/* * Copyright (c) 2018, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "aom_dsp/noise_model.h" #include "aom_dsp/noise_util.h" #include "config/aom_dsp_rtcd.h" #include "test/acm_random.h" #include "third_party/googletest/src/googletest/include/gtest/gtest.h" namespace { // Return normally distrbuted values with standard deviation of sigma. double randn(libaom_test::ACMRandom *random, double sigma) { while (true) { const double u = 2.0 * ((double)random->Rand31() / testing::internal::Random::kMaxRange) - 1.0; const double v = 2.0 * ((double)random->Rand31() / testing::internal::Random::kMaxRange) - 1.0; const double s = u * u + v * v; if (s > 0 && s < 1) { return sigma * (u * sqrt(-2.0 * log(s) / s)); } } } // Synthesizes noise using the auto-regressive filter of the given lag, // with the provided n coefficients sampled at the given coords. void noise_synth(libaom_test::ACMRandom *random, int lag, int n, const int (*coords)[2], const double *coeffs, double *data, int w, int h) { const int pad_size = 3 * lag; const int padded_w = w + pad_size; const int padded_h = h + pad_size; int x = 0, y = 0; std::vector padded(padded_w * padded_h); for (y = 0; y < padded_h; ++y) { for (x = 0; x < padded_w; ++x) { padded[y * padded_w + x] = randn(random, 1.0); } } for (y = lag; y < padded_h; ++y) { for (x = lag; x < padded_w; ++x) { double sum = 0; int i = 0; for (i = 0; i < n; ++i) { const int dx = coords[i][0]; const int dy = coords[i][1]; sum += padded[(y + dy) * padded_w + (x + dx)] * coeffs[i]; } padded[y * padded_w + x] += sum; } } // Copy over the padded rows to the output for (y = 0; y < h; ++y) { memcpy(data + y * w, &padded[0] + y * padded_w, sizeof(*data) * w); } } std::vector get_noise_psd(double *noise, int width, int height, int block_size) { float *block = (float *)aom_memalign(32, block_size * block_size * sizeof(block)); std::vector psd(block_size * block_size); if (block == nullptr) { EXPECT_NE(block, nullptr); return psd; } int num_blocks = 0; struct aom_noise_tx_t *tx = aom_noise_tx_malloc(block_size); if (tx == nullptr) { EXPECT_NE(tx, nullptr); return psd; } for (int y = 0; y <= height - block_size; y += block_size / 2) { for (int x = 0; x <= width - block_size; x += block_size / 2) { for (int yy = 0; yy < block_size; ++yy) { for (int xx = 0; xx < block_size; ++xx) { block[yy * block_size + xx] = (float)noise[(y + yy) * width + x + xx]; } } aom_noise_tx_forward(tx, &block[0]); aom_noise_tx_add_energy(tx, &psd[0]); num_blocks++; } } for (int yy = 0; yy < block_size; ++yy) { for (int xx = 0; xx <= block_size / 2; ++xx) { psd[yy * block_size + xx] /= num_blocks; } } // Fill in the data that is missing due to symmetries for (int xx = 1; xx < block_size / 2; ++xx) { psd[(block_size - xx)] = psd[xx]; } for (int yy = 1; yy < block_size; ++yy) { for (int xx = 1; xx < block_size / 2; ++xx) { psd[(block_size - yy) * block_size + (block_size - xx)] = psd[yy * block_size + xx]; } } aom_noise_tx_free(tx); aom_free(block); return psd; } } // namespace TEST(NoiseStrengthSolver, GetCentersTwoBins) { aom_noise_strength_solver_t solver; aom_noise_strength_solver_init(&solver, 2, 8); EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); EXPECT_NEAR(255, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); aom_noise_strength_solver_free(&solver); } TEST(NoiseStrengthSolver, GetCentersTwoBins10bit) { aom_noise_strength_solver_t solver; aom_noise_strength_solver_init(&solver, 2, 10); EXPECT_NEAR(0, aom_noise_strength_solver_get_center(&solver, 0), 1e-5); EXPECT_NEAR(1023, aom_noise_strength_solver_get_center(&solver, 1), 1e-5); aom_noise_strength_solver_free(&solver); } TEST(NoiseStrengthSolver, GetCenters256Bins) { const int num_bins = 256; aom_noise_strength_solver_t solver; aom_noise_strength_solver_init(&solver, num_bins, 8); for (int i = 0; i < 256; ++i) { EXPECT_NEAR(i, aom_noise_strength_solver_get_center(&solver, i), 1e-5); } aom_noise_strength_solver_free(&solver); } // Tests that the noise strength solver returns the identity transform when // given identity-like constraints. TEST(NoiseStrengthSolver, ObserveIdentity) { const int num_bins = 256; aom_noise_strength_solver_t solver; ASSERT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); // We have to add a big more strength to constraints at the boundary to // overcome any regularization. for (int j = 0; j < 5; ++j) { aom_noise_strength_solver_add_measurement(&solver, 0, 0); aom_noise_strength_solver_add_measurement(&solver, 255, 255); } for (int i = 0; i < 256; ++i) { aom_noise_strength_solver_add_measurement(&solver, i, i); } EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); for (int i = 2; i < num_bins - 2; ++i) { EXPECT_NEAR(i, solver.eqns.x[i], 0.1); } aom_noise_strength_lut_t lut; EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, 2, &lut)); ASSERT_EQ(2, lut.num_points); EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); EXPECT_NEAR(0.0, lut.points[0][1], 0.5); EXPECT_NEAR(255.0, lut.points[1][0], 1e-5); EXPECT_NEAR(255.0, lut.points[1][1], 0.5); aom_noise_strength_lut_free(&lut); aom_noise_strength_solver_free(&solver); } TEST(NoiseStrengthSolver, SimplifiesCurve) { const int num_bins = 256; aom_noise_strength_solver_t solver; EXPECT_EQ(1, aom_noise_strength_solver_init(&solver, num_bins, 8)); // Create a parabolic input for (int i = 0; i < 256; ++i) { const double x = (i - 127.5) / 63.5; aom_noise_strength_solver_add_measurement(&solver, i, x * x); } EXPECT_EQ(1, aom_noise_strength_solver_solve(&solver)); // First try to fit an unconstrained lut aom_noise_strength_lut_t