// Copyright 2021 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Target-independent types/functions defined after target-specific ops. #include "hwy/base.h" // Define detail::Shuffle1230 etc, but only when viewing the current header; // normally this is included via highway.h, which includes ops/*.h. #if HWY_IDE && !defined(HWY_HIGHWAY_INCLUDED) #include "hwy/detect_targets.h" #include "hwy/ops/emu128-inl.h" #endif // HWY_IDE // Relies on the external include guard in highway.h. HWY_BEFORE_NAMESPACE(); namespace hwy { namespace HWY_NAMESPACE { // The lane type of a vector type, e.g. float for Vec>. template using LaneType = decltype(GetLane(V())); // Vector type, e.g. Vec128 for CappedTag. Useful as the return // type of functions that do not take a vector argument, or as an argument type // if the function only has a template argument for D, or for explicit type // names instead of auto. This may be a built-in type. template using Vec = decltype(Zero(D())); // Mask type. Useful as the return type of functions that do not take a mask // argument, or as an argument type if the function only has a template argument // for D, or for explicit type names instead of auto. template using Mask = decltype(MaskFromVec(Zero(D()))); // Returns the closest value to v within [lo, hi]. template HWY_API V Clamp(const V v, const V lo, const V hi) { return Min(Max(lo, v), hi); } // CombineShiftRightBytes (and -Lanes) are not available for the scalar target, // and RVV has its own implementation of -Lanes. #if HWY_TARGET != HWY_SCALAR && HWY_TARGET != HWY_RVV template HWY_API VFromD CombineShiftRightLanes(D d, VFromD hi, VFromD lo) { constexpr size_t kBytes = kLanes * sizeof(TFromD); static_assert(kBytes < 16, "Shift count is per-block"); return CombineShiftRightBytes(d, hi, lo); } #endif // Returns lanes with the most significant bit set and all other bits zero. template HWY_API Vec SignBit(D d) { const RebindToUnsigned du; return BitCast(d, Set(du, SignMask>())); } // Returns quiet NaN. template HWY_API Vec NaN(D d) { const RebindToSigned di; // LimitsMax sets all exponent and mantissa bits to 1. The exponent plus // mantissa MSB (to indicate quiet) would be sufficient. return BitCast(d, Set(di, LimitsMax>())); } // Returns positive infinity. template HWY_API Vec Inf(D d) { const RebindToUnsigned du; using T = TFromD; using TU = TFromD; const TU max_x2 = static_cast(MaxExponentTimes2()); return BitCast(d, Set(du, max_x2 >> 1)); } // ------------------------------ ZeroExtendResizeBitCast // The implementation of detail::ZeroExtendResizeBitCast for the HWY_EMU128 // target is in emu128-inl.h, and the implementation of // detail::ZeroExtendResizeBitCast for the HWY_SCALAR target is in scalar-inl.h #if HWY_TARGET != HWY_EMU128 && HWY_TARGET != HWY_SCALAR namespace detail { #if HWY_HAVE_SCALABLE template HWY_INLINE VFromD ZeroExtendResizeBitCast( hwy::SizeTag /* from_size_tag */, hwy::SizeTag /* to_size_tag */, DTo d_to, DFrom d_from, VFromD v) { using TFrom = TFromD; using TTo = TFromD; using TResize = UnsignedFromSize; const Repartition d_resize_from; const Repartition d_resize_to; return BitCast(d_to, IfThenElseZero(FirstN(d_resize_to, Lanes(d_resize_from)), ResizeBitCast(d_resize_to, v))); } #else // target that uses fixed-size vectors // Truncating or same-size resizing cast: same as ResizeBitCast template HWY_INLINE VFromD ZeroExtendResizeBitCast( hwy::SizeTag /* from_size_tag */, hwy::SizeTag /* to_size_tag */, DTo d_to, DFrom /*d_from*/, VFromD v) { return ResizeBitCast(d_to, v); } // Resizing cast to vector that has twice the number of lanes of the source // vector template HWY_INLINE VFromD ZeroExtendResizeBitCast( hwy::SizeTag /* from_size_tag */, hwy::SizeTag /* to_size_tag */, DTo d_to, DFrom d_from, VFromD v) { const Twice dt_from; return BitCast(d_to, ZeroExtendVector(dt_from, v)); } // Resizing cast to vector that has more than twice the number of lanes of the // source vector template HWY_INLINE VFromD ZeroExtendResizeBitCast( hwy::SizeTag /* from_size_tag */, hwy::SizeTag /* to_size_tag */, DTo d_to, DFrom /*d_from*/, VFromD v) { using TFrom = TFromD; constexpr size_t kNumOfFromLanes = kFromVectSize / sizeof(TFrom); const Repartition d_resize_to; return BitCast(d_to, IfThenElseZero(FirstN(d_resize_to, kNumOfFromLanes), ResizeBitCast(d_resize_to, v))); } #endif // HWY_HAVE_SCALABLE } // namespace detail #endif // HWY_TARGET != HWY_EMU128 && HWY_TARGET != HWY_SCALAR template HWY_API VFromD ZeroExtendResizeBitCast(DTo d_to, DFrom d_from, VFromD v) { return detail::ZeroExtendResizeBitCast(hwy::SizeTag(), hwy::SizeTag(), d_to, d_from, v); } // ------------------------------ SafeFillN template > HWY_API void SafeFillN(const size_t num, const T value, D d, T* HWY_RESTRICT to) { #if HWY_MEM_OPS_MIGHT_FAULT (void)d; for (size_t i = 0; i < num; ++i) { to[i] = value; } #else BlendedStore(Set(d, value), FirstN(d, num), d, to); #endif } // ------------------------------ SafeCopyN template > HWY_API void SafeCopyN(const size_t num, D d, const T* HWY_RESTRICT from, T* HWY_RESTRICT to) { #if HWY_MEM_OPS_MIGHT_FAULT (void)d; for (size_t i = 0; i < num; ++i) { to[i] = from[i]; } #else const Mask mask = FirstN(d, num); BlendedStore(MaskedLoad(mask, d, from), mask, d, to); #endif } // ------------------------------ BitwiseIfThenElse #if (defined(HWY_NATIVE_BITWISE_IF_THEN_ELSE) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_BITWISE_IF_THEN_ELSE #undef HWY_NATIVE_BITWISE_IF_THEN_ELSE #else #define HWY_NATIVE_BITWISE_IF_THEN_ELSE #endif template HWY_API V BitwiseIfThenElse(V mask, V yes, V no) { return Or(And(mask, yes), AndNot(mask, no)); } #endif // HWY_NATIVE_BITWISE_IF_THEN_ELSE // "Include guard": skip if native instructions are available. The generic // implementation is currently shared between x86_* and wasm_*, and is too large // to duplicate. #if HWY_IDE || \ (defined(HWY_NATIVE_LOAD_STORE_INTERLEAVED) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_LOAD_STORE_INTERLEAVED #undef HWY_NATIVE_LOAD_STORE_INTERLEAVED #else #define HWY_NATIVE_LOAD_STORE_INTERLEAVED #endif // ------------------------------ LoadInterleaved2 template HWY_API void LoadInterleaved2(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1) { const VFromD A = LoadU(d, unaligned); // v1[1] v0[1] v1[0] v0[0] const VFromD B = LoadU(d, unaligned + Lanes(d)); v0 = ConcatEven(d, B, A); v1 = ConcatOdd(d, B, A); } template HWY_API void LoadInterleaved2(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1) { v0 = LoadU(d, unaligned + 0); v1 = LoadU(d, unaligned + 