/* * Copyright (c) 2016, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "third_party/googletest/src/googletest/include/gtest/gtest.h" #include "config/aom_config.h" #include "config/aom_dsp_rtcd.h" #include "aom_ports/mem.h" #include "av1/common/common_data.h" #include "test/acm_random.h" #include "test/register_state_check.h" #include "test/util.h" #include "test/function_equivalence_test.h" using libaom_test::ACMRandom; using libaom_test::FunctionEquivalenceTest; using ::testing::Combine; using ::testing::Range; using ::testing::Values; using ::testing::ValuesIn; namespace { const int kNumIterations = 10000; static const int16_t kInt13Max = (1 << 12) - 1; typedef uint64_t (*SSI16Func)(const int16_t *src, int stride, int width, int height); typedef libaom_test::FuncParam TestFuncs; class SumSquaresTest : public ::testing::TestWithParam { public: ~SumSquaresTest() override = default; void SetUp() override { params_ = this->GetParam(); rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast(aom_memalign(16, 256 * 256 * 2)); ASSERT_NE(src_, nullptr); } void TearDown() override { aom_free(src_); } void RunTest(bool is_random); void RunSpeedTest(); void GenRandomData(int width, int height, int stride) { const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = rnd_(2) ? rnd_(limit) : -rnd_(limit); } } } void GenExtremeData(int width, int height, int stride) { const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); const int val = rnd_(2) ? limit - 1 : -(limit - 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = val; } } } protected: TestFuncs params_; int16_t *src_; ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SumSquaresTest); void SumSquaresTest::RunTest(bool is_random) { int failed = 0; for (int k = 0; k < kNumIterations; k++) { const int width = 4 * (rnd_(31) + 1); // Up to 128x128 const int height = 4 * (rnd_(31) + 1); // Up to 128x128 int stride = 4 << rnd_(7); // Up to 256 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(7); } if (is_random) { GenRandomData(width, height, stride); } else { GenExtremeData(width, height, stride); } const uint64_t res_ref = params_.ref_func(src_, stride, width, height); uint64_t res_tst; API_REGISTER_STATE_CHECK(res_tst = params_.tst_func(src_, stride, width, height)); if (!failed) { failed = res_ref != res_tst; EXPECT_EQ(res_ref, res_tst) << "Error: Sum Squares Test [" << width << "x" << height << "] C output does not match optimized output."; } } } void SumSquaresTest::RunSpeedTest() { for (int block = BLOCK_4X4; block < BLOCK_SIZES_ALL; block++) { const int width = block_size_wide[block]; // Up to 128x128 const int height = block_size_high[block]; // Up to 128x128 int stride = 4 << rnd_(7); // Up to 256 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(7); } GenExtremeData(width, height, stride); const int num_loops = 1000000000 / (width + height); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) params_.ref_func(src_, stride, width, height); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); printf("SumSquaresTest C %3dx%-3d: %7.2f ns\n", width, height, 1000.0 * elapsed_time / num_loops); aom_usec_timer timer1; aom_usec_timer_start(&timer1); for (int i = 0; i < num_loops; ++i) params_.tst_func(src_, stride, width, height); aom_usec_timer_mark(&timer1); const int elapsed_time1 = static_cast(aom_usec_timer_elapsed(&timer1)); printf("SumSquaresTest Test %3dx%-3d: %7.2f ns\n", width, height, 1000.0 * elapsed_time1 / num_loops); } } TEST_P(SumSquaresTest, OperationCheck) { RunTest(true); // GenRandomData } TEST_P(SumSquaresTest, ExtremeValues) { RunTest(false); // GenExtremeData } TEST_P(SumSquaresTest, DISABLED_Speed) { RunSpeedTest(); } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P( SSE2, SumSquaresTest, ::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c, &aom_sum_squares_2d_i16_sse2))); #endif // HAVE_SSE2 #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, SumSquaresTest, ::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c, &aom_sum_squares_2d_i16_neon))); #endif // HAVE_NEON #if HAVE_SVE INSTANTIATE_TEST_SUITE_P( SVE, SumSquaresTest, ::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c, &aom_sum_squares_2d_i16_sve))); #endif // HAVE_SVE #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, SumSquaresTest, ::testing::Values(TestFuncs(&aom_sum_squares_2d_i16_c, &aom_sum_squares_2d_i16_avx2))); #endif // HAVE_AVX2 ////////////////////////////////////////////////////////////////////////////// // 1D version ////////////////////////////////////////////////////////////////////////////// typedef uint64_t (*F1D)(const int16_t *src, uint32_t n); typedef libaom_test::FuncParam TestFuncs1D; class SumSquares1DTest : public FunctionEquivalenceTest { protected: static const int kIterations = 1000; static const int kMaxSize = 256; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SumSquares1DTest); TEST_P(SumSquares1DTest, RandomValues) { DECLARE_ALIGNED(16, int16_t, src[kMaxSize * kMaxSize]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { for (int i = 0; i < kMaxSize * kMaxSize; ++i) src[i] = rng_(kInt13Max * 2 + 1) - kInt13Max; // Block size is between 64 and 128 * 128 and is always a multiple of 64. const int n = (rng_(255) + 1) * 64; const uint64_t ref_res = params_.ref_func(src, n); uint64_t tst_res; API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(src, n)); ASSERT_EQ(ref_res, tst_res); } } TEST_P(SumSquares1DTest, ExtremeValues) { DECLARE_ALIGNED(16, int16_t, src[kMaxSize * kMaxSize]); for (int iter = 0; iter < kIterations && !HasFatalFailure(); ++iter) { if (rng_(2)) { for (int i = 0; i < kMaxSize * kMaxSize; ++i) src[i] = kInt13Max; } else { for (int i = 0; i < kMaxSize * kMaxSize; ++i) src[i] = -kInt13Max; } // Block size is between 64 and 128 * 128 and is always a multiple of 64. const int n = (rng_(255) + 1) * 64; const uint64_t ref_res = params_.ref_func(src, n); uint64_t tst_res; API_REGISTER_STATE_CHECK(tst_res = params_.tst_func(src, n)); ASSERT_EQ(ref_res, tst_res); } } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P(SSE2, SumSquares1DTest, ::testing::Values(TestFuncs1D( aom_sum_squares_i16_c, aom_sum_squares_i16_sse2))); #endif // HAVE_SSE2 #if HAVE_NEON INSTANTIATE_TEST_SUITE_P(NEON, SumSquares1DTest, ::testing::Values(TestFuncs1D( aom_sum_squares_i16_c, aom_sum_squares_i16_neon))); #endif // HAVE_NEON #if HAVE_SVE INSTANTIATE_TEST_SUITE_P(SVE, SumSquares1DTest, ::testing::Values(TestFuncs1D( aom_sum_squares_i16_c, aom_sum_squares_i16_sve))); #endif // HAVE_SVE typedef int64_t (*SSEFunc)(const uint8_t *a, int a_stride, const uint8_t *b, int b_stride, int width, int height); typedef libaom_test::FuncParam TestSSEFuncs; typedef std::tuple SSETestParam; class SSETest : public ::testing::TestWithParam { public: ~SSETest() override = default; void SetUp() override { params_ = GET_PARAM(0); width_ = GET_PARAM(1); is_hbd_ = #if CONFIG_AV1_HIGHBITDEPTH params_.ref_func == aom_highbd_sse_c; #else false; #endif rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast(aom_memalign(32, 256 * 256 * 2)); ref_ = reinterpret_cast(aom_memalign(32, 256 * 256 * 2)); ASSERT_NE(src_, nullptr); ASSERT_NE(ref_, nullptr); } void TearDown() override { aom_free(src_); aom_free(ref_); } void RunTest(bool is_random, int width, int height, int run_times); void GenRandomData(int width, int height, int stride) { uint16_t *src16 = reinterpret_cast(src_); uint16_t *ref16 = reinterpret_cast(ref_); const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { if (!is_hbd_) { src_[ii * stride + jj] = rnd_.Rand8(); ref_[ii * stride + jj] = rnd_.Rand8(); } else { src16[ii * stride + jj] = rnd_(limit); ref16[ii * stride + jj] = rnd_(limit); } } } } void GenExtremeData(int width, int height, int stride, uint8_t *data, int16_t val) { uint16_t *data16 = reinterpret_cast(data); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { if (!is_hbd_) { data[ii * stride + jj] = static_cast(val); } else { data16[ii * stride + jj] = val; } } } } protected: bool is_hbd_; int width_; TestSSEFuncs params_; uint8_t *src_; uint8_t *ref_; ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SSETest); void SSETest::RunTest(bool is_random, int width, int height, int run_times) { int failed = 0; aom_usec_timer ref_timer, test_timer; for (int k = 0; k < 3; k++) { int stride = 4 << rnd_(7); // Up to 256 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(7); } if (is_random) { GenRandomData(width, height, stride); } else { const int msb = is_hbd_ ? 12 : 8; // Up to 12 bit input const int limit = (1 << msb) - 1; if (k == 0) { GenExtremeData(width, height, stride, src_, 0); GenExtremeData(width, height, stride, ref_, limit); } else { GenExtremeData(width, height, stride, src_, limit); GenExtremeData(width, height, stride, ref_, 0); } } int64_t res_ref, res_tst; uint8_t *src = src_; uint8_t *ref = ref_; if (is_hbd_) { src = CONVERT_TO_BYTEPTR(src_); ref = CONVERT_TO_BYTEPTR(ref_); } res_ref = params_.ref_func(src, stride, ref, stride, width, height); res_tst = params_.tst_func(src, stride, ref, stride, width, height); if (run_times > 1) { aom_usec_timer_start(&ref_timer); for (int j = 0; j < run_times; j++) { params_.ref_func(src, stride, ref, stride, width, height); } aom_usec_timer_mark(&ref_timer); const int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int j = 0; j < run_times; j++) { params_.tst_func(src, stride, ref, stride, width, height); } aom_usec_timer_mark(&test_timer); const int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "c_time=%d \t simd_time=%d \t " "gain=%d\n", elapsed_time_c, elapsed_time_simd, (elapsed_time_c / elapsed_time_simd)); } else { if (!failed) { failed = res_ref != res_tst; EXPECT_EQ(res_ref, res_tst) << "Error:" << (is_hbd_ ? "hbd " : " ") << k << " SSE Test [" << width << "x" << height << "] C output does not match optimized output."; } } } } TEST_P(SSETest, OperationCheck) { for (int height = 4; height <= 128; height += 4) { RunTest(true, width_, height, 1); // GenRandomData } } TEST_P(SSETest, ExtremeValues) { for (int height = 4; height <= 128; height += 4) { RunTest(false, width_, height, 1); } } TEST_P(SSETest, DISABLED_Speed) { for (int height = 4; height <= 128; height += 4) { RunTest(true, width_, height, 100); } } #if HAVE_NEON TestSSEFuncs sse_neon[] = { TestSSEFuncs(&aom_sse_c, &aom_sse_neon), #if CONFIG_AV1_HIGHBITDEPTH TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_neon) #endif }; INSTANTIATE_TEST_SUITE_P(NEON, SSETest, Combine(ValuesIn(sse_neon), Range(4, 129, 4))); #endif // HAVE_NEON #if HAVE_NEON_DOTPROD TestSSEFuncs sse_neon_dotprod[] = { TestSSEFuncs(&aom_sse_c, &aom_sse_neon_dotprod), }; INSTANTIATE_TEST_SUITE_P(NEON_DOTPROD, SSETest, Combine(ValuesIn(sse_neon_dotprod), Range(4, 129, 4))); #endif // HAVE_NEON_DOTPROD #if HAVE_SSE4_1 TestSSEFuncs sse_sse4[] = { TestSSEFuncs(&aom_sse_c, &aom_sse_sse4_1), #if CONFIG_AV1_HIGHBITDEPTH TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_sse4_1) #endif }; INSTANTIATE_TEST_SUITE_P(SSE4_1, SSETest, Combine(ValuesIn(sse_sse4), Range(4, 129, 4))); #endif // HAVE_SSE4_1 #if HAVE_AVX2 TestSSEFuncs sse_avx2[] = { TestSSEFuncs(&aom_sse_c, &aom_sse_avx2), #if CONFIG_AV1_HIGHBITDEPTH TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_avx2) #endif }; INSTANTIATE_TEST_SUITE_P(AVX2, SSETest, Combine(ValuesIn(sse_avx2), Range(4, 129, 4))); #endif // HAVE_AVX2 #if HAVE_SVE #if CONFIG_AV1_HIGHBITDEPTH TestSSEFuncs sse_sve[] = { TestSSEFuncs(&aom_highbd_sse_c, &aom_highbd_sse_sve) }; INSTANTIATE_TEST_SUITE_P(SVE, SSETest, Combine(ValuesIn(sse_sve), Range(4, 129, 4))); #endif #endif // HAVE_SVE ////////////////////////////////////////////////////////////////////////////// // get_blk sum squares test functions ////////////////////////////////////////////////////////////////////////////// typedef void (*sse_sum_func)(const int16_t *data, int stride, int bw, int bh, int *x_sum, int64_t *x2_sum); typedef libaom_test::FuncParam TestSSE_SumFuncs; typedef std::tuple SSE_SumTestParam; class SSE_Sum_Test : public ::testing::TestWithParam { public: ~SSE_Sum_Test() override = default; void SetUp() override { params_ = GET_PARAM(0); rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast(aom_memalign(32, 256 * 256 * 2)); ASSERT_NE(src_, nullptr); } void TearDown() override { aom_free(src_); } void RunTest(bool is_random, int tx_size, int run_times); void GenRandomData(int width, int height, int stride) { const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = rnd_(limit); } } } void GenExtremeData(int width, int height, int stride, int16_t *data, int16_t val) { for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { data[ii * stride + jj] = val; } } } protected: TestSSE_SumFuncs params_; int16_t *src_; ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SSE_Sum_Test); void SSE_Sum_Test::RunTest(bool is_random, int tx_size, int run_times) { aom_usec_timer ref_timer, test_timer; int width = tx_size_wide[tx_size]; int height = tx_size_high[tx_size]; for (int k = 0; k < 3; k++) { int stride = 4 << rnd_(7); // Up to 256 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(7); } if (is_random) { GenRandomData(width, height, stride); } else { const int msb = 12; // Up to 12 bit input const int limit = (1 << msb) - 1; if (k == 0) { GenExtremeData(width, height, stride, src_, limit); } else { GenExtremeData(width, height, stride, src_, -limit); } } int sum_c = 0; int64_t sse_intr = 0; int sum_intr = 0; int64_t sse_c = 0; params_.ref_func(src_, stride, width, height, &sum_c, &sse_c); params_.tst_func(src_, stride, width, height, &sum_intr, &sse_intr); if (run_times > 1) { aom_usec_timer_start(&ref_timer); for (int j = 0; j < run_times; j++) { params_.ref_func(src_, stride, width, height, &sum_c, &sse_c); } aom_usec_timer_mark(&ref_timer); const int elapsed_time_c = static_cast(aom_usec_timer_elapsed(&ref_timer)); aom_usec_timer_start(&test_timer); for (int j = 0; j < run_times; j++) { params_.tst_func(src_, stride, width, height, &sum_intr, &sse_intr); } aom_usec_timer_mark(&test_timer); const int elapsed_time_simd = static_cast(aom_usec_timer_elapsed(&test_timer)); printf( "c_time=%d \t simd_time=%d \t " "gain=%f\t width=%d\t height=%d \n", elapsed_time_c, elapsed_time_simd, (float)((float)elapsed_time_c / (float)elapsed_time_simd), width, height); } else { EXPECT_EQ(sum_c, sum_intr) << "Error:" << k << " SSE Sum Test [" << width << "x" << height << "] C output does not match optimized output."; EXPECT_EQ(sse_c, sse_intr) << "Error:" << k << " SSE Sum Test [" << width << "x" << height << "] C output does not match optimized output."; } } } TEST_P(SSE_Sum_Test, OperationCheck) { RunTest(true, GET_PARAM(1), 1); // GenRandomData } TEST_P(SSE_Sum_Test, ExtremeValues) { RunTest(false, GET_PARAM(1), 1); } TEST_P(SSE_Sum_Test, DISABLED_Speed) { RunTest(true, GET_PARAM(1), 10000); } #if HAVE_SSE2 || HAVE_AVX2 || HAVE_NEON const TX_SIZE kValidBlockSize[] = { TX_4X4, TX_8X8, TX_16X16, TX_32X32, TX_64X64, TX_4X8, TX_8X4, TX_8X16, TX_16X8, TX_16X32, TX_32X16, TX_64X32, TX_32X64, TX_4X16, TX_16X4, TX_8X32, TX_32X8, TX_16X64, TX_64X16 }; #endif #if HAVE_SSE2 TestSSE_SumFuncs sse_sum_sse2[] = { TestSSE_SumFuncs( &aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_sse2) }; INSTANTIATE_TEST_SUITE_P(SSE2, SSE_Sum_Test, Combine(ValuesIn(sse_sum_sse2), ValuesIn(kValidBlockSize))); #endif // HAVE_SSE2 #if HAVE_AVX2 TestSSE_SumFuncs sse_sum_avx2[] = { TestSSE_SumFuncs( &aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_avx2) }; INSTANTIATE_TEST_SUITE_P(AVX2, SSE_Sum_Test, Combine(ValuesIn(sse_sum_avx2), ValuesIn(kValidBlockSize))); #endif // HAVE_AVX2 #if HAVE_NEON TestSSE_SumFuncs