lut; EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, -1, &lut)); ASSERT_LE(20, lut.num_points); aom_noise_strength_lut_free(&lut); // Now constrain the maximum number of points const int kMaxPoints = 9; EXPECT_EQ(1, aom_noise_strength_solver_fit_piecewise(&solver, kMaxPoints, &lut)); ASSERT_EQ(kMaxPoints, lut.num_points); // Check that the input parabola is still well represented EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); EXPECT_NEAR(4.0, lut.points[0][1], 0.1); for (int i = 1; i < lut.num_points - 1; ++i) { const double x = (lut.points[i][0] - 128.) / 64.; EXPECT_NEAR(x * x, lut.points[i][1], 0.1); } EXPECT_NEAR(255.0, lut.points[kMaxPoints - 1][0], 1e-5); EXPECT_NEAR(4.0, lut.points[kMaxPoints - 1][1], 0.1); aom_noise_strength_lut_free(&lut); aom_noise_strength_solver_free(&solver); } TEST(NoiseStrengthLut, LutInitNegativeOrZeroSize) { aom_noise_strength_lut_t lut; ASSERT_FALSE(aom_noise_strength_lut_init(&lut, -1)); ASSERT_FALSE(aom_noise_strength_lut_init(&lut, 0)); } TEST(NoiseStrengthLut, LutEvalSinglePoint) { aom_noise_strength_lut_t lut; ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 1)); ASSERT_EQ(1, lut.num_points); lut.points[0][0] = 0; lut.points[0][1] = 1; EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, -1)); EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 0)); EXPECT_EQ(1, aom_noise_strength_lut_eval(&lut, 1)); aom_noise_strength_lut_free(&lut); } TEST(NoiseStrengthLut, LutEvalMultiPointInterp) { const double kEps = 1e-5; aom_noise_strength_lut_t lut; ASSERT_TRUE(aom_noise_strength_lut_init(&lut, 4)); ASSERT_EQ(4, lut.num_points); lut.points[0][0] = 0; lut.points[0][1] = 0; lut.points[1][0] = 1; lut.points[1][1] = 1; lut.points[2][0] = 2; lut.points[2][1] = 1; lut.points[3][0] = 100; lut.points[3][1] = 1001; // Test lower boundary EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, -1)); EXPECT_EQ(0, aom_noise_strength_lut_eval(&lut, 0)); // Test first part that should be identity EXPECT_NEAR(0.25, aom_noise_strength_lut_eval(&lut, 0.25), kEps); EXPECT_NEAR(0.75, aom_noise_strength_lut_eval(&lut, 0.75), kEps); // This is a constant section (should evaluate to 1) EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.25), kEps); EXPECT_NEAR(1.0, aom_noise_strength_lut_eval(&lut, 1.75), kEps); // Test interpolation between to non-zero y coords. EXPECT_NEAR(1, aom_noise_strength_lut_eval(&lut, 2), kEps); EXPECT_NEAR(251, aom_noise_strength_lut_eval(&lut, 26.5), kEps); EXPECT_NEAR(751, aom_noise_strength_lut_eval(&lut, 75.5), kEps); // Test upper boundary EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 100)); EXPECT_EQ(1001, aom_noise_strength_lut_eval(&lut, 101)); aom_noise_strength_lut_free(&lut); } TEST(NoiseModel, InitSuccessWithValidSquareShape) { aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 2, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); const int kNumCoords = 12; const int kCoords[][2] = { { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, { 2, -2 }, { -2, -1 }, { -1, -1 }, { 0, -1 }, { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } }; EXPECT_EQ(kNumCoords, model.n); for (int i = 0; i < kNumCoords; ++i) { const int *coord = kCoords[i]; EXPECT_EQ(coord[0], model.coords[i][0]); EXPECT_EQ(coord[1], model.coords[i][1]); } aom_noise_model_free(&model); } TEST(NoiseModel, InitSuccessWithValidDiamondShape) { aom_noise_model_t model; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_DIAMOND, 2, 8, 0 }; EXPECT_TRUE(aom_noise_model_init(&model, params)); EXPECT_EQ(6, model.n); const int kNumCoords = 6; const int kCoords[][2] = { { 0, -2 }, { -1, -1 }, { 0, -1 }, { 1, -1 }, { -2, 0 }, { -1, 0 } }; EXPECT_EQ(kNumCoords, model.n); for (int i = 0; i < kNumCoords; ++i) { const int *coord = kCoords[i]; EXPECT_EQ(coord[0], model.coords[i][0]); EXPECT_EQ(coord[1], model.coords[i][1]); } aom_noise_model_free(&model); } TEST(NoiseModel, InitFailsWithTooLargeLag) { aom_noise_model_t model; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 10, 8, 0 }; EXPECT_FALSE(aom_noise_model_init(&model, params)); aom_noise_model_free(&model); } TEST(NoiseModel, InitFailsWithTooSmallLag) { aom_noise_model_t model; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 0, 8, 0 }; EXPECT_FALSE(aom_noise_model_init(&model, params)); aom_noise_model_free(&model); } TEST(NoiseModel, InitFailsWithInvalidShape) { aom_noise_model_t model; aom_noise_model_params_t params = { aom_noise_shape(100), 3, 8, 0 }; EXPECT_FALSE(aom_noise_model_init(&model, params)); aom_noise_model_free(&model); } TEST(NoiseModel, InitFailsWithInvalidBitdepth) { aom_noise_model_t model; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 2, 8, 0 }; for (int i = 0; i <= 32; ++i) { params.bit_depth = i; if (i == 8 || i == 10 || i == 12) { EXPECT_TRUE(aom_noise_model_init(&model, params)) << "bit_depth: " << i; aom_noise_model_free(&model); } else { EXPECT_FALSE(aom_noise_model_init(&model, params)) << "bit_depth: " << i; } } params.bit_depth = INT_MAX; EXPECT_FALSE(aom_noise_model_init(&model, params)); } // A container template class to hold a data type and extra arguments. // All of these args are bundled into one struct so that we can use // parameterized tests on combinations of supported data types // (uint8_t and uint16_t) and bit depths (8, 10, 12). template struct BitDepthParams { typedef T data_type_t; static const int kBitDepth = bit_depth; static const bool kUseHighBD = use_highbd; }; template class FlatBlockEstimatorTest : public ::testing::Test, public T { public: void SetUp() override { random_.Reset(171); } typedef std::vector VecType; VecType data_; libaom_test::ACMRandom random_; }; TYPED_TEST_SUITE_P(FlatBlockEstimatorTest); TYPED_TEST_P(FlatBlockEstimatorTest, ExtractBlock) { const int kBlockSize = 16; aom_flat_block_finder_t flat_block_finder; ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, this->kBitDepth, this->kUseHighBD)); const double normalization = flat_block_finder.normalization; // Test with an image of more than one block. const int h = 2 * kBlockSize; const int w = 2 * kBlockSize; const int stride = 2 * kBlockSize; this->data_.resize(h * stride, 128); // Set up the (0,0) block to be a plane and the (0,1) block to be a // checkerboard const int shift = this->kBitDepth - 8; for (int y = 0; y < kBlockSize; ++y) { for (int x = 0; x < kBlockSize; ++x) { this->data_[y * stride + x] = (-y + x + 128) << shift; this->data_[y * stride + x + kBlockSize] = ((x % 2 + y % 2) % 2 ? 