/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include "test/hiprec_convolve_test_util.h" #include #include #include "av1/common/restoration.h" using std::make_tuple; using std::tuple; namespace libaom_test { // Generate a random pair of filter kernels, using the ranges // of possible values from the loop-restoration experiment static void generate_kernels(ACMRandom *rnd, InterpKernel hkernel, InterpKernel vkernel, int kernel_type = 2) { if (kernel_type == 0) { // Low possible values for filter coefficients, 7-tap kernel hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = WIENER_FILT_TAP0_MINV; hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MINV; hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MINV; hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = vkernel[7] = 0; } else if (kernel_type == 1) { // Max possible values for filter coefficients, 7-tap kernel hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = WIENER_FILT_TAP0_MAXV; hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MAXV; hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MAXV; hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = vkernel[7] = 0; } else if (kernel_type == 2) { // Randomly generated values for filter coefficients, 7-tap kernel hkernel[0] = hkernel[6] = WIENER_FILT_TAP0_MINV + rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 1 - WIENER_FILT_TAP0_MINV); hkernel[1] = hkernel[5] = WIENER_FILT_TAP1_MINV + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); hkernel[2] = hkernel[4] = WIENER_FILT_TAP2_MINV + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); hkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = 0; vkernel[0] = vkernel[6] = WIENER_FILT_TAP0_MINV + rnd->PseudoUniform(WIENER_FILT_TAP0_MAXV + 2 - WIENER_FILT_TAP0_MINV); vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MINV + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 2 - WIENER_FILT_TAP1_MINV); vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MINV + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 2 - WIENER_FILT_TAP2_MINV); vkernel[3] = -2 * (vkernel[0] + vkernel[1] + vkernel[2]); vkernel[7] = 0; } else if (kernel_type == 3) { // Low possible values for filter coefficients, 5-tap kernel hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = 0; hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MINV; hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MINV; hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = vkernel[7] = 0; } else if (kernel_type == 4) { // Max possible values for filter coefficients, 5-tap kernel hkernel[0] = hkernel[6] = vkernel[0] = vkernel[6] = 0; hkernel[1] = hkernel[5] = vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MAXV; hkernel[2] = hkernel[4] = vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MAXV; hkernel[3] = vkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = vkernel[7] = 0; } else { // Randomly generated values for filter coefficients, 5-tap kernel hkernel[0] = hkernel[6] = 0; hkernel[1] = hkernel[5] = WIENER_FILT_TAP1_MINV + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 1 - WIENER_FILT_TAP1_MINV); hkernel[2] = hkernel[4] = WIENER_FILT_TAP2_MINV + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 1 - WIENER_FILT_TAP2_MINV); hkernel[3] = -2 * (hkernel[0] + hkernel[1] + hkernel[2]); hkernel[7] = 0; vkernel[0] = vkernel[6] = 0; vkernel[1] = vkernel[5] = WIENER_FILT_TAP1_MINV + rnd->PseudoUniform(WIENER_FILT_TAP1_MAXV + 2 - WIENER_FILT_TAP1_MINV); vkernel[2] = vkernel[4] = WIENER_FILT_TAP2_MINV + rnd->PseudoUniform(WIENER_FILT_TAP2_MAXV + 2 - WIENER_FILT_TAP2_MINV); vkernel[3] = -2 * (vkernel[0] + vkernel[1] + vkernel[2]); vkernel[7] = 0; } } namespace AV1HiprecConvolve { ::testing::internal::ParamGenerator BuildParams( hiprec_convolve_func filter) { const HiprecConvolveParam params[] = { make_tuple(8, 8, 50000, filter), make_tuple(8, 4, 50000, filter), make_tuple(64, 24, 1000, filter), make_tuple(64, 64, 1000, filter), make_tuple(64, 56, 1000, filter), make_tuple(32, 8, 10000, filter), make_tuple(32, 28, 10000, filter), make_tuple(32, 32, 10000, filter), make_tuple(16, 34, 10000, filter), make_tuple(32, 34, 10000, filter), make_tuple(64, 34, 1000, filter), make_tuple(8, 17, 10000, filter), make_tuple(16, 17, 10000, filter), make_tuple(32, 17, 10000, filter) }; return ::testing::ValuesIn(params); } AV1HiprecConvolveTest::~AV1HiprecConvolveTest() = default; void AV1HiprecConvolveTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HiprecConvolveTest::RunCheckOutput(hiprec_convolve_func test_impl) { const int w = 128, h = 128; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2); int i, j, k, m; const WienerConvolveParams conv_params = get_conv_params_wiener(8); std::unique_ptr input_(new (std::nothrow) uint8_t[h * w]); ASSERT_NE(input_, nullptr); uint8_t *input = input_.get(); // The AVX2 convolve functions always write rows with widths that are // multiples of 16. So to avoid a buffer overflow, we may need to pad // rows to a multiple of 16. int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; std::unique_ptr output(new (std::nothrow) uint8_t[output_n]); ASSERT_NE(output, nullptr); std::unique_ptr output2(new (std::nothrow) uint8_t[output_n]); ASSERT_NE(output2, nullptr); // Generate random filter kernels DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); for (int kernel_type = 0; kernel_type < 6; kernel_type++) { generate_kernels(&rnd_, hkernel, vkernel, kernel_type); for (i = 0; i < num_iters; ++i) { for (k = 0; k < h; ++k) for (m = 0; m < w; ++m) input[k * w + m] = rnd_.Rand8(); // Choose random locations within the source block int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_wiener_convolve_add_src_c(input + offset_r * w + offset_c, w, output.get(), out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params); test_impl(input + offset_r * w + offset_c, w, output2.get(), out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params); for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } } } void AV1HiprecConvolveTest::RunSpeedTest(hiprec_convolve_func test_impl) { const int w = 128, h = 128; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2) / 500; int i, j, k; const WienerConvolveParams conv_params = get_conv_params_wiener(8); std::unique_ptr input_(new (std::nothrow) uint8_t[h * w]); ASSERT_NE(input_, nullptr); uint8_t *input = input_.get(); // The AVX2 convolve functions always write rows with widths that are // multiples of 16. So to avoid a buffer overflow, we may need to pad // rows to a multiple of 16. int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; std::unique_ptr output(new (std::nothrow) uint8_t[output_n]); ASSERT_NE(output, nullptr); std::unique_ptr output2(new (std::nothrow) uint8_t[output_n]); ASSERT_NE(output2, nullptr); // Generate random filter kernels DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); generate_kernels(&rnd_, hkernel, vkernel); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand8(); aom_usec_timer ref_timer; aom_usec_timer_start(&ref_timer); for (i = 0; i < num_iters; ++i) { for (j = 3; j < h - out_h - 4; j++) { for (k = 3; k < w - out_w - 4; k++) { av1_wiener_convolve_add_src_c(input + j * w + k, w, output.get(), out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params); } } } aom_usec_timer_mark(&ref_timer); const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); aom_usec_timer tst_timer; aom_usec_timer_start(&tst_timer); for (i = 0; i < num_iters; ++i) { for (j = 3; j < h - out_h - 4; j++) { for (k = 3; k < w - out_w - 4; k++) { test_impl(input + j * w + k, w, output2.get(), out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params); } } } aom_usec_timer_mark(&tst_timer); const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); std::cout << "[ ] C time = " << ref_time / 1000 << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; EXPECT_GT(ref_time, tst_time) << "Error: AV1HiprecConvolveTest.SpeedTest, SIMD slower than C.\n" << "C time: " << ref_time << " us\n" << "SIMD time: " << tst_time << " us\n"; } } // namespace AV1HiprecConvolve #if CONFIG_AV1_HIGHBITDEPTH namespace AV1HighbdHiprecConvolve { ::testing::internal::ParamGenerator BuildParams( highbd_hiprec_convolve_func filter) { const HighbdHiprecConvolveParam params[] = { make_tuple(8, 8, 50000, 8, filter), make_tuple(64, 64, 1000, 8, filter), make_tuple(32, 8, 10000, 8, filter), make_tuple(8, 8, 50000, 10, filter), make_tuple(64, 64, 1000, 10, filter), make_tuple(32, 8, 10000, 10, filter), make_tuple(8, 8, 50000, 12, filter), make_tuple(64, 64, 1000, 12, filter), make_tuple(32, 8, 10000, 12, filter), }; return ::testing::ValuesIn(params); } AV1HighbdHiprecConvolveTest::~AV1HighbdHiprecConvolveTest() = default; void