/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/av1_rtcd.h" #include "test/acm_random.h" #include "test/register_state_check.h" #include "test/util.h" #include "aom_ports/aom_timer.h" #include "av1/common/mv.h" #include "av1/common/restoration.h" namespace { using libaom_test::ACMRandom; using std::make_tuple; using std::tuple; typedef int (*SgrFunc)(const uint8_t *dat8, int width, int height, int stride, int eps, const int *xqd, uint8_t *dst8, int dst_stride, int32_t *tmpbuf, int bit_depth, int highbd); // Test parameter list: // typedef tuple FilterTestParam; class AV1SelfguidedFilterTest : public ::testing::TestWithParam { public: ~AV1SelfguidedFilterTest() override = default; void SetUp() override {} protected: void RunSpeedTest() { tst_fun_ = GET_PARAM(0); const int pu_width = RESTORATION_PROC_UNIT_SIZE; const int pu_height = RESTORATION_PROC_UNIT_SIZE; const int width = 256, height = 256, stride = 288, out_stride = 288; const int NUM_ITERS = 2000; int i, j, k; uint8_t *input_ = (uint8_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint8_t)); ASSERT_NE(input_, nullptr); uint8_t *output_ = (uint8_t *)aom_memalign( 32, out_stride * (height + 32) * sizeof(uint8_t)); ASSERT_NE(output_, nullptr); int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE); ASSERT_NE(tmpbuf, nullptr); uint8_t *input = input_ + stride * 16 + 16; uint8_t *output = output_ + out_stride * 16 + 16; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (i = -16; i < height + 16; ++i) for (j = -16; j < width + 16; ++j) input[i * stride + j] = rnd.Rand16() & 0xFF; int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 - SGRPROJ_PRJ_MIN0), SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 - SGRPROJ_PRJ_MIN1) }; // Fix a parameter set, since the speed depends slightly on r. // Change this to test different combinations of values of r. int eps = 15; av1_loop_restoration_precal(); aom_usec_timer ref_timer; aom_usec_timer_start(&ref_timer); for (i = 0; i < NUM_ITERS; ++i) { for (k = 0; k < height; k += pu_height) for (j = 0; j < width; j += pu_width) { int w = AOMMIN(pu_width, width - j); int h = AOMMIN(pu_height, height - k); uint8_t *input_p = input + k * stride + j; uint8_t *output_p = output + k * out_stride + j; const int ret_c = av1_apply_selfguided_restoration_c( input_p, w, h, stride, eps, xqd, output_p, out_stride, tmpbuf, 8, 0); ASSERT_EQ(ret_c, 0); } } aom_usec_timer_mark(&ref_timer); const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); aom_usec_timer tst_timer; aom_usec_timer_start(&tst_timer); for (i = 0; i < NUM_ITERS; ++i) { for (k = 0; k < height; k += pu_height) for (j = 0; j < width; j += pu_width) { int w = AOMMIN(pu_width, width - j); int h = AOMMIN(pu_height, height - k); uint8_t *input_p = input + k * stride + j; uint8_t *output_p = output + k * out_stride + j; const int ret_tst = tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride, tmpbuf, 8, 0); ASSERT_EQ(ret_tst, 0); } } aom_usec_timer_mark(&tst_timer); const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); std::cout << "[ ] C time = " << ref_time / 1000 << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; EXPECT_GT(ref_time, tst_time) << "Error: AV1SelfguidedFilterTest.SpeedTest, SIMD slower than C.\n" << "C time: " << ref_time << " us\n" << "SIMD time: " << tst_time << " us\n"; aom_free(input_); aom_free(output_); aom_free(tmpbuf); } void RunCorrectnessTest() { tst_fun_ = GET_PARAM(0); const int pu_width = RESTORATION_PROC_UNIT_SIZE; const int pu_height = RESTORATION_PROC_UNIT_SIZE; // Set the maximum width/height to test here. We actually test a small // range of sizes *up to* this size, so that we can check, eg., // the behaviour on tiles which are not a multiple of 4 wide. const int max_w = 260, max_h = 260, stride = 672, out_stride = 672; const int NUM_ITERS = 81; int i, j, k; uint8_t *input_ = (uint8_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint8_t)); ASSERT_NE(input_, nullptr); uint8_t *output_ = (uint8_t *)aom_memalign( 32, out_stride * (max_h + 32) * sizeof(uint8_t)); ASSERT_NE(output_, nullptr); uint8_t *output2_ = (uint8_t *)aom_memalign( 32, out_stride * (max_h + 32) * sizeof(uint8_t)); ASSERT_NE(output2_, nullptr); int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE); ASSERT_NE(tmpbuf, nullptr); uint8_t *input = input_ + stride * 16 + 16; uint8_t *output = output_ + out_stride * 16 + 16; uint8_t *output2 = output2_ + out_stride * 16 + 16; ACMRandom rnd(ACMRandom::DeterministicSeed()); av1_loop_restoration_precal(); for (i = 0; i < NUM_ITERS; ++i) { for (j = -16; j < max_h + 16; ++j) for (k = -16; k < max_w + 16; ++k) input[j * stride + k] = rnd.Rand16() & 0xFF; int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 - SGRPROJ_PRJ_MIN0), SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 - SGRPROJ_PRJ_MIN1) }; int eps = rnd.PseudoUniform(1 << SGRPROJ_PARAMS_BITS); // Test various tile sizes around 256x256 int test_w = max_w - (i / 9); int test_h = max_h - (i % 9); for (k = 0; k < test_h; k += pu_height) for (j = 0; j < test_w; j += pu_width) { int w = AOMMIN(pu_width, test_w - j); int h = AOMMIN(pu_height, test_h - k); uint8_t *input_p = input + k * stride + j; uint8_t *output_p = output + k * out_stride + j; uint8_t *output2_p = output2 + k * out_stride + j; const int ret_tst = tst_fun_(input_p, w, h, stride, eps, xqd, output_p, out_stride, tmpbuf, 8, 0); ASSERT_EQ(ret_tst, 0); const int ret_c = av1_apply_selfguided_restoration_c( input_p, w, h, stride, eps, xqd, output2_p, out_stride, tmpbuf, 8, 0); ASSERT_EQ(ret_c, 0); } for (j = 0; j < test_h; ++j) for (k = 0; k < test_w; ++k) { ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]); } } aom_free(input_); aom_free(output_); aom_free(output2_); aom_free(tmpbuf); } private: SgrFunc tst_fun_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1SelfguidedFilterTest); TEST_P(AV1SelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); } TEST_P(AV1SelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); } #if HAVE_SSE4_1 INSTANTIATE_TEST_SUITE_P( SSE4_1, AV1SelfguidedFilterTest, ::testing::Values(av1_apply_selfguided_restoration_sse4_1)); #endif #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, AV1SelfguidedFilterTest, ::testing::Values(av1_apply_selfguided_restoration_avx2)); #endif #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, AV1SelfguidedFilterTest, ::testing::Values(av1_apply_selfguided_restoration_neon)); #endif #if CONFIG_AV1_HIGHBITDEPTH // Test parameter list: // typedef tuple HighbdFilterTestParam; class AV1HighbdSelfguidedFilterTest : public ::testing::TestWithParam { public: ~AV1HighbdSelfguidedFilterTest() override = default; void SetUp() override {} protected: void RunSpeedTest() { tst_fun_ = GET_PARAM(0); const int pu_width = RESTORATION_PROC_UNIT_SIZE; const int pu_height = RESTORATION_PROC_UNIT_SIZE; const int width = 256, height = 256, stride = 288, out_stride = 288; const int NUM_ITERS = 2000; int i, j, k; int bit_depth = GET_PARAM(1); int mask = (1 << bit_depth) - 1; uint16_t *input_ = (uint16_t *)aom_memalign(32, stride * (height + 32) * sizeof(uint16_t)); ASSERT_NE(input_, nullptr); uint16_t *output_ = (uint16_t *)aom_memalign( 32, out_stride * (height + 32) * sizeof(uint16_t)); ASSERT_NE(output_, nullptr); int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE); ASSERT_NE(tmpbuf, nullptr); uint16_t *input = input_ + stride * 16 + 16; uint16_t *output = output_ + out_stride * 16 + 16; ACMRandom rnd(ACMRandom::DeterministicSeed()); for (i = -16; i < height + 16; ++i) for (j = -16; j < width + 16; ++j) input[i * stride + j] = rnd.Rand16() & mask; int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 - SGRPROJ_PRJ_MIN0), SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 - SGRPROJ_PRJ_MIN1) }; // Fix a parameter set, since the speed depends slightly on r. // Change this to test different combinations of values of r. int eps = 15; av1_loop_restoration_precal(); aom_usec_timer ref_timer; aom_usec_timer_start(&ref_timer); for (i = 0; i < NUM_ITERS; ++i) { for (k = 0; k < height; k += pu_height) for (j = 0; j < width; j += pu_width) { int w = AOMMIN(pu_width, width - j); int h = AOMMIN(pu_height, height - k); uint16_t *input_p = input + k * stride + j; uint16_t *output_p = output + k * out_stride + j; av1_apply_selfguided_restoration_c( CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd, CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1); } } aom_usec_timer_mark(&ref_timer); const int64_t ref_time = aom_usec_timer_elapsed(&ref_timer); aom_usec_timer tst_timer; aom_usec_timer_start(&tst_timer); for (i = 0; i < NUM_ITERS; ++i) { for (k = 0; k < height; k += pu_height) for (j = 0; j < width; j += pu_width) { int w = AOMMIN(pu_width, width - j); int h = AOMMIN(pu_height, height - k); uint16_t *input_p = input + k * stride + j; uint16_t *output_p = output + k * out_stride + j; tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd, CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1); } } aom_usec_timer_mark(&tst_timer); const int64_t tst_time = aom_usec_timer_elapsed(&tst_timer); std::cout << "[ ] C time = " << ref_time / 1000 << " ms, SIMD time = " << tst_time / 1000 << " ms\n"; EXPECT_GT(ref_time, tst_time) << "Error: AV1HighbdSelfguidedFilterTest.SpeedTest, SIMD slower than " "C.