128 - 20 : 128 + 20) << shift; } } std::vector block(kBlockSize * kBlockSize, 1); std::vector plane(kBlockSize * kBlockSize, 1); // The block data should be a constant (zero) and the rest of the plane // trend is covered in the plane data. aom_flat_block_finder_extract_block(&flat_block_finder, (uint8_t *)&this->data_[0], w, h, stride, 0, 0, &plane[0], &block[0]); for (int y = 0; y < kBlockSize; ++y) { for (int x = 0; x < kBlockSize; ++x) { EXPECT_NEAR(0, block[y * kBlockSize + x], 1e-5); EXPECT_NEAR((double)(this->data_[y * stride + x]) / normalization, plane[y * kBlockSize + x], 1e-5); } } // The plane trend is a constant, and the block is a zero mean checkerboard. aom_flat_block_finder_extract_block(&flat_block_finder, (uint8_t *)&this->data_[0], w, h, stride, kBlockSize, 0, &plane[0], &block[0]); const int mid = 128 << shift; for (int y = 0; y < kBlockSize; ++y) { for (int x = 0; x < kBlockSize; ++x) { EXPECT_NEAR(((double)this->data_[y * stride + x + kBlockSize] - mid) / normalization, block[y * kBlockSize + x], 1e-5); EXPECT_NEAR(mid / normalization, plane[y * kBlockSize + x], 1e-5); } } aom_flat_block_finder_free(&flat_block_finder); } TYPED_TEST_P(FlatBlockEstimatorTest, FindFlatBlocks) { const int kBlockSize = 32; aom_flat_block_finder_t flat_block_finder; ASSERT_EQ(1, aom_flat_block_finder_init(&flat_block_finder, kBlockSize, this->kBitDepth, this->kUseHighBD)); const int num_blocks_w = 8; const int h = kBlockSize; const int w = kBlockSize * num_blocks_w; const int stride = w; this->data_.resize(h * stride, 128); std::vector flat_blocks(num_blocks_w, 0); const int shift = this->kBitDepth - 8; for (int y = 0; y < kBlockSize; ++y) { for (int x = 0; x < kBlockSize; ++x) { // Block 0 (not flat): constant doesn't have enough variance to qualify this->data_[y * stride + x + 0 * kBlockSize] = 128 << shift; // Block 1 (not flat): too high of variance is hard to validate as flat this->data_[y * stride + x + 1 * kBlockSize] = ((uint8_t)(128 + randn(&this->random_, 5))) << shift; // Block 2 (flat): slight checkerboard added to constant const int check = (x % 2 + y % 2) % 2 ? -2 : 2; this->data_[y * stride + x + 2 * kBlockSize] = (128 + check) << shift; // Block 3 (flat): planar block with checkerboard pattern is also flat this->data_[y * stride + x + 3 * kBlockSize] = (y * 2 - x / 2 + 128 + check) << shift; // Block 4 (flat): gaussian random with standard deviation 1. this->data_[y * stride + x + 4 * kBlockSize] = ((uint8_t)(randn(&this->random_, 1) + x + 128.0)) << shift; // Block 5 (flat): gaussian random with standard deviation 2. this->data_[y * stride + x + 5 * kBlockSize] = ((uint8_t)(randn(&this->random_, 2) + y + 128.0)) << shift; // Block 6 (not flat): too high of directional gradient. const int strong_edge = x > kBlockSize / 2 ? 64 : 0; this->data_[y * stride + x + 6 * kBlockSize] = ((uint8_t)(randn(&this->random_, 1) + strong_edge + 128.0)) << shift; // Block 7 (not flat): too high gradient. const int big_check = ((x >> 2) % 2 + (y >> 2) % 2) % 2 ? -16 : 16; this->data_[y * stride + x + 7 * kBlockSize] = ((uint8_t)(randn(&this->random_, 1) + big_check + 128.0)) << shift; } } EXPECT_EQ(4, aom_flat_block_finder_run(&flat_block_finder, (uint8_t *)&this->data_[0], w, h, stride, &flat_blocks[0])); // First two blocks are not flat EXPECT_EQ(0, flat_blocks[0]); EXPECT_EQ(0, flat_blocks[1]); // Next 4 blocks are flat. EXPECT_EQ(255, flat_blocks[2]); EXPECT_EQ(255, flat_blocks[3]); EXPECT_EQ(255, flat_blocks[4]); EXPECT_EQ(255, flat_blocks[5]); // Last 2 are not flat by threshold EXPECT_EQ(0, flat_blocks[6]); EXPECT_EQ(0, flat_blocks[7]); // Add the noise from non-flat block 1 to every block. for (int y = 0; y < kBlockSize; ++y) { for (int x = 0; x < kBlockSize * num_blocks_w; ++x) { this->data_[y * stride + x] += (this->data_[y * stride + x % kBlockSize + kBlockSize] - (128 << shift)); } } // Now the scored selection will pick the one that is most likely flat (block // 0) EXPECT_EQ(1, aom_flat_block_finder_run(&flat_block_finder, (uint8_t *)&this->data_[0], w, h, stride, &flat_blocks[0])); EXPECT_EQ(1, flat_blocks[0]); EXPECT_EQ(0, flat_blocks[1]); EXPECT_EQ(0, flat_blocks[2]); EXPECT_EQ(0, flat_blocks[3]); EXPECT_EQ(0, flat_blocks[4]); EXPECT_EQ(0, flat_blocks[5]); EXPECT_EQ(0, flat_blocks[6]); EXPECT_EQ(0, flat_blocks[7]); aom_flat_block_finder_free(&flat_block_finder); } REGISTER_TYPED_TEST_SUITE_P(FlatBlockEstimatorTest, ExtractBlock, FindFlatBlocks); typedef ::testing::Types, // lowbd BitDepthParams, // lowbd in 16-bit BitDepthParams, // highbd data BitDepthParams > AllBitDepthParams; INSTANTIATE_TYPED_TEST_SUITE_P(FlatBlockInstatiation, FlatBlockEstimatorTest, AllBitDepthParams); template class NoiseModelUpdateTest : public ::testing::Test, public T { public: static const int kWidth = 