1); } // ------------------------------ LoadInterleaved3 (CombineShiftRightBytes) namespace detail { #if HWY_IDE template HWY_INLINE V ShuffleTwo1230(V a, V /* b */) { return a; } template HWY_INLINE V ShuffleTwo2301(V a, V /* b */) { return a; } template HWY_INLINE V ShuffleTwo3012(V a, V /* b */) { return a; } #endif // HWY_IDE // Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload. template HWY_INLINE void LoadTransposedBlocks3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& A, VFromD& B, VFromD& C) { constexpr size_t kN = MaxLanes(d); A = LoadU(d, unaligned + 0 * kN); B = LoadU(d, unaligned + 1 * kN); C = LoadU(d, unaligned + 2 * kN); } } // namespace detail template HWY_API void LoadInterleaved3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { const RebindToUnsigned du; using V = VFromD; // Compact notation so these fit on one line: 12 := v1[2]. V A; // 05 24 14 04 23 13 03 22 12 02 21 11 01 20 10 00 V B; // 1a 0a 29 19 09 28 18 08 27 17 07 26 16 06 25 15 V C; // 2f 1f 0f 2e 1e 0e 2d 1d 0d 2c 1c 0c 2b 1b 0b 2a detail::LoadTransposedBlocks3(d, unaligned, A, B, C); // Compress all lanes belonging to v0 into consecutive lanes. constexpr uint8_t Z = 0x80; alignas(16) static constexpr uint8_t kIdx_v0A[16] = { 0, 3, 6, 9, 12, 15, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0B[16] = { Z, Z, Z, Z, Z, Z, 2, 5, 8, 11, 14, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 1, 4, 7, 10, 13}; alignas(16) static constexpr uint8_t kIdx_v1A[16] = { 1, 4, 7, 10, 13, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1B[16] = { Z, Z, Z, Z, Z, 0, 3, 6, 9, 12, 15, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 2, 5, 8, 11, 14}; alignas(16) static constexpr uint8_t kIdx_v2A[16] = { 2, 5, 8, 11, 14, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2B[16] = { Z, Z, Z, Z, Z, 1, 4, 7, 10, 13, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0, 3, 6, 9, 12, 15}; const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A))); const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B))); const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C))); const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A))); const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B))); const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C))); const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A))); const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B))); const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C))); v0 = Xor3(v0L, v0M, v0U); v1 = Xor3(v1L, v1M, v1U); v2 = Xor3(v2L, v2M, v2U); } // 8-bit lanes x8 template HWY_API void LoadInterleaved3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { const RebindToUnsigned du; using V = VFromD; V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0] V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2] V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5] detail::LoadTransposedBlocks3(d, unaligned, A, B, C); // Compress all lanes belonging to v0 into consecutive lanes. constexpr uint8_t Z = 0x80; alignas(16) static constexpr uint8_t kIdx_v0A[16] = {0, 3, 6, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0B[16] = {Z, Z, Z, 1, 4, 7, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0C[16] = {Z, Z, Z, Z, Z, Z, 2, 5}; alignas(16) static constexpr uint8_t kIdx_v1A[16] = {1, 4, 7, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1B[16] = {Z, Z, Z, 2, 5, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1C[16] = {Z, Z, Z, Z, Z, 0, 3, 6}; alignas(16) static constexpr uint8_t kIdx_v2A[16] = {2, 5, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2B[16] = {Z, Z, 0, 3, 6, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2C[16] = {Z, Z, Z, Z, Z, 1, 4, 7}; const V v0L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v0A))); const V v0M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v0B))); const V v0U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v0C))); const V v1L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v1A))); const V v1M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v1B))); const V v1U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v1C))); const V v2L = BitCast(d, TableLookupBytesOr0(A, LoadDup128(du, kIdx_v2A))); const V v2M = BitCast(d, TableLookupBytesOr0(B, LoadDup128(du, kIdx_v2B))); const V v2U = BitCast(d, TableLookupBytesOr0(C, LoadDup128(du, kIdx_v2C))); v0 = Xor3(v0L, v0M, v0U); v1 = Xor3(v1L, v1M, v1U); v2 = Xor3(v2L, v2M, v2U); } // 16-bit lanes x8 template HWY_API void LoadInterleaved3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { const RebindToUnsigned du; const Repartition du8; using V = VFromD; V A; // v1[2] v0[2] v2[1] v1[1] v0[1] v2[0] v1[0] v0[0] V B; // v0[5] v2[4] v1[4] v0[4] v2[3] v1[3] v0[3] v2[2] V C; // v2[7] v1[7] v0[7] v2[6] v1[6] v0[6] v2[5] v1[5] detail::LoadTransposedBlocks3(d, unaligned, A, B, C); // Compress all lanes belonging to v0 into consecutive lanes. Same as above, // but each element of the array contains a byte index for a byte of a lane. constexpr uint8_t Z = 0x80; alignas(16) static constexpr uint8_t kIdx_v0A[16] = { 0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0B[16] = { Z, Z, Z, Z, Z, Z, 0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v0C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x04, 0x05, 0x0A, 0x0B}; alignas(16) static constexpr uint8_t kIdx_v1A[16] = { 0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1B[16] = { Z, Z, Z, Z, Z, Z, 0x04, 0x05, 0x0A, 0x0B, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v1C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D}; alignas(16) static constexpr uint8_t kIdx_v2A[16] = { 0x04, 0x05, 0x0A, 0x0B, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2B[16] = { Z, Z, Z, Z, 0x00, 0x01, 0x06, 0x07, 0x0C, 0x0D, Z, Z, Z, Z, Z, Z}; alignas(16) static constexpr uint8_t kIdx_v2C[16] = { Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, 0x02, 0x03, 0x08, 0x09, 0x0E, 0x0F}; const V v0L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v0A))); const V v0M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v0B))); const V v0U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v0C))); const V v1L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v1A))); const V v1M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v1B))); const V v1U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v1C))); const V v2L = TableLookupBytesOr0(A, BitCast(d, LoadDup128(du8, kIdx_v2A))); const V v2M = TableLookupBytesOr0(B, BitCast(d, LoadDup128(du8, kIdx_v2B))); const V v2U = TableLookupBytesOr0(C, BitCast(d, LoadDup128(du8, kIdx_v2C))); v0 = Xor3(v0L, v0M, v0U); v1 = Xor3(v1L, v1M, v1U); v2 = Xor3(v2L, v2M, v2U); } template HWY_API void LoadInterleaved3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { using V = VFromD; V A; // v0[1] v2[0] v1[0] v0[0] V B; // v1[2] v0[2] v2[1] v1[1] V C; // v2[3] v1[3] v0[3] v2[2] detail::LoadTransposedBlocks3(d, unaligned, A, B, C); const V vxx_02_03_xx = OddEven(C, B); v0 = detail::ShuffleTwo1230(A, vxx_02_03_xx); // Shuffle2301 takes the upper/lower halves of the output from one input, so // we cannot just combine 13 and 10 with 12 and 11 (similar to v0/v2). Use // OddEven because it may have higher throughput than Shuffle. const V vxx_xx_10_11 = OddEven(A, B); const V v12_13_xx_xx = OddEven(B, C); v1 = detail::ShuffleTwo2301(vxx_xx_10_11, v12_13_xx_xx); const V vxx_20_21_xx = OddEven(B, A); v2 = detail::ShuffleTwo3012(vxx_20_21_xx, C); } template HWY_API void LoadInterleaved3(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { VFromD A; // v1[0] v0[0] VFromD B; // v0[1] v2[0] VFromD C; // v2[1] v1[1] detail::LoadTransposedBlocks3(d, unaligned, A, B, C); v0 = OddEven(B, A); v1 = CombineShiftRightBytes)>(d, C, A); v2 = OddEven(C, B); } template , HWY_IF_LANES_D(D, 1)> HWY_API void LoadInterleaved3(D d, const T* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2) { v0 = LoadU(d, unaligned + 0); v1 = LoadU(d, unaligned + 1); v2 = LoadU(d, unaligned + 2); } // ------------------------------ LoadInterleaved4 namespace detail { // Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload. template HWY_INLINE void LoadTransposedBlocks4(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& vA, VFromD& vB, VFromD& vC, VFromD& vD) { constexpr size_t kN = MaxLanes(d); vA = LoadU(d, unaligned + 0 * kN); vB = LoadU(d, unaligned + 1 * kN); vC = LoadU(d, unaligned + 2 * kN); vD = LoadU(d, unaligned + 3 * kN); } } // namespace detail template HWY_API void LoadInterleaved4(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2, VFromD& v3) { const Repartition d64; using V64 = VFromD; using V = VFromD; // 16 lanes per block; the lowest four blocks are at the bottom of vA..vD. // Here int[i] means the four interleaved values of the i-th 4-tuple and // int[3..0] indicates four consecutive 4-tuples (0 = least-significant). V vA; // int[13..10] int[3..0] V vB; // int[17..14] int[7..4] V vC; // int[1b..18] int[b..8] V vD; // int[1f..1c] int[f..c] detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD); // For brevity, the comments only list the lower block (upper = lower + 0x10) const V v5140 = InterleaveLower(d, vA, vB); // int[5,1,4,0] const V vd9c8 = InterleaveLower(d, vC, vD); // int[d,9,c,8] const V v7362 = InterleaveUpper(d, vA, vB); // int[7,3,6,2] const V vfbea = InterleaveUpper(d, vC, vD); // int[f,b,e,a] const V v6420 = InterleaveLower(d, v5140, v7362); // int[6,4,2,0] const V veca8 = InterleaveLower(d, vd9c8, vfbea); // int[e,c,a,8] const V v7531 = InterleaveUpper(d, v5140, v7362); // int[7,5,3,1] const V vfdb9 = InterleaveUpper(d, vd9c8, vfbea); // int[f,d,b,9] const V64 v10L = BitCast(d64, InterleaveLower(d, v6420, v7531)); // v10[7..0] const V64 v10U = BitCast(d64, InterleaveLower(d, veca8, vfdb9)); // v10[f..8] const V64 v32L = BitCast(d64, InterleaveUpper(d, v6420, v7531)); // v32[7..0] const V64 v32U = BitCast(d64, InterleaveUpper(d, veca8, vfdb9)); // v32[f..8] v0 = BitCast(d, InterleaveLower(d64, v10L, v10U)); v1 = BitCast(d, InterleaveUpper(d64, v10L, v10U)); v2 = BitCast(d, InterleaveLower(d64, v32L, v32U)); v3 = BitCast(d, InterleaveUpper(d64, v32L, v32U)); } template HWY_API void LoadInterleaved4(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2, VFromD& v3) { // In the last step, we interleave by half of the block size, which is usually // 8 bytes but half that for 8-bit x8 vectors. using TW = hwy::UnsignedFromSize; const Repartition dw; using VW = VFromD; // (Comments are for 256-bit vectors.) // 8 lanes per block; the lowest four blocks are at the bottom of vA..vD. VFromD vA; // v3210[9]v3210[8] v3210[1]v3210[0] VFromD vB; // v3210[b]v3210[a] v3210[3]v3210[2] VFromD vC; // v3210[d]v3210[c] v3210[5]v3210[4] VFromD vD; // v3210[f]v3210[e] v3210[7]v3210[6] detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD); const VFromD va820 = InterleaveLower(d, vA, vB); // v3210[a,8] v3210[2,0] const VFromD vec64 = InterleaveLower(d, vC, vD); // v3210[e,c] v3210[6,4] const VFromD vb931 = InterleaveUpper(d, vA, vB); // v3210[b,9] v3210[3,1] const VFromD vfd75 = InterleaveUpper(d, vC, vD); // v3210[f,d] v3210[7,5] const VW v10_b830 = // v10[b..8] v10[3..0] BitCast(dw, InterleaveLower(d, va820, vb931)); const VW v10_fc74 = // v10[f..c] v10[7..4] BitCast(dw, InterleaveLower(d, vec64, vfd75)); const VW v32_b830 = // v32[b..8] v32[3..0] BitCast(dw, InterleaveUpper(d, va820, vb931)); const VW v32_fc74 = // v32[f..c] v32[7..4] BitCast(dw, InterleaveUpper(d, vec64, vfd75)); v0 = BitCast(d, InterleaveLower(dw, v10_b830, v10_fc74)); v1 = BitCast(d, InterleaveUpper(dw, v10_b830, v10_fc74)); v2 = BitCast(d, InterleaveLower(dw, v32_b830, v32_fc74)); v3 = BitCast(d, InterleaveUpper(dw, v32_b830, v32_fc74)); } template HWY_API void LoadInterleaved4(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2, VFromD& v3) { using V = VFromD; V vA; // v3210[4] v3210[0] V vB; // v3210[5] v3210[1] V vC; // v3210[6] v3210[2] V vD; // v3210[7] v3210[3] detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD); const V v10e = InterleaveLower(d, vA, vC); // v1[6,4] v0[6,4] v1[2,0] v0[2,0] const V v10o = InterleaveLower(d, vB, vD); // v1[7,5] v0[7,5] v1[3,1] v0[3,1] const V v32e = InterleaveUpper(d, vA, vC); // v3[6,4] v2[6,4] v3[2,0] v2[2,0] const V v32o = InterleaveUpper(d, vB, vD); // v3[7,5] v2[7,5] v3[3,1] v2[3,1] v0 = InterleaveLower(d, v10e, v10o); v1 = InterleaveUpper(d, v10e, v10o); v2 = InterleaveLower(d, v32e, v32o); v3 = InterleaveUpper(d, v32e, v32o); } template HWY_API void LoadInterleaved4(D d, const TFromD* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2, VFromD& v3) { VFromD vA, vB, vC, vD; detail::LoadTransposedBlocks4(d, unaligned, vA, vB, vC, vD); v0 = InterleaveLower(d, vA, vC); v1 = InterleaveUpper(d, vA, vC); v2 = InterleaveLower(d, vB, vD); v3 = InterleaveUpper(d, vB, vD); } // Any T x1 template , HWY_IF_LANES_D(D, 1)> HWY_API void LoadInterleaved4(D d, const T* HWY_RESTRICT unaligned, VFromD& v0, VFromD& v1, VFromD& v2, VFromD& v3) { v0 = LoadU(d, unaligned + 0); v1 = LoadU(d, unaligned + 1); v2 = LoadU(d, unaligned + 2); v3 = LoadU(d, unaligned + 3); } // ------------------------------ StoreInterleaved2 namespace detail { // Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload. template HWY_INLINE void StoreTransposedBlocks2(VFromD A, VFromD B, D d, TFromD* HWY_RESTRICT unaligned) { constexpr size_t kN = MaxLanes(d); StoreU(A, d, unaligned + 0 * kN); StoreU(B, d, unaligned + 1 * kN); } } // namespace detail // >= 128 bit vector template HWY_API void StoreInterleaved2(VFromD v0, VFromD v1, D d, TFromD* HWY_RESTRICT unaligned) { const auto v10L = InterleaveLower(d, v0, v1); // .. v1[0] v0[0] const auto v10U = InterleaveUpper(d, v0, v1); // .. v1[kN/2] v0[kN/2] detail::StoreTransposedBlocks2(v10L, v10U, d, unaligned); } // <= 64 bits template HWY_API void StoreInterleaved2(V part0, V part1, D d, TFromD* HWY_RESTRICT unaligned) { const Twice d2; const auto v0 = ZeroExtendVector(d2, part0); const auto v1 = ZeroExtendVector(d2, part1); const auto v10 = InterleaveLower(d2, v0, v1); StoreU(v10, d2, unaligned); } // ------------------------------ StoreInterleaved3 (CombineShiftRightBytes, // TableLookupBytes) namespace detail { // Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload. template HWY_INLINE void StoreTransposedBlocks3(VFromD A, VFromD B, VFromD C, D d, TFromD* HWY_RESTRICT unaligned) { constexpr size_t kN = MaxLanes(d); StoreU(A, d, unaligned + 0 * kN); StoreU(B, d, unaligned + 1 * kN); StoreU(C, d, unaligned + 2 * kN); } } // namespace detail // >= 128-bit vector, 8-bit lanes template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { const RebindToUnsigned du; using TU = TFromD; const auto k5 = Set(du, TU{5}); const auto k6 = Set(du, TU{6}); // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right): // v0[5], v2[4],v1[4],v0[4] .. v2[0],v1[0],v0[0]. We're expanding v0 lanes // to their place, with 0x80 so lanes to be filled from other vectors are 0 // to enable blending by ORing together. alignas(16) static constexpr uint8_t tbl_v0[16] = { 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, // 3, 0x80, 0x80, 4, 0x80, 0x80, 5}; alignas(16) static constexpr uint8_t tbl_v1[16] = { 0x80, 0, 0x80, 0x80, 1, 0x80, // 0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80}; // The interleaved vectors will be named A, B, C; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A0 = LoadDup128(du, tbl_v0); const auto shuf_A1 = LoadDup128(du, tbl_v1); // cannot reuse shuf_A0 (has 5) const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1); const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0 const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0. const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0.. const VFromD A = BitCast(d, A0 | A1 | A2); // B: v1[10],v0[10], v2[9],v1[9],v0[9] .. , v2[6],v1[6],v0[6], v2[5],v1[5] const auto shuf_B0 = shuf_A2 + k6; // .A..9..8..7..6.. const auto shuf_B1 = shuf_A0 + k5; // A..9..8..7..6..5 const auto shuf_B2 = shuf_A1 + k5; // ..9..8..7..6..5. const auto B0 = TableLookupBytesOr0(v0, shuf_B0); const auto B1 = TableLookupBytesOr0(v1, shuf_B1); const auto B2 = TableLookupBytesOr0(v2, shuf_B2); const VFromD B = BitCast(d, B0 | B1 | B2); // C: v2[15],v1[15],v0[15], v2[11],v1[11],v0[11], v2[10] const auto shuf_C0 = shuf_B2 + k6; // ..F..E..D..C..B. const auto shuf_C1 = shuf_B0 + k5; // .F..E..D..C..B.. const auto shuf_C2 = shuf_B1 + k5; // F..E..D..C..B..A const auto C0 = TableLookupBytesOr0(v0, shuf_C0); const auto C1 = TableLookupBytesOr0(v1, shuf_C1); const auto C2 = TableLookupBytesOr0(v2, shuf_C2); const VFromD C = BitCast(d, C0 | C1 | C2); detail::StoreTransposedBlocks3(A, B, C, d, unaligned); } // >= 128-bit vector, 16-bit lanes template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { const Repartition du8; const auto k2 = Set(du8, uint8_t{2 * sizeof(TFromD)}); const auto k3 = Set(du8, uint8_t{3 * sizeof(TFromD)}); // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right): // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be // filled from other vectors are 0 for blending. Note that these are byte // indices for 16-bit lanes. alignas(16) static constexpr uint8_t tbl_v1[16] = { 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5}; alignas(16) static constexpr uint8_t tbl_v2[16] = { 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80}; // The interleaved vectors will be named A, B, C; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A1 = LoadDup128(du8, tbl_v1); // 2..1..0. // .2..1..0 const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1); const auto shuf_A2 = LoadDup128(du8, tbl_v2); // ..1..0.. const auto A0 = TableLookupBytesOr0(v0, shuf_A0); const auto A1 = TableLookupBytesOr0(v1, shuf_A1); const auto A2 = TableLookupBytesOr0(v2, shuf_A2); const VFromD A = BitCast(d, A0 | A1 | A2); // B: v0[5] v2[4],v1[4],v0[4], v2[3],v1[3],v0[3], v2[2] const auto shuf_B0 = shuf_A1 + k3; // 5..4..3. const auto shuf_B1 = shuf_A2 + k3; // ..4..3.. const auto shuf_B2 = shuf_A0 + k2; // .4..3..2 const auto B0 = TableLookupBytesOr0(v0, shuf_B0); const auto B1 = TableLookupBytesOr0(v1, shuf_B1); const auto B2 = TableLookupBytesOr0(v2, shuf_B2); const VFromD B = BitCast(d, B0 | B1 | B2); // C: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5] const auto shuf_C0 = shuf_B1 + k3; // ..7..6.. const auto shuf_C1 = shuf_B2 + k3; // .7..6..5 const auto shuf_C2 = shuf_B0 + k2; // 7..6..5. const auto C0 = TableLookupBytesOr0(v0, shuf_C0); const auto C1 = TableLookupBytesOr0(v1, shuf_C1); const auto C2 = TableLookupBytesOr0(v2, shuf_C2); const VFromD C = BitCast(d, C0 | C1 | C2); detail::StoreTransposedBlocks3(A, B, C, d, unaligned); } // >= 128-bit vector, 32-bit lanes template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { const RepartitionToWide dw; const VFromD v10_v00 = InterleaveLower(d, v0, v1); const VFromD v01_v20 = OddEven(v0, v2); // A: v0[1], v2[0],v1[0],v0[0] (<- lane 0) const VFromD A = BitCast( d, InterleaveLower(dw, BitCast(dw, v10_v00), BitCast(dw, v01_v20))); const VFromD v1_321 = ShiftRightLanes<1>(d, v1); const VFromD v0_32 = ShiftRightLanes<2>(d, v0); const VFromD v21_v11 = OddEven(v2, v1_321); const VFromD v12_v02 = OddEven(v1_321, v0_32); // B: v1[2],v0[2], v2[1],v1[1] const VFromD B = BitCast( d, InterleaveLower(dw, BitCast(dw, v21_v11), BitCast(dw, v12_v02))); // Notation refers to the upper 2 lanes of the vector for InterleaveUpper. const VFromD v23_v13 = OddEven(v2, v1_321); const VFromD v03_v22 = OddEven(v0, v2); // C: v2[3],v1[3],v0[3], v2[2] const VFromD C = BitCast( d, InterleaveUpper(dw, BitCast(dw, v03_v22), BitCast(dw, v23_v13))); detail::StoreTransposedBlocks3(A, B, C, d, unaligned); } // >= 128-bit vector, 64-bit lanes template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { const VFromD A = InterleaveLower(d, v0, v1); const VFromD B = OddEven(v0, v2); const VFromD C = InterleaveUpper(d, v1, v2); detail::StoreTransposedBlocks3(A, B, C, d, unaligned); } // 64-bit vector, 8-bit lanes template HWY_API void StoreInterleaved3(VFromD part0, VFromD part1, VFromD part2, D d, TFromD* HWY_RESTRICT unaligned) { // Use full vectors for the shuffles and first result. constexpr size_t kFullN = 16 / sizeof(TFromD); const Full128 du; const Full128> d_full; const auto k5 = Set(du, uint8_t{5}); const auto k6 = Set(du, uint8_t{6}); const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; // Interleave (v0,v1,v2) to (MSB on left, lane 0 on right): // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. 