/* * Copyright (c) 2021, Alliance for Open Media. All rights reserved * * This source code is subject to the terms of the BSD 2 Clause License and * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License * was not distributed with this source code in the LICENSE file, you can * obtain it at www.aomedia.org/license/software. If the Alliance for Open * Media Patent License 1.0 was not distributed with this source code in the * PATENTS file, you can obtain it at www.aomedia.org/license/patent. */ #include #include #include #include #include "av1/encoder/cost.h" #include "av1/encoder/tpl_model.h" #include "av1/encoder/encoder.h" #include "third_party/googletest/src/googletest/include/gtest/gtest.h" namespace { #if CONFIG_BITRATE_ACCURACY constexpr double epsilon = 0.0000001; #endif double laplace_prob(double q_step, double b, double zero_bin_ratio, int qcoeff) { int abs_qcoeff = abs(qcoeff); double z0 = fmax(exp(-zero_bin_ratio / 2 * q_step / b), TPL_EPSILON); if (abs_qcoeff == 0) { double p0 = 1 - z0; return p0; } else { assert(abs_qcoeff > 0); double z = fmax(exp(-q_step / b), TPL_EPSILON); double p = z0 / 2 * (1 - z) * pow(z, abs_qcoeff - 1); return p; } } TEST(TplModelTest, ExponentialEntropyBoundaryTest1) { double b = 0; double q_step = 1; double entropy = av1_exponential_entropy(q_step, b); EXPECT_NEAR(entropy, 0, 0.00001); } TEST(TplModelTest, TransformCoeffEntropyTest1) { // Check the consistency between av1_estimate_coeff_entropy() and // laplace_prob() double b = 1; double q_step = 1; double zero_bin_ratio = 2; for (int qcoeff = -256; qcoeff < 256; ++qcoeff) { double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff); double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff); double ref_rate = -log2(prob); EXPECT_DOUBLE_EQ(rate, ref_rate); } } TEST(TplModelTest, TransformCoeffEntropyTest2) { // Check the consistency between av1_estimate_coeff_entropy(), laplace_prob() // and av1_laplace_entropy() double b = 1; double q_step = 1; double zero_bin_ratio = 2; double est_expected_rate = 0; for (int qcoeff = -20; qcoeff < 20; ++qcoeff) { double rate = av1_estimate_coeff_entropy(q_step, b, zero_bin_ratio, qcoeff); double prob = laplace_prob(q_step, b, zero_bin_ratio, qcoeff); est_expected_rate += prob * rate; } double expected_rate = av1_laplace_entropy(q_step, b, zero_bin_ratio); EXPECT_NEAR(expected_rate, est_expected_rate, 0.001); } TEST(TplModelTest, InitTplStats1) { // We use heap allocation instead of stack allocation here to avoid // -Wstack-usage warning. std::unique_ptr tpl_data(new (std::nothrow) TplParams); ASSERT_NE(tpl_data, nullptr); av1_zero(*tpl_data); tpl_data->ready = 1; EXPECT_EQ(sizeof(tpl_data->tpl_stats_buffer), MAX_LENGTH_TPL_FRAME_STATS * sizeof(tpl_data->tpl_stats_buffer[0])); for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) { // Set it to a random non-zero number tpl_data->tpl_stats_buffer[i].is_valid = i + 1; } av1_init_tpl_stats(tpl_data.get()); EXPECT_EQ(tpl_data->ready, 0); for (int i = 0; i < MAX_LENGTH_TPL_FRAME_STATS; ++i) { EXPECT_EQ(tpl_data->tpl_stats_buffer[i].is_valid, 0); } } TEST(TplModelTest, DeltaRateCostZeroFlow) { // When srcrf_dist equal to recrf_dist, av1_delta_rate_cost should return 0 int64_t srcrf_dist = 256; int64_t recrf_dist = 256; int64_t