128; static const int kHeight = 128; static const int kBlockSize = 16; static const int kNumBlocksX = kWidth / kBlockSize; static const int kNumBlocksY = kHeight / kBlockSize; void SetUp() override { const aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 3, T::kBitDepth, T::kUseHighBD }; ASSERT_TRUE(aom_noise_model_init(&model_, params)); random_.Reset(100171); data_.resize(kWidth * kHeight * 3); denoised_.resize(kWidth * kHeight * 3); noise_.resize(kWidth * kHeight * 3); renoise_.resize(kWidth * kHeight); flat_blocks_.resize(kNumBlocksX * kNumBlocksY); for (int c = 0, offset = 0; c < 3; ++c, offset += kWidth * kHeight) { data_ptr_[c] = &data_[offset]; noise_ptr_[c] = &noise_[offset]; denoised_ptr_[c] = &denoised_[offset]; strides_[c] = kWidth; data_ptr_raw_[c] = (uint8_t *)&data_[offset]; denoised_ptr_raw_[c] = (uint8_t *)&denoised_[offset]; } chroma_sub_[0] = 0; chroma_sub_[1] = 0; } int NoiseModelUpdate(int block_size = kBlockSize) { return aom_noise_model_update(&model_, data_ptr_raw_, denoised_ptr_raw_, kWidth, kHeight, strides_, chroma_sub_, &flat_blocks_[0], block_size); } void TearDown() override { aom_noise_model_free(&model_); } protected: aom_noise_model_t model_; std::vector data_; std::vector denoised_; std::vector noise_; std::vector renoise_; std::vector flat_blocks_; typename T::data_type_t *data_ptr_[3]; typename T::data_type_t *denoised_ptr_[3]; double *noise_ptr_[3]; int strides_[3]; int chroma_sub_[2]; libaom_test::ACMRandom random_; private: uint8_t *data_ptr_raw_[3]; uint8_t *denoised_ptr_raw_[3]; }; TYPED_TEST_SUITE_P(NoiseModelUpdateTest); TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks) { EXPECT_EQ(AOM_NOISE_STATUS_INSUFFICIENT_FLAT_BLOCKS, this->NoiseModelUpdate()); } TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForZeroNoiseAllFlat) { this->flat_blocks_.assign(this->flat_blocks_.size(), 1); this->denoised_.assign(this->denoised_.size(), 128); this->data_.assign(this->denoised_.size(), 128); EXPECT_EQ(AOM_NOISE_STATUS_INTERNAL_ERROR, this->NoiseModelUpdate()); } TYPED_TEST_P(NoiseModelUpdateTest, UpdateFailsBlockSizeTooSmall) { this->flat_blocks_.assign(this->flat_blocks_.size(), 1); this->denoised_.assign(this->denoised_.size(), 128); this->data_.assign(this->denoised_.size(), 128); EXPECT_EQ(AOM_NOISE_STATUS_INVALID_ARGUMENT, this->NoiseModelUpdate(6 /* block_size=6 is too small*/)); } TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForWhiteRandomNoise) { aom_noise_model_t &model = this->model_; const int width = this->kWidth; const int height = this->kHeight; const int shift = this->kBitDepth - 8; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { this->data_ptr_[0][y * width + x] = int(64 + y + randn(&this->random_, 1)) << shift; this->denoised_ptr_[0][y * width + x] = (64 + y) << shift; // Make the chroma planes completely correlated with the Y plane for (int c = 1; c < 3; ++c) { this->data_ptr_[c][y * width + x] = this->data_ptr_[0][y * width + x]; this->denoised_ptr_[c][y * width + x] = this->denoised_ptr_[0][y * width + x]; } } } this->flat_blocks_.assign(this->flat_blocks_.size(), 1); EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); const double kCoeffEps = 0.075; const int n = model.n; for (int c = 0; c < 3; ++c) { for (int i = 0; i < n; ++i) { EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); } // The second and third channels are highly correlated with the first. if (c > 0) { ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); EXPECT_NEAR(1, model.latest_state[c].eqns.x[n], kCoeffEps); EXPECT_NEAR(1, model.combined_state[c].eqns.x[n], kCoeffEps); } } // The fitted noise strength should be close to the standard deviation // for all intensity bins. const double kStdEps = 0.1; const double normalize = 1 << shift; for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { EXPECT_NEAR(1.0, model.latest_state[0].strength_solver.eqns.x[i] / normalize, kStdEps); EXPECT_NEAR(1.0, model.combined_state[0].strength_solver.eqns.x[i] / normalize, kStdEps); } aom_noise_strength_lut_t lut; aom_noise_strength_solver_fit_piecewise( &model.latest_state[0].strength_solver, -1, &lut); ASSERT_EQ(2, lut.num_points); EXPECT_NEAR(0.0, lut.points[0][0], 1e-5); EXPECT_NEAR(1.0, lut.points[0][1] / normalize, kStdEps); EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); EXPECT_NEAR(1.0, lut.points[1][1] / normalize, kStdEps); aom_noise_strength_lut_free(&lut); } TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForScaledWhiteNoise) { aom_noise_model_t &model = this->model_; const int width = this->kWidth; const int height = this->kHeight; const double kCoeffEps = 0.055; const double kLowStd = 1; const double kHighStd = 4; const int shift = this->kBitDepth - 8; for (int y = 0; y < height; ++y) { for (int x = 0; x < width; ++x) { for (int c = 0; c < 3; ++c) { // The image data is bimodal: // Bottom half has low intensity and low noise strength // Top half has high intensity and high noise strength const int avg = (y < height / 2) ? 