AV1HighbdHiprecConvolveTest::SetUp() { rnd_.Reset(ACMRandom::DeterministicSeed()); } void AV1HighbdHiprecConvolveTest::RunCheckOutput( highbd_hiprec_convolve_func test_impl) { const int w = 128, h = 128; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2); const int bd = GET_PARAM(3); int i, j; const WienerConvolveParams conv_params = get_conv_params_wiener(bd); std::unique_ptr input(new (std::nothrow) uint16_t[h * w]); ASSERT_NE(input, nullptr); // The AVX2 convolve functions always write rows with widths that are // multiples of 16. So to avoid a buffer overflow, we may need to pad // rows to a multiple of 16. int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; std::unique_ptr output(new (std::nothrow) uint16_t[output_n]); ASSERT_NE(output, nullptr); std::unique_ptr output2(new (std::nothrow) uint16_t[output_n]); ASSERT_NE(output2, nullptr); // Generate random filter kernels DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input.get()); uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output.get()); uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2.get()); for (int kernel_type = 0; kernel_type < 6; kernel_type++) { generate_kernels(&rnd_, hkernel, vkernel, kernel_type); for (i = 0; i < num_iters; ++i) { // Choose random locations within the source block int offset_r = 3 + rnd_.PseudoUniform(h - out_h - 7); int offset_c = 3 + rnd_.PseudoUniform(w - out_w - 7); av1_highbd_wiener_convolve_add_src_c( input_ptr + offset_r * w + offset_c, w, output_ptr, out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); test_impl(input_ptr + offset_r * w + offset_c, w, output2_ptr, out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); for (j = 0; j < out_w * out_h; ++j) ASSERT_EQ(output[j], output2[j]) << "Pixel mismatch at index " << j << " = (" << (j % out_w) << ", " << (j / out_w) << ") on iteration " << i; } } } void AV1HighbdHiprecConvolveTest::RunSpeedTest( highbd_hiprec_convolve_func test_impl) { const int w = 128, h = 128; const int out_w = GET_PARAM(0), out_h = GET_PARAM(1); const int num_iters = GET_PARAM(2) / 500; const int bd = GET_PARAM(3); int i, j, k; const WienerConvolveParams conv_params = get_conv_params_wiener(bd); std::unique_ptr input(new (std::nothrow) uint16_t[h * w]); ASSERT_NE(input, nullptr); // The AVX2 convolve functions always write rows with widths that are // multiples of 16. So to avoid a buffer overflow, we may need to pad // rows to a multiple of 16. int output_n = ALIGN_POWER_OF_TWO(out_w, 4) * out_h; std::unique_ptr output(new (std::nothrow) uint16_t[output_n]); ASSERT_NE(output, nullptr); std::unique_ptr output2(new (std::nothrow) uint16_t[output_n]); ASSERT_NE(output2, nullptr); // Generate random filter kernels DECLARE_ALIGNED(16, InterpKernel, hkernel); DECLARE_ALIGNED(16, InterpKernel, vkernel); generate_kernels(&rnd_, hkernel, vkernel); for (i = 0; i < h; ++i) for (j = 0; j < w; ++j) input[i * w + j] = rnd_.Rand16() & ((1 << bd) - 1); uint8_t *input_ptr = CONVERT_TO_BYTEPTR(input.get()); uint8_t *output_ptr = CONVERT_TO_BYTEPTR(output.get()); uint8_t *output2_ptr = CONVERT_TO_BYTEPTR(output2.get()); aom_usec_timer ref_timer; aom_usec_timer_start(&ref_timer); for (i = 0; i < num_iters; ++i) { for (j = 3; j < h - out_h - 4; j++) { for (k = 3; k < w - out_w - 4; k++) { av1_highbd_wiener_convolve_add_src_c( input_ptr + j * w + k, w, output_ptr, out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); } } } aom_usec_timer_mark(&ref_timer); const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); aom_usec_timer tst_timer; aom_usec_timer_start(&tst_timer); for (i = 0; i < num_iters; ++i) { for (j = 3; j < h - out_h - 4; j++) { for (k = 3; k < w - out_w - 4; k++) { test_impl(input_ptr + j * w + k, w, output2_ptr, out_w, hkernel, 16, vkernel, 16, out_w, out_h, &conv_params, bd); } } } aom_usec_timer_mark(&tst_timer); const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); std::cout << "[ ] C time = " << ref_time / 1000 << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; EXPECT_GT(ref_time, tst_time) << "Error: AV1HighbdHiprecConvolveTest.SpeedTest, SIMD slower than C.\n" << "C time: " << ref_time << " us\n" << "SIMD time: " << tst_time << " us\n"; } } // namespace AV1HighbdHiprecConvolve #endif // CONFIG_AV1_HIGHBITDEPTH } // namespace libaom_test