0x80 so lanes to be // filled from other vectors are 0 for blending. alignas(16) static constexpr uint8_t tbl_v0[16] = { 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, // 3, 0x80, 0x80, 4, 0x80, 0x80, 5}; alignas(16) static constexpr uint8_t tbl_v1[16] = { 0x80, 0, 0x80, 0x80, 1, 0x80, // 0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 4, 0x80, 0x80}; // The interleaved vectors will be named A, B, C; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A0 = Load(du, tbl_v0); const auto shuf_A1 = Load(du, tbl_v1); // cannot reuse shuf_A0 (5 in MSB) const auto shuf_A2 = CombineShiftRightBytes<15>(du, shuf_A1, shuf_A1); const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // 5..4..3..2..1..0 const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // ..4..3..2..1..0. const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // .4..3..2..1..0.. const auto A = BitCast(d_full, A0 | A1 | A2); StoreU(A, d_full, unaligned + 0 * kFullN); // Second (HALF) vector: v2[7],v1[7],v0[7], v2[6],v1[6],v0[6], v2[5],v1[5] const auto shuf_B0 = shuf_A2 + k6; // ..7..6.. const auto shuf_B1 = shuf_A0 + k5; // .7..6..5 const auto shuf_B2 = shuf_A1 + k5; // 7..6..5. const auto B0 = TableLookupBytesOr0(v0, shuf_B0); const auto B1 = TableLookupBytesOr0(v1, shuf_B1); const auto B2 = TableLookupBytesOr0(v2, shuf_B2); const VFromD B{BitCast(d_full, B0 | B1 | B2).raw}; StoreU(B, d, unaligned + 1 * kFullN); } // 64-bit vector, 16-bit lanes template HWY_API void StoreInterleaved3(VFromD part0, VFromD part1, VFromD part2, D dh, TFromD* HWY_RESTRICT unaligned) { const Twice d_full; const Full128 du8; const auto k2 = Set(du8, uint8_t{2 * sizeof(TFromD)}); const auto k3 = Set(du8, uint8_t{3 * sizeof(TFromD)}); const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; // Interleave part (v0,v1,v2) to full (MSB on left, lane 0 on right): // v1[2],v0[2], v2[1],v1[1],v0[1], v2[0],v1[0],v0[0]. We're expanding v0 lanes // to their place, with 0x80 so lanes to be filled from other vectors are 0 // to enable blending by ORing together. alignas(16) static constexpr uint8_t tbl_v1[16] = { 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80, 4, 5}; alignas(16) static constexpr uint8_t tbl_v2[16] = { 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80}; // The interleaved vectors will be named A, B; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A1 = Load(du8, tbl_v1); // 2..1..0. // .2..1..0 const auto shuf_A0 = CombineShiftRightBytes<2>(du8, shuf_A1, shuf_A1); const auto shuf_A2 = Load(du8, tbl_v2); // ..1..0.. const auto A0 = TableLookupBytesOr0(v0, shuf_A0); const auto A1 = TableLookupBytesOr0(v1, shuf_A1); const auto A2 = TableLookupBytesOr0(v2, shuf_A2); const VFromD A = BitCast(d_full, A0 | A1 | A2); StoreU(A, d_full, unaligned); // Second (HALF) vector: v2[3],v1[3],v0[3], v2[2] const auto shuf_B0 = shuf_A1 + k3; // ..3. const auto shuf_B1 = shuf_A2 + k3; // .3.. const auto shuf_B2 = shuf_A0 + k2; // 3..2 const auto B0 = TableLookupBytesOr0(v0, shuf_B0); const auto B1 = TableLookupBytesOr0(v1, shuf_B1); const auto B2 = TableLookupBytesOr0(v2, shuf_B2); const VFromD B = BitCast(d_full, B0 | B1 | B2); StoreU(VFromD{B.raw}, dh, unaligned + MaxLanes(d_full)); } // 64-bit vector, 32-bit lanes template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { // (same code as 128-bit vector, 64-bit lanes) const VFromD v10_v00 = InterleaveLower(d, v0, v1); const VFromD v01_v20 = OddEven(v0, v2); const VFromD v21_v11 = InterleaveUpper(d, v1, v2); constexpr size_t kN = MaxLanes(d); StoreU(v10_v00, d, unaligned + 0 * kN); StoreU(v01_v20, d, unaligned + 1 * kN); StoreU(v21_v11, d, unaligned + 2 * kN); } // 64-bit lanes are handled by the N=1 case below. // <= 32-bit vector, 8-bit lanes template HWY_API void StoreInterleaved3(VFromD part0, VFromD part1, VFromD part2, D d, TFromD* HWY_RESTRICT unaligned) { // Use full vectors for the shuffles and result. const Full128 du; const Full128> d_full; const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; // Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80 // so lanes to be filled from other vectors are 0 to enable blending by ORing // together. alignas(16) static constexpr uint8_t tbl_v0[16] = { 0, 0x80, 0x80, 1, 0x80, 0x80, 2, 0x80, 0x80, 3, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80}; // The interleaved vector will be named A; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A0 = Load(du, tbl_v0); const auto shuf_A1 = CombineShiftRightBytes<15>(du, shuf_A0, shuf_A0); const auto shuf_A2 = CombineShiftRightBytes<14>(du, shuf_A0, shuf_A0); const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ......3..2..1..0 const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .....3..2..1..0. const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // ....3..2..1..0.. const VFromD A = BitCast(d_full, A0 | A1 | A2); alignas(16) TFromD buf[MaxLanes(d_full)]; StoreU(A, d_full, buf); CopyBytes(buf, unaligned); } // 32-bit vector, 16-bit lanes template HWY_API void StoreInterleaved3(VFromD part0, VFromD part1, VFromD part2, D d, TFromD* HWY_RESTRICT unaligned) { // Use full vectors for the shuffles and result. const Full128 du8; const Full128> d_full; const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; // Interleave (v0,v1,v2). We're expanding v0 lanes to their place, with 0x80 // so lanes to be filled from other vectors are 0 to enable blending by ORing // together. alignas(16) static constexpr uint8_t tbl_v2[16] = { 0x80, 0x80, 0x80, 0x80, 0, 1, 0x80, 0x80, 0x80, 0x80, 2, 3, 0x80, 0x80, 0x80, 0x80}; // The interleaved vector will be named A; temporaries with suffix // 0..2 indicate which input vector's lanes they hold. const auto shuf_A2 = // ..1..0.. Load(du8, tbl_v2); const