4 : 245; const double std = (y < height / 2) ? kLowStd : kHighStd; this->data_ptr_[c][y * width + x] = ((uint8_t)std::min((int)255, (int)(2 + avg + randn(&this->random_, std)))) << shift; this->denoised_ptr_[c][y * width + x] = (2 + avg) << shift; } } } // Label all blocks as flat for the update this->flat_blocks_.assign(this->flat_blocks_.size(), 1); EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); const int n = model.n; // The noise is uncorrelated spatially and with the y channel. // All coefficients should be reasonably close to zero. for (int c = 0; c < 3; ++c) { for (int i = 0; i < n; ++i) { EXPECT_NEAR(0, model.latest_state[c].eqns.x[i], kCoeffEps); EXPECT_NEAR(0, model.combined_state[c].eqns.x[i], kCoeffEps); } if (c > 0) { ASSERT_EQ(n + 1, model.latest_state[c].eqns.n); ASSERT_EQ(n + 1, model.combined_state[c].eqns.n); // The correlation to the y channel should be low (near zero) EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); } } // Noise strength should vary between kLowStd and kHighStd. const double kStdEps = 0.15; // We have to normalize fitted standard deviation based on bit depth. const double normalize = (1 << shift); ASSERT_EQ(20, model.latest_state[0].strength_solver.eqns.n); for (int i = 0; i < model.latest_state[0].strength_solver.eqns.n; ++i) { const double a = i / 19.0; const double expected = (kLowStd * (1.0 - a) + kHighStd * a); EXPECT_NEAR(expected, model.latest_state[0].strength_solver.eqns.x[i] / normalize, kStdEps); EXPECT_NEAR(expected, model.combined_state[0].strength_solver.eqns.x[i] / normalize, kStdEps); } // If we fit a piecewise linear model, there should be two points: // one near kLowStd at 0, and the other near kHighStd and 255. aom_noise_strength_lut_t lut; aom_noise_strength_solver_fit_piecewise( &model.latest_state[0].strength_solver, 2, &lut); ASSERT_EQ(2, lut.num_points); EXPECT_NEAR(0, lut.points[0][0], 1e-4); EXPECT_NEAR(kLowStd, lut.points[0][1] / normalize, kStdEps); EXPECT_NEAR((1 << this->kBitDepth) - 1, lut.points[1][0], 1e-5); EXPECT_NEAR(kHighStd, lut.points[1][1] / normalize, kStdEps); aom_noise_strength_lut_free(&lut); } TYPED_TEST_P(NoiseModelUpdateTest, UpdateSuccessForCorrelatedNoise) { aom_noise_model_t &model = this->model_; const int width = this->kWidth; const int height = this->kHeight; const int kNumCoeffs = 24; const double kStd = 4; const double kStdEps = 0.3; const double kCoeffEps = 0.065; // Use different coefficients for each channel const double kCoeffs[3][24] = { { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 }, { -0.00643, -0.01080, -0.01466, 0.06951, 0.03707, -0.00482, 0.00817, -0.00909, 0.02949, 0.12181, -0.25210, -0.07886, 0.06083, -0.01210, -0.03108, 0.08944, -0.35875, 0.49150, 0.00415, -0.12905, 0.02870, 0.09740, -0.34610, 0.58824 }, }; ASSERT_EQ(model.n, kNumCoeffs); this->chroma_sub_[0] = this->chroma_sub_[1] = 1; this->flat_blocks_.assign(this->flat_blocks_.size(), 1); // Add different noise onto each plane const int shift = this->kBitDepth - 8; for (int c = 0; c < 3; ++c) { noise_synth(&this->random_, model.params.lag, model.n, model.coords, kCoeffs[c], this->noise_ptr_[c], width, height); const int x_shift = c > 0 ? this->chroma_sub_[0] : 0; const int y_shift = c > 0 ? this->chroma_sub_[1] : 0; for (int y = 0; y < (height >> y_shift); ++y) { for (int x = 0; x < (width >> x_shift); ++x) { const uint8_t value = 64 + x / 2 + y / 4; this->data_ptr_[c][y * width + x] = (uint8_t(value + this->noise_ptr_[c][y * width + x] * kStd)) << shift; this->denoised_ptr_[c][y * width + x] = value << shift; } } } EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); // For the Y plane, the solved coefficients should be close to the original const int n = model.n; for (int c = 0; c < 3; ++c) { for (int i = 0; i < n; ++i) { EXPECT_NEAR(kCoeffs[c][i], model.latest_state[c].eqns.x[i], kCoeffEps); EXPECT_NEAR(kCoeffs[c][i], model.combined_state[c].eqns.x[i], kCoeffEps); } // The chroma planes should be uncorrelated with the luma plane if (c > 0) { EXPECT_NEAR(0, model.latest_state[c].eqns.x[n], kCoeffEps); EXPECT_NEAR(0, model.combined_state[c].eqns.x[n], kCoeffEps); } // Correlation between the coefficient vector and the fitted coefficients // should be close to 1. EXPECT_LT(0.98, aom_normalized_cross_correlation( model.latest_state[c].eqns.x, kCoeffs[c], kNumCoeffs)); noise_synth(&this->random_, model.params.lag, model.n, model.coords, model.latest_state[c].eqns.x, &this->renoise_[0], width, height); EXPECT_TRUE(aom_noise_data_validate(&this->renoise_[0], width, height)); } // Check fitted noise strength const double normalize = 1 << shift; for (int c = 0; c < 3; ++c) { for (int i = 0; i < model.latest_state[c].strength_solver.eqns.n; ++i) { EXPECT_NEAR(kStd, model.latest_state[c].strength_solver.eqns.x[i] / normalize, kStdEps); } } } TYPED_TEST_P(NoiseModelUpdateTest, NoiseStrengthChangeSignalsDifferentNoiseType) { aom_noise_model_t &model = this->model_; const int width = this->kWidth; const int height = this->kHeight; const int block_size = this->kBlockSize; // Create a gradient image with std = 2 uncorrelated noise const double kStd = 2; const int shift = this->kBitDepth - 8; for (int i = 0; i < width * height; ++i) { const uint8_t val = (i % width) < width / 2 ? 64 : 192; for (int c = 0; c < 3; ++c) { this->noise_ptr_[c][i] = randn(&this->random_, 1); this->data_ptr_[c][i] = ((uint8_t)(this->noise_ptr_[c][i] * kStd + val)) << shift; this->denoised_ptr_[c][i] = val << shift; } } this->flat_blocks_.assign(this->flat_blocks_.size(), 1); EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); const int kNumBlocks = width * height / block_size / block_size; EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); EXPECT_EQ(kNumBlocks, model.latest_state[1].strength_solver.num_equations); EXPECT_EQ(kNumBlocks, model.latest_state[2].strength_solver.num_equations); EXPECT_EQ(kNumBlocks, model.combined_state[0].strength_solver.num_equations); EXPECT_EQ(kNumBlocks, model.combined_state[1].strength_solver.num_equations); EXPECT_EQ(kNumBlocks, model.combined_state[2].strength_solver.num_equations); // Bump up noise by an insignificant amount for (int i = 0; i < width * height; ++i) { const uint8_t val = (i % width) < width / 2 ? 