbdCompAvgPredTest, CheckOutput) { RunCheckOutput(GET_PARAM(0), GET_PARAM(1)); } TEST_P(AV1HighbdCompAvgPredTest, DISABLED_Speed) { RunSpeedTest(GET_PARAM(0), GET_PARAM(1)); } #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1HighbdCompAvgPredTest, ::testing::Combine(::testing::Values(&aom_highbd_comp_avg_pred_neon), ::testing::ValuesIn(kValidBlockSize), ::testing::Range(8, 13, 2))); #endif #endif // CONFIG_AV1_HIGHBITDEPTH } // namespace