auto shuf_A1 = // ...1..0. CombineShiftRightBytes<2>(du8, shuf_A2, shuf_A2); const auto shuf_A0 = // ....1..0 CombineShiftRightBytes<4>(du8, shuf_A2, shuf_A2); const auto A0 = TableLookupBytesOr0(v0, shuf_A0); // ..1..0 const auto A1 = TableLookupBytesOr0(v1, shuf_A1); // .1..0. const auto A2 = TableLookupBytesOr0(v2, shuf_A2); // 1..0.. const auto A = BitCast(d_full, A0 | A1 | A2); alignas(16) TFromD buf[MaxLanes(d_full)]; StoreU(A, d_full, buf); CopyBytes(buf, unaligned); } // Single-element vector, any lane size: just store directly template HWY_API void StoreInterleaved3(VFromD v0, VFromD v1, VFromD v2, D d, TFromD* HWY_RESTRICT unaligned) { StoreU(v0, d, unaligned + 0); StoreU(v1, d, unaligned + 1); StoreU(v2, d, unaligned + 2); } // ------------------------------ StoreInterleaved4 namespace detail { // Default for <= 128-bit vectors; x86_256 and x86_512 have their own overload. template HWY_INLINE void StoreTransposedBlocks4(VFromD vA, VFromD vB, VFromD vC, VFromD vD, D d, TFromD* HWY_RESTRICT unaligned) { constexpr size_t kN = MaxLanes(d); StoreU(vA, d, unaligned + 0 * kN); StoreU(vB, d, unaligned + 1 * kN); StoreU(vC, d, unaligned + 2 * kN); StoreU(vD, d, unaligned + 3 * kN); } } // namespace detail // >= 128-bit vector, 8..32-bit lanes template HWY_API void StoreInterleaved4(VFromD v0, VFromD v1, VFromD v2, VFromD v3, D d, TFromD* HWY_RESTRICT unaligned) { const RepartitionToWide dw; const auto v10L = ZipLower(dw, v0, v1); // .. v1[0] v0[0] const auto v32L = ZipLower(dw, v2, v3); const auto v10U = ZipUpper(dw, v0, v1); const auto v32U = ZipUpper(dw, v2, v3); // The interleaved vectors are vA, vB, vC, vD. const VFromD vA = BitCast(d, InterleaveLower(dw, v10L, v32L)); // 3210 const VFromD vB = BitCast(d, InterleaveUpper(dw, v10L, v32L)); const VFromD vC = BitCast(d, InterleaveLower(dw, v10U, v32U)); const VFromD vD = BitCast(d, InterleaveUpper(dw, v10U, v32U)); detail::StoreTransposedBlocks4(vA, vB, vC, vD, d, unaligned); } // >= 128-bit vector, 64-bit lanes template HWY_API void StoreInterleaved4(VFromD v0, VFromD v1, VFromD v2, VFromD v3, D d, TFromD* HWY_RESTRICT unaligned) { // The interleaved vectors are vA, vB, vC, vD. const VFromD vA = InterleaveLower(d, v0, v1); // v1[0] v0[0] const VFromD vB = InterleaveLower(d, v2, v3); const VFromD vC = InterleaveUpper(d, v0, v1); const VFromD vD = InterleaveUpper(d, v2, v3); detail::StoreTransposedBlocks4(vA, vB, vC, vD, d, unaligned); } // 64-bit vector, 8..32-bit lanes template HWY_API void StoreInterleaved4(VFromD part0, VFromD part1, VFromD part2, VFromD part3, D /* tag */, TFromD* HWY_RESTRICT unaligned) { // Use full vectors to reduce the number of stores. const Full128> d_full; const RepartitionToWide dw; const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; const VFromD v3{part3.raw}; const auto v10 = ZipLower(dw, v0, v1); // v1[0] v0[0] const auto v32 = ZipLower(dw, v2, v3); const auto A = BitCast(d_full, InterleaveLower(dw, v10, v32)); const auto B = BitCast(d_full, InterleaveUpper(dw, v10, v32)); StoreU(A, d_full, unaligned); StoreU(B, d_full, unaligned + MaxLanes(d_full)); } // 64-bit vector, 64-bit lane template HWY_API void StoreInterleaved4(VFromD part0, VFromD part1, VFromD part2, VFromD part3, D /* tag */, TFromD* HWY_RESTRICT unaligned) { // Use full vectors to reduce the number of stores. const Full128> d_full; const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; const VFromD v3{part3.raw}; const auto A = InterleaveLower(d_full, v0, v1); // v1[0] v0[0] const auto B = InterleaveLower(d_full, v2, v3); StoreU(A, d_full, unaligned); StoreU(B, d_full, unaligned + MaxLanes(d_full)); } // <= 32-bit vectors template HWY_API void StoreInterleaved4(VFromD part0, VFromD part1, VFromD part2, VFromD part3, D d, TFromD* HWY_RESTRICT unaligned) { // Use full vectors to reduce the number of stores. const Full128> d_full; const RepartitionToWide dw; const VFromD v0{part0.raw}; const VFromD v1{part1.raw}; const VFromD v2{part2.raw}; const VFromD v3{part3.raw}; const auto v10 = ZipLower(dw, v0, v1); // .. v1[0] v0[0] const auto v32 = ZipLower(dw, v2, v3); const auto v3210 = BitCast(d_full, InterleaveLower(dw, v10, v32)); alignas(16) TFromD buf[MaxLanes(d_full)]; StoreU(v3210, d_full, buf); CopyBytes(buf, unaligned); } #endif // HWY_NATIVE_LOAD_STORE_INTERLEAVED // ------------------------------ Integer AbsDiff and SumsOf8AbsDiff #if (defined(HWY_NATIVE_INTEGER_ABS_DIFF) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_INTEGER_ABS_DIFF #undef HWY_NATIVE_INTEGER_ABS_DIFF #else #define HWY_NATIVE_INTEGER_ABS_DIFF #endif template HWY_API V AbsDiff(V a, V b) { return Sub(Max(a, b), Min(a, b)); } #endif // HWY_NATIVE_INTEGER_ABS_DIFF #if (defined(HWY_NATIVE_SUMS_OF_8_ABS_DIFF) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_SUMS_OF_8_ABS_DIFF #undef HWY_NATIVE_SUMS_OF_8_ABS_DIFF #else #define HWY_NATIVE_SUMS_OF_8_ABS_DIFF #endif template ), HWY_IF_V_SIZE_GT_D(DFromV, (HWY_TARGET == HWY_SCALAR ? 0 : 4))> HWY_API Vec>> SumsOf8AbsDiff(V a, V b) { return SumsOf8(AbsDiff(a, b)); } #endif // HWY_NATIVE_SUMS_OF_8_ABS_DIFF // ------------------------------ SaturatedAdd/SaturatedSub for UI32/UI64 #if (defined(HWY_NATIVE_I32_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_I32_SATURATED_ADDSUB #undef HWY_NATIVE_I32_SATURATED_ADDSUB #else #define HWY_NATIVE_I32_SATURATED_ADDSUB #endif template )> HWY_API V SaturatedAdd(V a, V b) { const DFromV d; const auto sum = Add(a, b); const auto overflow_mask = MaskFromVec(BroadcastSignBit(AndNot(Xor(a, b), Xor(a, sum)))); const auto overflow_result = Xor(BroadcastSignBit(a), Set(d, LimitsMax())); return IfThenElse(overflow_mask, overflow_result, sum); } template )> HWY_API V SaturatedSub(V a, V b) { const DFromV d; const auto diff = Sub(a, b); const auto overflow_mask = MaskFromVec(BroadcastSignBit(And(Xor(a, b), Xor(a, diff)))); const auto overflow_result = Xor(BroadcastSignBit(a), Set(d, LimitsMax())); return IfThenElse(overflow_mask, overflow_result, diff); } #endif // HWY_NATIVE_I32_SATURATED_ADDSUB #if (defined(HWY_NATIVE_I64_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_I64_SATURATED_ADDSUB #undef HWY_NATIVE_I64_SATURATED_ADDSUB #else #define HWY_NATIVE_I64_SATURATED_ADDSUB #endif template )> HWY_API V SaturatedAdd(V a, V b) { const DFromV d; const auto sum = Add(a, b); const auto overflow_mask = MaskFromVec(BroadcastSignBit(AndNot(Xor(a, b), Xor(a, sum)))); const auto overflow_result = Xor(BroadcastSignBit(a), Set(d, LimitsMax())); return IfThenElse(overflow_mask, overflow_result, sum); } template )> HWY_API V