/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include "config/aom_dsp_rtcd.h" #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "test/acm_random.h" #include "test/util.h" #include "test/register_state_check.h" #include "aom_dsp/flow_estimation/corner_match.h" namespace test_libaom { namespace AV1CornerMatch { using libaom_test::ACMRandom; typedef bool (*ComputeMeanStddevFunc)(const unsigned char *frame, int stride, int x, int y, double *mean, double *one_over_stddev); typedef double (*ComputeCorrFunc)(const unsigned char *frame1, int stride1, int x1, int y1, double mean1, double one_over_stddev1, const unsigned char *frame2, int stride2, int x2, int y2, double mean2, double one_over_stddev2); using std::make_tuple; using std::tuple; typedef tuple CornerMatchParam; class AV1CornerMatchTest : public ::testing::TestWithParam { public: ~AV1CornerMatchTest() override; void SetUp() override; protected: void GenerateInput(uint8_t *input1, uint8_t *input2, int w, int h, int mode); void RunCheckOutput(); void RunSpeedTest(); ComputeMeanStddevFunc target_compute_mean_stddev_func; ComputeCorrFunc target_compute_corr_func; libaom_test::ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1CornerMatchTest); AV1CornerMatchTest::~AV1CornerMatchTest() = default; void AV1CornerMatchTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); target_compute_mean_stddev_func = GET_PARAM(1); target_compute_corr_func = GET_PARAM(2); } void AV1CornerMatchTest::GenerateInput(uint8_t *input1, uint8_t *input2, int w, int h, int mode) { if (mode == 0) { for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) { input1[i * w + j] = rnd_.Rand8(); input2[i * w + j] = rnd_.Rand8(); } } else if (mode == 1) { for (int i = 0; i < h; ++i) for (int j = 0; j < w; ++j) { int v = rnd_.Rand8(); input1[i * w + j] = v; input2[i * w + j] = (v / 2) + (rnd_.Rand8() & 15); } } } void AV1CornerMatchTest::RunCheckOutput() { const int w = 128, h = 128; const int num_iters = 1000; std::unique_ptr input1(new (std::nothrow) uint8_t[w * h]); std::unique_ptr input2(new (std::nothrow) uint8_t[w * h]); ASSERT_NE(input1, nullptr); ASSERT_NE(input2, nullptr); // Test the two extreme cases: // i) Random data, should have correlation close to 0 // ii) Linearly related data + noise, should have correlation close to 1 int mode = GET_PARAM(0); GenerateInput(&input1[0], &input2[0], w, h, mode); for (int i = 0; i < num_iters; ++i) { int x1 = MATCH_SZ_BY2 + rnd_.PseudoUniform(w + 1 - MATCH_SZ); int y1 = MATCH_SZ_BY2 + rnd_.PseudoUniform(h + 1 - MATCH_SZ); int x2 = MATCH_SZ_BY2 + rnd_.PseudoUniform(w + 1 - MATCH_SZ); int y2 = MATCH_SZ_BY2 + rnd_.PseudoUniform(h + 1 - MATCH_SZ); double c_mean1, c_one_over_stddev1, c_mean2, c_one_over_stddev2; bool c_valid1 = aom_compute_mean_stddev_c(input1.get(), w, x1, y1, &c_mean1, &c_one_over_stddev1); bool c_valid2 = aom_compute_mean_stddev_c(input2.get(), w, x2, y2, &c_mean2, &c_one_over_stddev2); double simd_mean1, simd_one_over_stddev1, simd_mean2, simd_one_over_stddev2; bool simd_valid1 = target_compute_mean_stddev_func( input1.get(), w, x1, y1, &simd_mean1, &simd_one_over_stddev1); bool simd_valid2 = target_compute_mean_stddev_func( input2.get(), w, x2, y2, &simd_mean2, &simd_one_over_stddev2); // Run the correlation calculation even if one of the "valid" flags is // false, i.e. if one of the patches doesn't have enough variance. This is // safe because any potential division by 0 is caught in // aom_compute_mean_stddev(), and one_over_stddev is set to 0 instead. // This causes aom_compute_correlation() to return 0, without causing