64 : 192; this->data_ptr_[0][i] = ((uint8_t)(this->noise_ptr_[0][i] * (kStd + 0.085) + val)) << shift; } EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); const double kARGainTolerance = 0.02; for (int c = 0; c < 3; ++c) { EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); EXPECT_EQ(15250, model.latest_state[c].num_observations); EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); EXPECT_EQ(2 * kNumBlocks, model.combined_state[c].strength_solver.num_equations); EXPECT_EQ(2 * 15250, model.combined_state[c].num_observations); EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); } // Bump up the noise strength on half the image for one channel by a // significant amount. for (int i = 0; i < width * height; ++i) { const uint8_t val = (i % width) < width / 2 ? 64 : 128; if (i % width < width / 2) { this->data_ptr_[0][i] = ((uint8_t)(randn(&this->random_, kStd + 0.5) + val)) << shift; } } EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); // Since we didn't update the combined state, it should still be at 2 * // num_blocks EXPECT_EQ(kNumBlocks, model.latest_state[0].strength_solver.num_equations); EXPECT_EQ(2 * kNumBlocks, model.combined_state[0].strength_solver.num_equations); // In normal operation, the "latest" estimate can be saved to the "combined" // state for continued updates. aom_noise_model_save_latest(&model); for (int c = 0; c < 3; ++c) { EXPECT_EQ(kNumBlocks, model.latest_state[c].strength_solver.num_equations); EXPECT_EQ(15250, model.latest_state[c].num_observations); EXPECT_NEAR(1, model.latest_state[c].ar_gain, kARGainTolerance); EXPECT_EQ(kNumBlocks, model.combined_state[c].strength_solver.num_equations); EXPECT_EQ(15250, model.combined_state[c].num_observations); EXPECT_NEAR(1, model.combined_state[c].ar_gain, kARGainTolerance); } } TYPED_TEST_P(NoiseModelUpdateTest, NoiseCoeffsSignalsDifferentNoiseType) { aom_noise_model_t &model = this->model_; const int width = this->kWidth; const int height = this->kHeight; const double kCoeffs[2][24] = { { 0.02884, -0.03356, 0.00633, 0.01757, 0.02849, -0.04620, 0.02833, -0.07178, 0.07076, -0.11603, -0.10413, -0.16571, 0.05158, -0.07969, 0.02640, -0.07191, 0.02530, 0.41968, 0.21450, -0.00702, -0.01401, -0.03676, -0.08713, 0.44196 }, { 0.00269, -0.01291, -0.01513, 0.07234, 0.03208, 0.00477, 0.00226, -0.00254, 0.03533, 0.12841, -0.25970, -0.06336, 0.05238, -0.00845, -0.03118, 0.09043, -0.36558, 0.48903, 0.00595, -0.11938, 0.02106, 0.095956, -0.350139, 0.59305 } }; noise_synth(&this->random_, model.params.lag, model.n, model.coords, kCoeffs[0], this->noise_ptr_[0], width, height); for (int i = 0; i < width * height; ++i) { this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); } this->flat_blocks_.assign(this->flat_blocks_.size(), 1); EXPECT_EQ(AOM_NOISE_STATUS_OK, this->NoiseModelUpdate()); // Now try with the second set of AR coefficients noise_synth(&this->random_, model.params.lag, model.n, model.coords, kCoeffs[1], this->noise_ptr_[0], width, height); for (int i = 0; i < width * height; ++i) { this->data_ptr_[0][i] = (uint8_t)(128 + this->noise_ptr_[0][i]); } EXPECT_EQ(AOM_NOISE_STATUS_DIFFERENT_NOISE_TYPE, this->NoiseModelUpdate()); } REGISTER_TYPED_TEST_SUITE_P(NoiseModelUpdateTest, UpdateFailsNoFlatBlocks, UpdateSuccessForZeroNoiseAllFlat, UpdateFailsBlockSizeTooSmall, UpdateSuccessForWhiteRandomNoise, UpdateSuccessForScaledWhiteNoise, UpdateSuccessForCorrelatedNoise, NoiseStrengthChangeSignalsDifferentNoiseType, NoiseCoeffsSignalsDifferentNoiseType); INSTANTIATE_TYPED_TEST_SUITE_P(NoiseModelUpdateTestInstatiation, NoiseModelUpdateTest, AllBitDepthParams); TEST(NoiseModelGetGrainParameters, TestLagSize) { aom_film_grain_t film_grain; for (int lag = 1; lag <= 3; ++lag) { aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); EXPECT_EQ(lag, film_grain.ar_coeff_lag); aom_noise_model_free(&model); } aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, 4, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); EXPECT_FALSE(aom_noise_model_get_grain_parameters(&model, &film_grain)); aom_noise_model_free(&model); } TEST(NoiseModelGetGrainParameters, TestARCoeffShiftBounds) { struct TestCase { double max_input_value; int expected_ar_coeff_shift; int expected_value; }; const int lag = 1; const int kNumTestCases = 19; const TestCase test_cases[] = { // Test cases for ar_coeff_shift = 9 { 0, 9, 0 }, { 0.125, 9, 64 }, { -0.125, 9, -64 }, { 0.2499, 9, 127 }, { -0.25, 9, -128 }, // Test cases for ar_coeff_shift = 8 { 0.25, 8, 64 }, { -0.2501, 8, -64 }, { 0.499, 8, 127 }, { -0.5, 8, -128 }, // Test cases for ar_coeff_shift = 7 { 0.5, 7, 64 }, { -0.5001, 7, -64 }, { 0.999, 7, 127 }, { -1, 7, -128 }, // Test cases for ar_coeff_shift = 6 { 1.0, 6, 64 }, { -1.0001, 6, -64 }, { 2.0, 6, 127 }, { -2.0, 6, -128 }, { 4, 6, 127 }, { -4, 6, -128 }, }; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); for (int i = 0; i < kNumTestCases; ++i) { const TestCase &test_case = test_cases[i]; model.combined_state[0].eqns.x[0] = test_case.max_input_value; aom_film_grain_t film_grain; EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); EXPECT_EQ(1, film_grain.ar_coeff_lag); EXPECT_EQ(test_case.expected_ar_coeff_shift, film_grain.ar_coeff_shift); EXPECT_EQ(test_case.expected_value, film_grain.ar_coeffs_y[0]); } aom_noise_model_free(&model); } TEST(NoiseModelGetGrainParameters, TestNoiseStrengthShiftBounds) { struct TestCase { double max_input_value; int expected_scaling_shift; int expected_value; }; const int kNumTestCases = 10; const TestCase test_cases[] = { { 0, 11, 0 }, { 1, 11, 64 }, { 2, 11, 128 }, { 3.99, 11, 255 }, { 4, 