SaturatedSub(V a, V b) { const DFromV d; const auto diff = Sub(a, b); const auto overflow_mask = MaskFromVec(BroadcastSignBit(And(Xor(a, b), Xor(a, diff)))); const auto overflow_result = Xor(BroadcastSignBit(a), Set(d, LimitsMax())); return IfThenElse(overflow_mask, overflow_result, diff); } #endif // HWY_NATIVE_I64_SATURATED_ADDSUB #if (defined(HWY_NATIVE_U32_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_U32_SATURATED_ADDSUB #undef HWY_NATIVE_U32_SATURATED_ADDSUB #else #define HWY_NATIVE_U32_SATURATED_ADDSUB #endif template )> HWY_API V SaturatedAdd(V a, V b) { return Add(a, Min(b, Not(a))); } template )> HWY_API V SaturatedSub(V a, V b) { return Sub(a, Min(a, b)); } #endif // HWY_NATIVE_U32_SATURATED_ADDSUB #if (defined(HWY_NATIVE_U64_SATURATED_ADDSUB) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_U64_SATURATED_ADDSUB #undef HWY_NATIVE_U64_SATURATED_ADDSUB #else #define HWY_NATIVE_U64_SATURATED_ADDSUB #endif template )> HWY_API V SaturatedAdd(V a, V b) { return Add(a, Min(b, Not(a))); } template )> HWY_API V SaturatedSub(V a, V b) { return Sub(a, Min(a, b)); } #endif // HWY_NATIVE_U64_SATURATED_ADDSUB // ------------------------------ Unsigned to signed demotions template , DN>>, hwy::EnableIf<(sizeof(TFromD) < sizeof(TFromV))>* = nullptr, HWY_IF_LANES_D(DFromV, HWY_MAX_LANES_D(DFromV))> HWY_API VFromD DemoteTo(DN dn, V v) { const DFromV d; const RebindToSigned di; const RebindToUnsigned dn_u; // First, do a signed to signed demotion. This will convert any values // that are greater than hwy::HighestValue>>() to a // negative value. const auto i2i_demote_result = DemoteTo(dn, BitCast(di, v)); // Second, convert any negative values to hwy::HighestValue>() // using an unsigned Min operation. const auto max_signed_val = Set(dn, hwy::HighestValue>()); return BitCast( dn, Min(BitCast(dn_u, i2i_demote_result), BitCast(dn_u, max_signed_val))); } #if HWY_TARGET != HWY_SCALAR || HWY_IDE template , DN>>, HWY_IF_T_SIZE_V(V, sizeof(TFromD) * 2), HWY_IF_LANES_D(DFromV, HWY_MAX_LANES_D(DFromV))> HWY_API VFromD ReorderDemote2To(DN dn, V a, V b) { const DFromV d; const RebindToSigned di; const RebindToUnsigned dn_u; // First, do a signed to signed demotion. This will convert any values // that are greater than hwy::HighestValue>>() to a // negative value. const auto i2i_demote_result = ReorderDemote2To(dn, BitCast(di, a), BitCast(di, b)); // Second, convert any negative values to hwy::HighestValue>() // using an unsigned Min operation. const auto max_signed_val = Set(dn, hwy::HighestValue>()); return BitCast( dn, Min(BitCast(dn_u, i2i_demote_result), BitCast(dn_u, max_signed_val))); } #endif // ------------------------------ OrderedTruncate2To #if HWY_IDE || \ (defined(HWY_NATIVE_ORDERED_TRUNCATE_2_TO) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_ORDERED_TRUNCATE_2_TO #undef HWY_NATIVE_ORDERED_TRUNCATE_2_TO #else #define HWY_NATIVE_ORDERED_TRUNCATE_2_TO #endif // (Must come after HWY_TARGET_TOGGLE, else we don't reset it for scalar) #if HWY_TARGET != HWY_SCALAR || HWY_IDE template ) * 2), HWY_IF_LANES_D(DFromV>, HWY_MAX_LANES_D(DFromV) * 2)> HWY_API VFromD OrderedTruncate2To(DN dn, V a, V b) { return ConcatEven(dn, BitCast(dn, b), BitCast(dn, a)); } #endif // HWY_TARGET != HWY_SCALAR #endif // HWY_NATIVE_ORDERED_TRUNCATE_2_TO // -------------------- LeadingZeroCount, TrailingZeroCount, HighestSetBitIndex #if (defined(HWY_NATIVE_LEADING_ZERO_COUNT) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_LEADING_ZERO_COUNT #undef HWY_NATIVE_LEADING_ZERO_COUNT #else #define HWY_NATIVE_LEADING_ZERO_COUNT #endif namespace detail { template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const RebindToFloat df; #if HWY_TARGET > HWY_AVX3 && HWY_TARGET <= HWY_SSE2 const RebindToSigned di; const Repartition di16; // On SSE2/SSSE3/SSE4/AVX2, do an int32_t to float conversion, followed // by a unsigned right shift of the uint32_t bit representation of the // floating point values by 23, followed by an int16_t Min // operation as we are only interested in the biased exponent that would // result from a uint32_t to float conversion. // An int32_t to float vector conversion is also much more efficient on // SSE2/SSSE3/SSE4/AVX2 than an uint32_t vector to float vector conversion // as an uint32_t vector to float vector conversion on SSE2/SSSE3/SSE4/AVX2 // requires multiple instructions whereas an int32_t to float vector // conversion can be carried out using a single instruction on // SSE2/SSSE3/SSE4/AVX2. const auto f32_bits = BitCast(d, ConvertTo(df, BitCast(di, v))); return BitCast(d, Min(BitCast(di16, ShiftRight<23>(f32_bits)), BitCast(di16, Set(d, 158)))); #else const auto f32_bits = BitCast(d, ConvertTo(df, v)); return BitCast(d, ShiftRight<23>(f32_bits)); #endif } template )> HWY_INLINE V I32RangeU32ToF32BiasedExp(V v) { // I32RangeU32ToF32BiasedExp is similar to UIntToF32BiasedExp, but // I32RangeU32ToF32BiasedExp assumes that v[i] is between 0 and 2147483647. const DFromV d; const RebindToFloat df; #if HWY_TARGET > HWY_AVX3 && HWY_TARGET <= HWY_SSE2 const RebindToSigned d_src; #else const RebindToUnsigned d_src; #endif const auto f32_bits = BitCast(d, ConvertTo(df, BitCast(d_src, v))); return ShiftRight<23>(f32_bits); } template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const Rebind du32; const auto f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(PromoteTo(du32, v)); return TruncateTo(d, f32_biased_exp_as_u32); } #if HWY_TARGET != HWY_SCALAR template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const Half dh; const Rebind du32; const auto lo_u32 = PromoteTo(du32, LowerHalf(dh, v)); const auto hi_u32 = PromoteTo(du32, UpperHalf(dh, v)); const auto lo_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(lo_u32); const auto hi_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(hi_u32); #if HWY_TARGET <= HWY_SSE2 const RebindToSigned di32; const RebindToSigned di; return BitCast(d, OrderedDemote2To(di, BitCast(di32, lo_f32_biased_exp_as_u32), BitCast(di32, hi_f32_biased_exp_as_u32))); #else return OrderedTruncate2To(d, lo_f32_biased_exp_as_u32, hi_f32_biased_exp_as_u32); #endif } #endif // HWY_TARGET != HWY_SCALAR template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const Rebind du32; const auto f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(PromoteTo(du32, v)); return U8FromU32(f32_biased_exp_as_u32); } #if HWY_TARGET != HWY_SCALAR template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const Half dh; const Rebind du32; const Repartition du16; const auto lo_u32 = PromoteTo(du32, LowerHalf(dh, v)); const