a // division by 0. const double c_corr = aom_compute_correlation_c( input1.get(), w, x1, y1, c_mean1, c_one_over_stddev1, input2.get(), w, x2, y2, c_mean2, c_one_over_stddev2); const double simd_corr = target_compute_corr_func( input1.get(), w, x1, y1, c_mean1, c_one_over_stddev1, input2.get(), w, x2, y2, c_mean2, c_one_over_stddev2); ASSERT_EQ(simd_valid1, c_valid1); ASSERT_EQ(simd_valid2, c_valid2); ASSERT_EQ(simd_mean1, c_mean1); ASSERT_EQ(simd_one_over_stddev1, c_one_over_stddev1); ASSERT_EQ(simd_mean2, c_mean2); ASSERT_EQ(simd_one_over_stddev2, c_one_over_stddev2); ASSERT_EQ(simd_corr, c_corr); } } void AV1CornerMatchTest::RunSpeedTest() { const int w = 16, h = 16; const int num_iters = 1000000; aom_usec_timer ref_timer, test_timer; std::unique_ptr input1(new (std::nothrow) uint8_t[w * h]); std::unique_ptr input2(new (std::nothrow) uint8_t[w * h]); ASSERT_NE(input1, nullptr); ASSERT_NE(input2, nullptr); // Test the two extreme cases: // i) Random data, should have correlation close to 0 // ii) Linearly related data + noise, should have correlation close to 1 int mode = GET_PARAM(0); GenerateInput(&input1[0], &input2[0], w, h, mode); // Time aom_compute_mean_stddev() double c_mean1, c_one_over_stddev1, c_mean2, c_one_over_stddev2; aom_usec_timer_start(&ref_timer); for (int i = 0; i < num_iters; i++) { aom_compute_mean_stddev_c(input1.get(), w, 0, 0, &c_mean1, &c_one_over_stddev1); aom_compute_mean_stddev_c(input2.get(), w, 0, 0, &c_mean2, &c_one_over_stddev2); } aom_usec_timer_mark(&ref_timer); int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); double simd_mean1, simd_one_over_stddev1, simd_mean2, simd_one_over_stddev2; aom_usec_timer_start(&test_timer); for (int i = 0; i < num_iters; i++) { target_compute_mean_stddev_func(input1.get(), w, 0, 0, &simd_mean1, &simd_one_over_stddev1); target_compute_mean_stddev_func(input2.get(), w, 0, 0, &simd_mean2, &simd_one_over_stddev2); } aom_usec_timer_mark(&test_timer); int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "aom_compute_mean_stddev(): c_time=%6d simd_time=%6d " "gain=%.3f\n", elapsed_time_c, elapsed_time_simd, (elapsed_time_c / (double)elapsed_time_simd)); // Time aom_compute_correlation aom_usec_timer_start(&ref_timer); for (int i = 0; i < num_iters; i++) { aom_compute_correlation_c(input1.get(), w, 0, 0, c_mean1, c_one_over_stddev1, input2.get(), w, 0, 0, c_mean2, c_one_over_stddev2); } aom_usec_timer_mark(&ref_timer); elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int i = 0; i < num_iters; i++) { target_compute_corr_func(input1.get(), w, 0, 0, c_mean1, c_one_over_stddev1, input2.get(), w, 0, 0, c_mean2, c_one_over_stddev2); } aom_usec_timer_mark(&test_timer); elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "aom_compute_correlation(): c_time=%6d simd_time=%6d " "gain=%.3f\n", elapsed_time_c, elapsed_time_simd, (elapsed_time_c / (double)elapsed_time_simd)); } TEST_P(AV1CornerMatchTest, CheckOutput) { RunCheckOutput(); } TEST_P(AV1CornerMatchTest, DISABLED_Speed) { RunSpeedTest(); } #if HAVE_SSE4_1 INSTANTIATE_TEST_SUITE_P( SSE4_1, AV1CornerMatchTest, ::testing::Values(make_tuple(0, &aom_compute_mean_stddev_sse4_1, &aom_compute_correlation_sse4_1), make_tuple(1, &aom_compute_mean_stddev_sse4_1, &aom_compute_correlation_sse4_1))); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, AV1CornerMatchTest, ::testing::Values(make_tuple(0, &aom_compute_mean_stddev_avx2, &aom_compute_correlation_avx2), make_tuple(1, &aom_compute_mean_stddev_avx2, &aom_compute_correlation_avx2))); #endif } // namespace AV1CornerMatch } // namespace test_libaom