delta_rate = 512; int pixel_num = 256; int64_t rate_cost = av1_delta_rate_cost(delta_rate, recrf_dist, srcrf_dist, pixel_num); EXPECT_EQ(rate_cost, 0); } // a reference function of av1_delta_rate_cost() with delta_rate using bit as // basic unit double ref_delta_rate_cost(int64_t delta_rate, double src_rec_ratio, int pixel_count) { assert(src_rec_ratio <= 1 && src_rec_ratio >= 0); double bits_per_pixel = (double)delta_rate / pixel_count; double p = pow(2, bits_per_pixel); double flow_rate_per_pixel = sqrt(p * p / (src_rec_ratio * p * p + (1 - src_rec_ratio))); double rate_cost = pixel_count * log2(flow_rate_per_pixel); return rate_cost; } TEST(TplModelTest, DeltaRateCostReference) { const int64_t scale = TPL_DEP_COST_SCALE_LOG2 + AV1_PROB_COST_SHIFT; std::vector srcrf_dist_arr = { 256, 257, 312 }; std::vector recrf_dist_arr = { 512, 288, 620 }; std::vector delta_rate_arr = { 10, 278, 100 }; for (size_t t = 0; t < srcrf_dist_arr.size(); ++t) { int64_t srcrf_dist = srcrf_dist_arr[t]; int64_t recrf_dist = recrf_dist_arr[t]; int64_t delta_rate = delta_rate_arr[t]; int64_t scaled_delta_rate = delta_rate << scale; int pixel_count = 256; int64_t rate_cost = av1_delta_rate_cost(scaled_delta_rate, recrf_dist, srcrf_dist, pixel_count); rate_cost >>= scale; double src_rec_ratio = (double)srcrf_dist / recrf_dist; double ref_rate_cost = ref_delta_rate_cost(delta_rate, src_rec_ratio, pixel_count); EXPECT_NEAR((double)rate_cost, ref_rate_cost, 1); } } TEST(TplModelTest, GetOverlapAreaHasOverlap) { // The block a's area is [10, 17) x [18, 24). // The block b's area is [8, 15) x [17, 23). // The overlapping area between block a and block b is [10, 15) x [18, 23). // Therefore, the size of the area is (15 - 10) * (23 - 18) = 25. int row_a = 10; int col_a = 18; int row_b = 8; int col_b = 17; int height = 7; int width = 6; int overlap_area = av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height); EXPECT_EQ(overlap_area, 25); } TEST(TplModelTest, GetOverlapAreaNoOverlap) { // The block a's area is [10, 14) x [18, 22). // The block b's area is [5, 9) x [5, 9). // Threre is no overlapping area between block a and block b. // Therefore, the return value should be zero. int row_a = 10; int col_a = 18; int row_b = 5; int col_b = 5; int height = 4; int width = 4; int overlap_area = av1_get_overlap_area(row_a, col_a, row_b, col_b, width, height); EXPECT_EQ(overlap_area, 0); } TEST(TplModelTest, GetQIndexFromQstepRatio) { const aom_bit_depth_t bit_depth = AOM_BITS_8; // When qstep_ratio is 1, the output q_index should be equal to leaf_qindex. double qstep_ratio = 1.0; for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) { const int q_index = av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth); EXPECT_EQ(q_index, leaf_qindex); } // When qstep_ratio is very low, the output q_index should be 1. qstep_ratio = 0.0001; for (int leaf_qindex = 1; leaf_qindex <= 255; ++leaf_qindex) { const int q_index = av1_get_q_index_from_qstep_ratio(leaf_qindex, qstep_ratio, bit_depth); EXPECT_EQ(q_index, 0); } } TEST(TplModelTest, TxfmStatsInitTest) { TplTxfmStats tpl_txfm_stats; av1_init_tpl_txfm_stats(&tpl_txfm_stats); EXPECT_EQ(tpl_txfm_stats.coeff_num, 256); EXPECT_EQ(tpl_txfm_stats.txfm_block_count, 0); for (int i = 0; i < tpl_txfm_stats.coeff_num; ++i) { EXPECT_DOUBLE_EQ(tpl_txfm_stats.abs_coeff_sum[i], 0); } } #if CONFIG_BITRATE_ACCURACY TEST(TplModelTest, TxfmStatsAccumulateTest) { TplTxfmStats sub_stats; av1_init_tpl_txfm_stats(&sub_stats); sub_stats.txfm_block_count = 17; for (int i = 0; i < sub_stats.coeff_num; ++i) { sub_stats.abs_coeff_sum[i] = i; } TplTxfmStats accumulated_stats; av1_init_tpl_txfm_stats(&accumulated_stats); accumulated_stats.txfm_block_count = 13; for (int i = 0; i < accumulated_stats.coeff_num; ++i) { accumulated_stats.abs_coeff_sum[i] = 5 * i; } av1_accumulate_tpl_txfm_stats(&sub_stats, &accumulated_stats); EXPECT_DOUBLE_EQ(accumulated_stats.txfm_block_count, 30); for (int i = 0; i < accumulated_stats.coeff_num; ++i) { EXPECT_DOUBLE_EQ(accumulated_stats.abs_coeff_sum[i], 6 * i); } } TEST(TplModelTest, TxfmStatsRecordTest) { TplTxfmStats stats1; TplTxfmStats stats2; av1_init_tpl_txfm_stats(&stats1); av1_init_tpl_txfm_stats(&stats2); tran_low_t coeff[256]; for (int i = 0; i < 256; ++i) { coeff[i] = i; } av1_record_tpl_txfm_block(&stats1, coeff); EXPECT_EQ(stats1.txfm_block_count, 1); // we record the same transform block twice for testing purpose av1_record_tpl_txfm_block(&stats2, coeff); av1_record_tpl_txfm_block(&stats2, coeff); EXPECT_EQ(stats2.txfm_block_count, 2); EXPECT_EQ(stats1.coeff_num, 256); EXPECT_EQ(stats2.coeff_num, 256); for (int i = 0; i < 256; ++i) { EXPECT_DOUBLE_EQ(stats2.abs_coeff_sum[i], 2 * stats1.abs_coeff_sum[i]); } } #endif // CONFIG_BITRATE_ACCURACY TEST(TplModelTest, ComputeMVDifferenceTest) { TplDepFrame tpl_frame_small; tpl_frame_small.is_valid = true; tpl_frame_small.mi_rows = 4; tpl_frame_small.mi_cols = 4; tpl_frame_small.stride = 1; uint8_t right_shift_small = 1; int step_small = 1 << right_shift_small; // Test values for motion vectors. int mv_vals_small[4] = { 1, 2, 3, 4 }; int index = 0; // 4x4 blocks means we need to allocate a 4 size array. // According to av1_tpl_ptr_pos: // (row >> right_shift) * stride + (col >> right_shift) // (4 >> 1) * 1 + (4 >> 1) = 4 TplDepStats stats_buf_small[4]; tpl_frame_small.tpl_stats_ptr = stats_buf_small; for (int row = 0; row < tpl_frame_small.mi_rows; row += step_small) { for (int col = 0; col < tpl_frame_small.mi_cols; col += step_small) { TplDepStats tpl_stats; tpl_stats.ref_frame_index[0] = 0; int_mv mv; mv.as_mv.row = mv_vals_small[index]; mv.as_mv.col = mv_vals_small[index]; index++; tpl_stats.mv[0] = mv; tpl_frame_small.tpl_stats_ptr[av1_tpl_ptr_pos( row, col, tpl_frame_small.stride, right_shift_small)] = tpl_stats; } } int_mv result_mv = av1_compute_mv_difference(&tpl_frame_small, 1, 1, step_small, tpl_frame_small.stride, right_shift_small); // Expect the result to be exactly equal to 1 because this is the difference // between neighboring motion vectors in this instance. EXPECT_EQ(result_mv.as_mv.row, 1); EXPECT_EQ(result_mv.as_mv.col, 1); } TEST(TplModelTest, ComputeMVBitsTest) { TplDepFrame tpl_frame; tpl_frame.is_valid = true; tpl_frame.mi_rows = 16; tpl_frame.mi_cols = 16; tpl_frame.stride = 24; uint8_t right_shift = 2; int step = 1 << right_shift; // Test values for motion vectors. int mv_vals_ordered[16] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; int mv_vals[16] = { 1, 16, 2, 15, 3, 14, 4, 13, 5, 12, 6, 11, 7, 10, 8, 9 }; int index = 0; // 16x16 blocks means we need to allocate a 100 size array. // According to av1_tpl_ptr_pos: // (row >> right_shift) * stride + (col >> right_shift) // (16 >> 2) * 24 + (16 >> 2) = 100 TplDepStats stats_buf[100]; tpl_frame.tpl_stats_ptr = stats_buf; for (int row = 0; row < tpl_frame.mi_rows; row += step) { for (int col = 0; col < tpl_frame.mi_cols; col += step) { TplDepStats tpl_stats; tpl_stats.ref_frame_index[0] = 0; int_mv mv; mv.as_mv.row = mv_vals_ordered[index]; mv.as_mv.col = mv_vals_ordered[index]; index++; tpl_stats.mv[0] = mv; tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride, right_shift)] = tpl_stats; } } double result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift); // Expect the result to be low because the motion vectors are ordered. // The estimation algorithm takes this into account and reduces the cost. EXPECT_NEAR(result, 20, 5); index = 0; for (int row = 0; row < tpl_frame.mi_rows; row += step) { for (int col = 0; col < tpl_frame.mi_cols; col += step) { TplDepStats tpl_stats; tpl_stats.ref_frame_index[0] = 0; int_mv mv; mv.as_mv.row = mv_vals[index]; mv.as_mv.col = mv_vals[index]; index++; tpl_stats.mv[0] = mv; tpl_frame.tpl_stats_ptr[av1_tpl_ptr_pos(row, col, tpl_frame.stride, right_shift)] = tpl_stats; } } result = av1_tpl_compute_frame_mv_entropy(&tpl_frame, right_shift); // Expect the result to be higher because the vectors are not ordered. // Neighboring vectors will have different values, increasing the cost. EXPECT_NEAR(result, 70, 5); } #if CONFIG_BITRATE_ACCURACY TEST(TplModelTest, VbrRcInfoSetGopBitBudget) { VBR_RATECTRL_INFO vbr_rc_info; const double total_bit_budget = 2000; const int show_frame_count = 8; const int gop_show_frame_count = 4; av1_vbr_rc_init(&vbr_rc_info, total_bit_budget, show_frame_count); av1_vbr_rc_set_gop_bit_budget(&vbr_rc_info, gop_show_frame_count); EXPECT_NEAR(vbr_rc_info.gop_bit_budget, 1000, epsilon); } void init_toy_gf_group(GF_GROUP *gf_group) { av1_zero(*gf_group); gf_group->size = 4; const FRAME_UPDATE_TYPE update_type[4] = { KF_UPDATE, ARF_UPDATE, INTNL_ARF_UPDATE, LF_UPDATE }; for (int i = 0; i < gf_group->size; ++i) { gf_group->update_type[i] = update_type[i]; } } void init_toy_vbr_rc_info(VBR_RATECTRL_INFO *vbr_rc_info, int gop_size) { int total_bit_budget = 2000; int show_frame_count = 8; av1_vbr_rc_init(vbr_rc_info, total_bit_budget, show_frame_count); for (int i = 0; i < gop_size; ++i) { vbr_rc_info->qstep_ratio_list[i] = 1; } } void init_toy_tpl_txfm_stats(std::vector *stats_list) { for (size_t i = 0; i < stats_list->size(); i++) { TplTxfmStats *txfm_stats = &stats_list->at(i); av1_init_tpl_txfm_stats(txfm_stats); txfm_stats->txfm_block_count = 8; for (int j = 0; j < txfm_stats->coeff_num; j++) { txfm_stats->abs_coeff_sum[j] = 1000 + j; } av1_tpl_txfm_stats_update_abs_coeff_mean(txfm_stats); } } /* * Helper method to brute-force search for the closest q_index * that achieves the specified bit budget. */ int find_gop_q_iterative(double bit_budget, aom_bit_depth_t bit_depth, const double *update_type_scale_factors, int frame_count, const FRAME_UPDATE_TYPE *update_type_list, const double *qstep_ratio_list, const TplTxfmStats *stats_list, int *q_index_list, double *estimated_bitrate_byframe) { int best_q = 