\n" << "C time: " << ref_time << " us\n" << "SIMD time: " << tst_time << " us\n"; aom_free(input_); aom_free(output_); aom_free(tmpbuf); } void RunCorrectnessTest() { tst_fun_ = GET_PARAM(0); const int pu_width = RESTORATION_PROC_UNIT_SIZE; const int pu_height = RESTORATION_PROC_UNIT_SIZE; // Set the maximum width/height to test here. We actually test a small // range of sizes *up to* this size, so that we can check, eg., // the behaviour on tiles which are not a multiple of 4 wide. const int max_w = 260, max_h = 260, stride = 672, out_stride = 672; const int NUM_ITERS = 81; int i, j, k; int bit_depth = GET_PARAM(1); int mask = (1 << bit_depth) - 1; uint16_t *input_ = (uint16_t *)aom_memalign(32, stride * (max_h + 32) * sizeof(uint16_t)); ASSERT_NE(input_, nullptr); uint16_t *output_ = (uint16_t *)aom_memalign( 32, out_stride * (max_h + 32) * sizeof(uint16_t)); ASSERT_NE(output_, nullptr); uint16_t *output2_ = (uint16_t *)aom_memalign( 32, out_stride * (max_h + 32) * sizeof(uint16_t)); ASSERT_NE(output2_, nullptr); int32_t *tmpbuf = (int32_t *)aom_memalign(32, RESTORATION_TMPBUF_SIZE); ASSERT_NE(tmpbuf, nullptr); uint16_t *input = input_ + stride * 16 + 16; uint16_t *output = output_ + out_stride * 16 + 16; uint16_t *output2 = output2_ + out_stride * 16 + 16; ACMRandom rnd(ACMRandom::DeterministicSeed()); av1_loop_restoration_precal(); for (i = 0; i < NUM_ITERS; ++i) { for (j = -16; j < max_h + 16; ++j) for (k = -16; k < max_w + 16; ++k) input[j * stride + k] = rnd.Rand16() & mask; int xqd[2] = { SGRPROJ_PRJ_MIN0 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX0 + 1 - SGRPROJ_PRJ_MIN0), SGRPROJ_PRJ_MIN1 + rnd.PseudoUniform(SGRPROJ_PRJ_MAX1 + 1 - SGRPROJ_PRJ_MIN1) }; int eps = rnd.PseudoUniform(1 << SGRPROJ_PARAMS_BITS); // Test various tile sizes around 256x256 int test_w = max_w - (i / 9); int test_h = max_h - (i % 9); for (k = 0; k < test_h; k += pu_height) for (j = 0; j < test_w; j += pu_width) { int w = AOMMIN(pu_width, test_w - j); int h = AOMMIN(pu_height, test_h - k); uint16_t *input_p = input + k * stride + j; uint16_t *output_p = output + k * out_stride + j; uint16_t *output2_p = output2 + k * out_stride + j; tst_fun_(CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd, CONVERT_TO_BYTEPTR(output_p), out_stride, tmpbuf, bit_depth, 1); av1_apply_selfguided_restoration_c( CONVERT_TO_BYTEPTR(input_p), w, h, stride, eps, xqd, CONVERT_TO_BYTEPTR(output2_p), out_stride, tmpbuf, bit_depth, 1); } for (j = 0; j < test_h; ++j) for (k = 0; k < test_w; ++k) ASSERT_EQ(output[j * out_stride + k], output2[j * out_stride + k]); } aom_free(input_); aom_free(output_); aom_free(output2_); aom_free(tmpbuf); } private: SgrFunc tst_fun_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(AV1HighbdSelfguidedFilterTest); TEST_P(AV1HighbdSelfguidedFilterTest, DISABLED_SpeedTest) { RunSpeedTest(); } TEST_P(AV1HighbdSelfguidedFilterTest, CorrectnessTest) { RunCorrectnessTest(); } #if HAVE_SSE4_1 const int highbd_params_sse4_1[] = { 8, 10, 12 }; INSTANTIATE_TEST_SUITE_P( SSE4_1, AV1HighbdSelfguidedFilterTest, ::testing::Combine( ::testing::Values(av1_apply_selfguided_restoration_sse4_1), ::testing::ValuesIn(highbd_params_sse4_1))); #endif #if HAVE_AVX2 const int highbd_params_avx2[] = { 8, 10, 12 }; INSTANTIATE_TEST_SUITE_P( AVX2, AV1HighbdSelfguidedFilterTest, ::testing::Combine(::testing::Values(av1_apply_selfguided_restoration_avx2), ::testing::ValuesIn(highbd_params_avx2))); #endif #if HAVE_NEON const int highbd_params_neon[] = { 8, 10, 12 }; INSTANTIATE_TEST_SUITE_P( NEON, AV1HighbdSelfguidedFilterTest, ::testing::Combine(::testing::Values(av1_apply_selfguided_restoration_neon), ::testing::ValuesIn(highbd_params_neon))); #endif #endif // CONFIG_AV1_HIGHBITDEPTH } // namespace