sse_sum_neon[] = { TestSSE_SumFuncs( &aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_neon) }; INSTANTIATE_TEST_SUITE_P(NEON, SSE_Sum_Test, Combine(ValuesIn(sse_sum_neon), ValuesIn(kValidBlockSize))); #endif // HAVE_NEON #if HAVE_SVE TestSSE_SumFuncs sse_sum_sve[] = { TestSSE_SumFuncs(&aom_get_blk_sse_sum_c, &aom_get_blk_sse_sum_sve) }; INSTANTIATE_TEST_SUITE_P(SVE, SSE_Sum_Test, Combine(ValuesIn(sse_sum_sve), ValuesIn(kValidBlockSize))); #endif // HAVE_SVE ////////////////////////////////////////////////////////////////////////////// // 2D Variance test functions ////////////////////////////////////////////////////////////////////////////// typedef uint64_t (*Var2DFunc)(uint8_t *src, int stride, int width, int height); typedef libaom_test::FuncParam TestFuncVar2D; const uint16_t test_block_size[2] = { 128, 256 }; class Lowbd2dVarTest : public ::testing::TestWithParam { public: ~Lowbd2dVarTest() override = default; void SetUp() override { params_ = this->GetParam(); rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast( aom_memalign(16, 512 * 512 * sizeof(uint8_t))); ASSERT_NE(src_, nullptr); } void TearDown() override { aom_free(src_); } void RunTest(bool is_random); void RunSpeedTest(); void GenRandomData(int width, int height, int stride) { const int msb = 7; // Up to 8 bit input const int limit = 1 << (msb + 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = rnd_(limit); } } } void GenExtremeData(int width, int height, int stride) { const int msb = 7; // Up to 8 bit input const int limit = 1 << (msb + 1); const int val = rnd_(2) ? limit - 1 : 0; for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = val; } } } protected: TestFuncVar2D params_; uint8_t *src_; ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(Lowbd2dVarTest); void Lowbd2dVarTest::RunTest(bool is_random) { int failed = 0; for (int k = 0; k < kNumIterations; k++) { const int width = 4 * (rnd_(63) + 1); // Up to 256x256 const int height = 4 * (rnd_(63) + 1); // Up to 256x256 int stride = 4 << rnd_(8); // Up to 512 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(8); } if (is_random) { GenRandomData(width, height, stride); } else { GenExtremeData(width, height, stride); } const uint64_t res_ref = params_.ref_func(src_, stride, width, height); uint64_t res_tst; API_REGISTER_STATE_CHECK(res_tst = params_.tst_func(src_, stride, width, height)); if (!failed) { failed = res_ref != res_tst; EXPECT_EQ(res_ref, res_tst) << "Error: Sum Squares Test [" << width << "x" << height << "] C output does not match optimized output."; } } } void Lowbd2dVarTest::RunSpeedTest() { for (int block = 0; block < 2; block++) { const int width = test_block_size[block]; const int height = test_block_size[block]; int stride = 4 << rnd_(8); // Up to 512 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(8); } GenExtremeData(width, height, stride); const int num_loops = 1000000000 / (width + height); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) params_.ref_func(src_, stride, width, height); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); aom_usec_timer timer1; aom_usec_timer_start(&timer1); for (int i = 0; i < num_loops; ++i) params_.tst_func(src_, stride, width, height); aom_usec_timer_mark(&timer1); const int elapsed_time1 = static_cast(aom_usec_timer_elapsed(&timer1)); printf("%3dx%-3d: Scaling = %.2f\n", width, height, (double)elapsed_time / elapsed_time1); } } TEST_P(Lowbd2dVarTest, OperationCheck) { RunTest(true); // GenRandomData } TEST_P(Lowbd2dVarTest, ExtremeValues) { RunTest(false); // GenExtremeData } TEST_P(Lowbd2dVarTest, DISABLED_Speed) { RunSpeedTest(); } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P(SSE2, Lowbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c, &aom_var_2d_u8_sse2))); #endif // HAVE_SSE2 #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P(AVX2, Lowbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c, &aom_var_2d_u8_avx2))); #endif // HAVE_SSE2 #if HAVE_NEON INSTANTIATE_TEST_SUITE_P(NEON, Lowbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u8_c, &aom_var_2d_u8_neon))); #endif // HAVE_NEON #if HAVE_NEON_DOTPROD INSTANTIATE_TEST_SUITE_P(NEON_DOTPROD, Lowbd2dVarTest, ::testing::Values(TestFuncVar2D( &aom_var_2d_u8_c, &aom_var_2d_u8_neon_dotprod))); #endif // HAVE_NEON_DOTPROD class Highbd2dVarTest : public ::testing::TestWithParam { public: ~Highbd2dVarTest() override = default; void SetUp() override { params_ = this->GetParam(); rnd_.Reset(ACMRandom::DeterministicSeed()); src_ = reinterpret_cast( aom_memalign(16, 512 * 512 * sizeof(uint16_t))); ASSERT_NE(src_, nullptr); } void TearDown() override { aom_free(src_); } void RunTest(bool is_random); void RunSpeedTest(); void GenRandomData(int width, int height, int stride) { const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = rnd_(limit); } } } void GenExtremeData(int width, int height, int stride) { const int msb = 11; // Up to 12 bit input const int limit = 1 << (msb + 1); const int val = rnd_(2) ? limit - 1 : 0; for (int ii = 0; ii < height; ii++) { for (int jj = 0; jj < width; jj++) { src_[ii * stride + jj] = val; } } } protected: TestFuncVar2D params_; uint16_t *src_; ACMRandom rnd_; }; GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(Highbd2dVarTest); void Highbd2dVarTest::RunTest(bool is_random) { int failed = 0; for (int k = 0; k < kNumIterations; k++) { const int width = 4 * (rnd_(63) + 1); // Up to 256x256 const int height = 4 * (rnd_(63) + 1); // Up to 256x256 int stride = 4 << rnd_(8); // Up to 512 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(8); } if (is_random) { GenRandomData(width, height, stride); } else { GenExtremeData(width, height, stride); } const uint64_t res_ref = params_.ref_func(CONVERT_TO_BYTEPTR(src_), stride, width, height); uint64_t res_tst; API_REGISTER_STATE_CHECK( res_tst = params_.tst_func(CONVERT_TO_BYTEPTR(src_), stride, width, height)); if (!failed) { failed = res_ref != res_tst; EXPECT_EQ(res_ref, res_tst) << "Error: Sum Squares Test [" << width << "x" << height << "] C output does not match optimized output."; } } } void Highbd2dVarTest::RunSpeedTest() { for (int block = 0; block < 2; block++) { const int width = test_block_size[block]; const int height = test_block_size[block]; int stride = 4 << rnd_(8); // Up to 512 stride while (stride < width) { // Make sure it's valid stride = 4 << rnd_(8); } GenExtremeData(width, height, stride); const int num_loops = 1000000000 / (width + height); aom_usec_timer timer; aom_usec_timer_start(&timer); for (int i = 0; i < num_loops; ++i) params_.ref_func(CONVERT_TO_BYTEPTR(src_), stride, width, height); aom_usec_timer_mark(&timer); const int elapsed_time = static_cast(aom_usec_timer_elapsed(&timer)); aom_usec_timer timer1; aom_usec_timer_start(&timer1); for (int i = 0; i < num_loops; ++i) params_.tst_func(CONVERT_TO_BYTEPTR(src_), stride, width, height); aom_usec_timer_mark(&timer1); const int elapsed_time1 = static_cast(aom_usec_timer_elapsed(&timer1)); printf("%3dx%-3d: Scaling = %.2f\n", width, height, (double)elapsed_time / elapsed_time1); } } TEST_P(Highbd2dVarTest, OperationCheck) { RunTest(true); // GenRandomData } TEST_P(Highbd2dVarTest, ExtremeValues) { RunTest(false); // GenExtremeData } TEST_P(Highbd2dVarTest, DISABLED_Speed) { RunSpeedTest(); } #if HAVE_SSE2 INSTANTIATE_TEST_SUITE_P( SSE2, Highbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_sse2))); #endif // HAVE_SSE2 #if HAVE_AVX2 INSTANTIATE_TEST_SUITE_P( AVX2, Highbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_avx2))); #endif // HAVE_SSE2 #if HAVE_NEON INSTANTIATE_TEST_SUITE_P( NEON, Highbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_neon))); #endif // HAVE_NEON #if HAVE_SVE INSTANTIATE_TEST_SUITE_P(SVE, Highbd2dVarTest, ::testing::Values(TestFuncVar2D(&aom_var_2d_u16_c, &aom_var_2d_u16_sve))); #endif // HAVE_SVE } // namespace