255; double curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate( best_q, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); double min_bits_diff = fabs(curr_estimate - bit_budget); // Start at q = 254 because we already have an estimate for q = 255. for (int q = 254; q >= 0; q--) { curr_estimate = av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, update_type_scale_factors, frame_count, update_type_list, qstep_ratio_list, stats_list, q_index_list, estimated_bitrate_byframe); double bits_diff = fabs(curr_estimate - bit_budget); if (bits_diff <= min_bits_diff) { min_bits_diff = bits_diff; best_q = q; } } return best_q; } TEST(TplModelTest, EstimateFrameRateTest) { GF_GROUP gf_group; init_toy_gf_group(&gf_group); VBR_RATECTRL_INFO vbr_rc_info; init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size); std::vector stats_list(gf_group.size); init_toy_tpl_txfm_stats(&stats_list); std::vector est_bitrate_list(gf_group.size); init_toy_tpl_txfm_stats(&stats_list); const aom_bit_depth_t bit_depth = AOM_BITS_8; const int q = 125; // Case1: all scale factors are 0 double scale_factors[FRAME_UPDATE_TYPES] = { 0 }; double estimate = av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, est_bitrate_list.data()); EXPECT_NEAR(estimate, 0, epsilon); // Case2: all scale factors are 1 for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { scale_factors[i] = 1; } estimate = av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, est_bitrate_list.data()); double ref_estimate = 0; for (int i = 0; i < gf_group.size; i++) { ref_estimate += est_bitrate_list[i]; } EXPECT_NEAR(estimate, ref_estimate, epsilon); // Case3: Key frame scale factor is 0 and others are 1 for (int i = 0; i < FRAME_UPDATE_TYPES; i++) { if (i == KF_UPDATE) { scale_factors[i] = 0; } else { scale_factors[i] = 1; } } estimate = av1_vbr_rc_info_estimate_gop_bitrate( q, bit_depth, scale_factors, gf_group.size, gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, est_bitrate_list.data()); ref_estimate = 0; for (int i = 0; i < gf_group.size; i++) { if (gf_group.update_type[i] != KF_UPDATE) { ref_estimate += est_bitrate_list[i]; } } EXPECT_NEAR(estimate, ref_estimate, epsilon); } TEST(TplModelTest, VbrRcInfoEstimateBaseQTest) { GF_GROUP gf_group; init_toy_gf_group(&gf_group); VBR_RATECTRL_INFO vbr_rc_info; init_toy_vbr_rc_info(&vbr_rc_info, gf_group.size); std::vector stats_list(gf_group.size); init_toy_tpl_txfm_stats(&stats_list); const aom_bit_depth_t bit_depth = AOM_BITS_8; // Test multiple bit budgets. const std::vector bit_budgets = { 0, 2470, 19200, 30750, 41315, 65017, DBL_MAX }; for (double bit_budget : bit_budgets) { // Binary search method to find the optimal q. const int base_q = av1_vbr_rc_info_estimate_base_q( bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size, gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, nullptr); const int ref_base_q = find_gop_q_iterative( bit_budget, bit_depth, vbr_rc_info.scale_factors, gf_group.size, gf_group.update_type, vbr_rc_info.qstep_ratio_list, stats_list.data(), vbr_rc_info.q_index_list, nullptr); if (bit_budget == 0) { EXPECT_EQ(base_q, 255); } else if (bit_budget == DBL_MAX) { EXPECT_EQ(base_q, 0); } EXPECT_EQ(base_q, ref_base_q); } } #endif // CONFIG_BITRATE_ACCURACY } // namespace