10, 128 }, { 7.99, 10, 255 }, { 8, 9, 128 }, { 16, 8, 128 }, { 31.99, 8, 255 }, { 64, 8, 255 }, // clipped }; const int lag = 1; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); for (int i = 0; i < kNumTestCases; ++i) { const TestCase &test_case = test_cases[i]; aom_equation_system_t &eqns = model.combined_state[0].strength_solver.eqns; // Set the fitted scale parameters to be a constant value. for (int j = 0; j < eqns.n; ++j) { eqns.x[j] = test_case.max_input_value; } aom_film_grain_t film_grain; EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); // We expect a single constant segemnt EXPECT_EQ(test_case.expected_scaling_shift, film_grain.scaling_shift); EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[0][1]); EXPECT_EQ(test_case.expected_value, film_grain.scaling_points_y[1][1]); } aom_noise_model_free(&model); } // The AR coefficients are the same inputs used to generate "Test 2" in the test // vectors TEST(NoiseModelGetGrainParameters, GetGrainParametersReal) { const double kInputCoeffsY[] = { 0.0315, 0.0073, 0.0218, 0.00235, 0.00511, -0.0222, 0.0627, -0.022, 0.05575, -0.1816, 0.0107, -0.1966, 0.00065, -0.0809, 0.04934, -0.1349, -0.0352, 0.41772, 0.27973, 0.04207, -0.0429, -0.1372, 0.06193, 0.52032 }; const double kInputCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5 }; const double kInputCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.5 }; const int kExpectedARCoeffsY[] = { 4, 1, 3, 0, 1, -3, 8, -3, 7, -23, 1, -25, 0, -10, 6, -17, -5, 53, 36, 5, -5, -18, 8, 67 }; const int kExpectedARCoeffsCB[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 84 }; const int kExpectedARCoeffsCR[] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -126 }; // Scaling function is initialized analytically with a sqrt function. const int kNumScalingPointsY = 12; const int kExpectedScalingPointsY[][2] = { { 0, 0 }, { 13, 44 }, { 27, 62 }, { 40, 76 }, { 54, 88 }, { 67, 98 }, { 94, 117 }, { 121, 132 }, { 148, 146 }, { 174, 159 }, { 201, 171 }, { 255, 192 }, }; const int lag = 3; aom_noise_model_params_t params = { AOM_NOISE_SHAPE_SQUARE, lag, 8, 0 }; aom_noise_model_t model; EXPECT_TRUE(aom_noise_model_init(&model, params)); // Setup the AR coeffs memcpy(model.combined_state[0].eqns.x, kInputCoeffsY, sizeof(kInputCoeffsY)); memcpy(model.combined_state[1].eqns.x, kInputCoeffsCB, sizeof(kInputCoeffsCB)); memcpy(model.combined_state[2].eqns.x, kInputCoeffsCR, sizeof(kInputCoeffsCR)); for (int i = 0; i < model.combined_state[0].strength_solver.num_bins; ++i) { const double x = ((double)i) / (model.combined_state[0].strength_solver.num_bins - 1.0); model.combined_state[0].strength_solver.eqns.x[i] = 6 * sqrt(x); model.combined_state[1].strength_solver.eqns.x[i] = 3; model.combined_state[2].strength_solver.eqns.x[i] = 2; // Inject some observations into the strength solver, as during film grain // parameter extraction an estimate of the average strength will be used to // adjust correlation. const int n = model.combined_state[0].strength_solver.num_bins; for (int j = 0; j < model.combined_state[0].strength_solver.num_bins; ++j) { model.combined_state[0].strength_solver.eqns.A[i * n + j] = 1; model.combined_state[1].strength_solver.eqns.A[i * n + j] = 1; model.combined_state[2].strength_solver.eqns.A[i * n + j] = 1; } } aom_film_grain_t film_grain; EXPECT_TRUE(aom_noise_model_get_grain_parameters(&model, &film_grain)); EXPECT_EQ(lag, film_grain.ar_coeff_lag); EXPECT_EQ(3, film_grain.ar_coeff_lag); EXPECT_EQ(7, film_grain.ar_coeff_shift); EXPECT_EQ(10, film_grain.scaling_shift); EXPECT_EQ(kNumScalingPointsY, film_grain.num_y_points); EXPECT_EQ(1, film_grain.update_parameters); EXPECT_EQ(1, film_grain.apply_grain); const int kNumARCoeffs = 24; for (int i = 0; i < kNumARCoeffs; ++i) { EXPECT_EQ(kExpectedARCoeffsY[i], film_grain.ar_coeffs_y[i]); } for (int i = 0; i < kNumARCoeffs + 1; ++i) { EXPECT_EQ(kExpectedARCoeffsCB[i], film_grain.ar_coeffs_cb[i]); } for (int i = 0; i < kNumARCoeffs + 1; ++i) { EXPECT_EQ(kExpectedARCoeffsCR[i], film_grain.ar_coeffs_cr[i]); } for (int i = 0; i < kNumScalingPointsY; ++i) { EXPECT_EQ(kExpectedScalingPointsY[i][0], film_grain.scaling_points_y[i][0]); EXPECT_EQ(kExpectedScalingPointsY[i][1], film_grain.scaling_points_y[i][1]); } // CB strength should just be a piecewise segment EXPECT_EQ(2, film_grain.num_cb_points); EXPECT_EQ(0, film_grain.scaling_points_cb[0][0]); EXPECT_EQ(255, film_grain.scaling_points_cb[1][0]); EXPECT_EQ(96, film_grain.scaling_points_cb[0][1]); EXPECT_EQ(96, film_grain.scaling_points_cb[1][1]); // CR strength should just be a piecewise segment EXPECT_EQ(2, film_grain.num_cr_points); EXPECT_EQ(0, film_grain.scaling_points_cr[0][0]); EXPECT_EQ(255, film_grain.scaling_points_cr[1][0]); EXPECT_EQ(64, film_grain.scaling_points_cr[0][1]); EXPECT_EQ(64, film_grain.scaling_points_cr[1][1]); EXPECT_EQ(128, film_grain.cb_mult); EXPECT_EQ(192, film_grain.cb_luma_mult); EXPECT_EQ(256, film_grain.cb_offset); EXPECT_EQ(128, film_grain.cr_mult); EXPECT_EQ(192, film_grain.cr_luma_mult); EXPECT_EQ(256, film_grain.cr_offset); EXPECT_EQ(0, film_grain.chroma_scaling_from_luma); EXPECT_EQ(0, film_grain.grain_scale_shift); aom_noise_model_free(&model); } template class WienerDenoiseTest : public ::testing::Test, public T { public: static void SetUpTestSuite() { aom_dsp_rtcd(); } protected: void SetUp() override { static const float kNoiseLevel = 5.f; static const float kStd = 4.0; static const double kMaxValue = (1 << T::kBitDepth) - 1; chroma_sub_[0] = 1; chroma_sub_[1] = 1; stride_[0] = kWidth; stride_[1] = kWidth / 2; stride_[2] = kWidth / 2; for (int k = 0; k < 3; ++k) { data_[k].resize(kWidth * kHeight); denoised_[k].resize(kWidth * kHeight); noise_psd_[k].resize(kBlockSize * kBlockSize); } const double kCoeffsY[] = { 0.0406, -0.116, -0.078, -0.152, 0.0033, -0.093, 0.048, 0.404, 0.2353, -0.035, -0.093, 0.441 }; const int kCoords[12][2] = { { -2, -2 }, { -1, -2 }, { 0, -2 }, { 1, -2 }, { 2, -2 }, { -2, -1 }, { -1, -1 }, { 0, -1 }, { 1, -1 }, { 2, -1 }, { -2, 0 }, { -1, 0 } }; const int kLag = 2; const int kLength = 12; libaom_test::ACMRandom random; std::vector noise(kWidth * kHeight); noise_synth(&random, kLag, kLength, kCoords, kCoeffsY, &noise[0], kWidth, kHeight); noise_psd_[0] = get_noise_psd(&noise[0], kWidth, kHeight, kBlockSize); for (int i = 0; i < kBlockSize * kBlockSize; ++i) { noise_psd_[0][i] = (float)(noise_psd_[0][i] * kStd * kStd * kScaleNoise * kScaleNoise / (kMaxValue * kMaxValue)); } float psd_value = aom_noise_psd_get_default_value(kBlockSizeChroma, kNoiseLevel); for (int i = 0; i < kBlockSizeChroma * kBlockSizeChroma; ++i) { noise_psd_[1][i] = psd_value; noise_psd_[2][i] = psd_value; } for (int y = 0; y < kHeight; ++y) { for (int x = 0; x < kWidth; ++x) { data_[0][y * stride_[0] + x] = (typename T::data_type_t)fclamp( (x + noise[y * stride_[0] + x] * kStd) * kScaleNoise, 0, kMaxValue); } } for (int c = 1; c < 3; ++c) { for (int y = 0; y < (kHeight >> 1); ++y) { for (int x = 0; x < (kWidth >> 1); ++x) { data_[c][y * stride_[c] + x] = (typename T::data_type_t)fclamp( (x + randn(&random, kStd)) * kScaleNoise, 0, kMaxValue); } } } for (int k = 0; k < 3; ++k) { noise_psd_ptrs_[k] = &noise_psd_[k][0]; } } static const int kBlockSize = 32; static const int kBlockSizeChroma = 16; static const int kWidth = 256; static const int kHeight = 256; static const int kScaleNoise = 1 << (T::kBitDepth - 8); std::vector data_[3]; std::vector denoised_[3]; std::vector noise_psd_[3]; int chroma_sub_[2]; float *noise_psd_ptrs_[3]; int stride_[3]; }; TYPED_TEST_SUITE_P(WienerDenoiseTest); TYPED_TEST_P(WienerDenoiseTest, InvalidBlockSize) { const uint8_t *const data_ptrs[3] = { reinterpret_cast(&this->data_[0][0]), reinterpret_cast(&this->data_[1][0]), reinterpret_cast(&this->data_[2][0]), }; uint8_t *denoised_ptrs[3] = { reinterpret_cast(&this->denoised_[0][0]), reinterpret_cast(&this->denoised_[1][0]), reinterpret_cast(&this->denoised_[2][0]), }; EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, this->kHeight, this->stride_, this->chroma_sub_, this->noise_psd_ptrs_, 18, this->kBitDepth, this->kUseHighBD)); EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, this->kHeight, this->stride_, this->chroma_sub_, this->noise_psd_ptrs_, 48, this->kBitDepth, this->kUseHighBD)); EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, this->kHeight, this->stride_, this->chroma_sub_, this->noise_psd_ptrs_, 64, this->kBitDepth, this->kUseHighBD)); } TYPED_TEST_P(WienerDenoiseTest, InvalidChromaSubsampling) { const uint8_t *const data_ptrs[3] = { reinterpret_cast(&this->data_[0][0]), reinterpret_cast(&this->data_[1][0]), reinterpret_cast(&this->data_[2][0]), }; uint8_t *denoised_ptrs[3] = { reinterpret_cast(&this->denoised_[0][0]), reinterpret_cast(&this->denoised_[1][0]), reinterpret_cast(&this->denoised_[2][0]), }; int chroma_sub[2] = { 1, 0 }; EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, this->kHeight, this->stride_, chroma_sub, this->noise_psd_ptrs_, 32, this->kBitDepth, this->kUseHighBD)); chroma_sub[0] = 0; chroma_sub[1] = 1; EXPECT_EQ(0, aom_wiener_denoise_2d(data_ptrs, denoised_ptrs, this->kWidth, this->kHeight, this->stride_, chroma_sub, this->noise_psd_ptrs_, 32, this->kBitDepth, this->kUseHighBD)); } TYPED_TEST_P(WienerDenoiseTest, GradientTest) { const int width = this->kWidth; const int height = this->kHeight; const int block_size = this->kBlockSize; const uint8_t *const data_ptrs[3] = { reinterpret_cast(&this->data_[0][0]), reinterpret_cast(&this->data_[1][0]), reinterpret_cast(&this->data_[2][0]), }; uint8_t *denoised_ptrs[3] = { reinterpret_cast(&this->denoised_[0][0]), reinterpret_cast(&this->denoised_[1][0]), reinterpret_cast(&this->denoised_[2][0]), }; const int ret = aom_wiener_denoise_2d( data_ptrs, denoised_ptrs, width, height, this->stride_, this->chroma_sub_, this->noise_psd_ptrs_, block_size, this->kBitDepth, this->kUseHighBD); EXPECT_EQ(1, ret); // Check the noise on the denoised image (from the analytical gradient) // and make sure that it is less than what we added. for (int c = 0; c < 3; ++c) { std::vector measured_noise(width * height); double var = 0; const int shift = (c > 0); for (int x = 0; x < (width >> shift); ++x) { for (int y = 0; y < (height >> shift); ++y) { const double diff = this->denoised_[c][y * this->stride_[c] + x] - x * this->kScaleNoise; var += diff * diff; measured_noise[y * width + x] = diff; } } var /= (width * height); const double std = sqrt(std::max(0.0, var)); EXPECT_LE(std, 1.25f * this->kScaleNoise); if (c == 0) { std::vector measured_psd = get_noise_psd(&measured_noise[0], width, height, block_size); std::vector measured_psd_d(block_size * block_size); std::vector noise_psd_d(block_size * block_size); std::copy(measured_psd.begin(), measured_psd.end(), measured_psd_d.begin()); std::copy(this->noise_psd_[0].begin(), this->noise_psd_[0].end(), noise_psd_d.begin()); EXPECT_LT( aom_normalized_cross_correlation(&measured_psd_d[0], &noise_psd_d[0], (int)(noise_psd_d.size())), 0.35); } } } REGISTER_TYPED_TEST_SUITE_P(WienerDenoiseTest, InvalidBlockSize, InvalidChromaSubsampling, GradientTest); INSTANTIATE_TYPED_TEST_SUITE_P(WienerDenoiseTestInstatiation, WienerDenoiseTest, AllBitDepthParams);