auto hi_u32 = PromoteTo(du32, UpperHalf(dh, v)); const auto lo_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(lo_u32); const auto hi_f32_biased_exp_as_u32 = I32RangeU32ToF32BiasedExp(hi_u32); #if HWY_TARGET <= HWY_SSE2 const RebindToSigned di32; const RebindToSigned di16; const auto f32_biased_exp_as_i16 = OrderedDemote2To(di16, BitCast(di32, lo_f32_biased_exp_as_u32), BitCast(di32, hi_f32_biased_exp_as_u32)); return DemoteTo(d, f32_biased_exp_as_i16); #else const auto f32_biased_exp_as_u16 = OrderedTruncate2To( du16, lo_f32_biased_exp_as_u32, hi_f32_biased_exp_as_u32); return TruncateTo(d, f32_biased_exp_as_u16); #endif } template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { const Half dh; const Half dq; const Rebind du32; const Repartition du16; const auto lo_half = LowerHalf(dh, v); const auto hi_half = UpperHalf(dh, v); const auto u32_q0 = PromoteTo(du32, LowerHalf(dq, lo_half)); const auto u32_q1 = PromoteTo(du32, UpperHalf(dq, lo_half)); const auto u32_q2 = PromoteTo(du32, LowerHalf(dq, hi_half)); const auto u32_q3 = PromoteTo(du32, UpperHalf(dq, hi_half)); const auto f32_biased_exp_as_u32_q0 = I32RangeU32ToF32BiasedExp(u32_q0); const auto f32_biased_exp_as_u32_q1 = I32RangeU32ToF32BiasedExp(u32_q1); const auto f32_biased_exp_as_u32_q2 = I32RangeU32ToF32BiasedExp(u32_q2); const auto f32_biased_exp_as_u32_q3 = I32RangeU32ToF32BiasedExp(u32_q3); #if HWY_TARGET <= HWY_SSE2 const RebindToSigned di32; const RebindToSigned di16; const auto lo_f32_biased_exp_as_i16 = OrderedDemote2To(di16, BitCast(di32, f32_biased_exp_as_u32_q0), BitCast(di32, f32_biased_exp_as_u32_q1)); const auto hi_f32_biased_exp_as_i16 = OrderedDemote2To(di16, BitCast(di32, f32_biased_exp_as_u32_q2), BitCast(di32, f32_biased_exp_as_u32_q3)); return OrderedDemote2To(d, lo_f32_biased_exp_as_i16, hi_f32_biased_exp_as_i16); #else const auto lo_f32_biased_exp_as_u16 = OrderedTruncate2To( du16, f32_biased_exp_as_u32_q0, f32_biased_exp_as_u32_q1); const auto hi_f32_biased_exp_as_u16 = OrderedTruncate2To( du16, f32_biased_exp_as_u32_q2, f32_biased_exp_as_u32_q3); return OrderedTruncate2To(d, lo_f32_biased_exp_as_u16, hi_f32_biased_exp_as_u16); #endif } #endif // HWY_TARGET != HWY_SCALAR #if HWY_TARGET == HWY_SCALAR template using F32ExpLzcntMinMaxRepartition = RebindToUnsigned; #elif HWY_TARGET >= HWY_SSSE3 && HWY_TARGET <= HWY_SSE2 template using F32ExpLzcntMinMaxRepartition = Repartition; #else template using F32ExpLzcntMinMaxRepartition = Repartition), 4)>, D>; #endif template using F32ExpLzcntMinMaxCmpV = VFromD>>; template HWY_INLINE F32ExpLzcntMinMaxCmpV F32ExpLzcntMinMaxBitCast(V v) { const DFromV d; const F32ExpLzcntMinMaxRepartition d2; return BitCast(d2, v); } template HWY_INLINE VFromD UIntToF32BiasedExp(D d, VFromD v) { #if HWY_TARGET == HWY_SCALAR const uint64_t u64_val = GetLane(v); const float f32_val = static_cast(u64_val); uint32_t f32_bits; CopySameSize(&f32_val, &f32_bits); return Set(d, static_cast(f32_bits >> 23)); #else const Repartition du32; const auto f32_biased_exp = UIntToF32BiasedExp(du32, BitCast(du32, v)); const auto f32_biased_exp_adj = IfThenZeroElse(Eq(f32_biased_exp, Zero(du32)), BitCast(du32, Set(d, 0x0000002000000000u))); const auto adj_f32_biased_exp = Add(f32_biased_exp, f32_biased_exp_adj); return ShiftRight<32>(BitCast( d, Max(F32ExpLzcntMinMaxBitCast(adj_f32_biased_exp), F32ExpLzcntMinMaxBitCast(Reverse2(du32, adj_f32_biased_exp))))); #endif } template HWY_INLINE V UIntToF32BiasedExp(V v) { const DFromV d; return UIntToF32BiasedExp(d, v); } template HWY_INLINE V NormalizeForUIntTruncConvToF32(V v) { return v; } template HWY_INLINE V NormalizeForUIntTruncConvToF32(V v) { // If v[i] >= 16777216 is true, make sure that the bit at // HighestSetBitIndex(v[i]) - 24 is zeroed out to ensure that any inexact // conversion to single-precision floating point is rounded down. // This zeroing-out can be accomplished through the AndNot operation below. return AndNot(ShiftRight<24>(v), v); } } // namespace detail template HWY_API V HighestSetBitIndex(V v) { const DFromV d; const RebindToUnsigned du; using TU = TFromD; const auto f32_biased_exp = detail::UIntToF32BiasedExp( detail::NormalizeForUIntTruncConvToF32(BitCast(du, v))); return BitCast(d, Sub(f32_biased_exp, Set(du, TU{127}))); } template HWY_API V LeadingZeroCount(V v) { const DFromV d; const RebindToUnsigned du; using TU = TFromD; constexpr TU kNumOfBitsInT{sizeof(TU) * 8}; const auto f32_biased_exp = detail::UIntToF32BiasedExp( detail::NormalizeForUIntTruncConvToF32(BitCast(du, v))); const auto lz_count = Sub(Set(du, TU{kNumOfBitsInT + 126}), f32_biased_exp); return BitCast(d, Min(detail::F32ExpLzcntMinMaxBitCast(lz_count), detail::F32ExpLzcntMinMaxBitCast(Set(du, kNumOfBitsInT)))); } template HWY_API V TrailingZeroCount(V v) { const DFromV d; const RebindToUnsigned du; const RebindToSigned di; using TU = TFromD; const auto vi = BitCast(di, v); const auto lowest_bit = BitCast(du, And(vi, Neg(vi))); constexpr TU kNumOfBitsInT{sizeof(TU) * 8}; const auto f32_biased_exp = detail::UIntToF32BiasedExp(lowest_bit); const auto tz_count = Sub(f32_biased_exp, Set(du, TU{127})); return BitCast(d, Min(detail::F32ExpLzcntMinMaxBitCast(tz_count), detail::F32ExpLzcntMinMaxBitCast(Set(du, kNumOfBitsInT)))); } #endif // HWY_NATIVE_LEADING_ZERO_COUNT // ------------------------------ AESRound // Cannot implement on scalar: need at least 16 bytes for TableLookupBytes. #if HWY_TARGET != HWY_SCALAR || HWY_IDE // Define for white-box testing, even if native instructions are available. namespace detail { // Constant-time: computes inverse in GF(2^4) based on "Accelerating AES with // Vector Permute Instructions" and the accompanying assembly language // implementation: https://crypto.stanford.edu/vpaes/vpaes.tgz. See also Botan: // https://botan.randombit.net/doxygen/aes__vperm_8cpp_source.html . // // A brute-force 256 byte table lookup can also be made constant-time, and // possibly competitive on NEON, but this is more performance-portable // especially for x86 and large vectors. template // u8 HWY_INLINE V SubBytesMulInverseAndAffineLookup(V state, V affine_tblL, V affine_tblU) { const DFromV du; const auto mask = Set(du, uint8_t{0xF}); // Change polynomial basis to GF(2^4) { alignas(16) static constexpr uint8_t basisL[16] = { 0x00, 0x70, 0x2A, 0x5A, 0x98, 0xE8, 0xB2, 0xC2, 0x08, 0x78, 0x22, 0x52, 0x90, 0xE0, 0xBA, 0xCA}; alignas(16) static constexpr uint8_t basisU[16] = { 0x00, 0x4D, 0x7C, 0x31, 0x7D, 0x30, 0x01, 0x4C, 0x81, 0xCC, 0xFD, 0xB0, 0xFC, 0xB1, 0x80, 0xCD}; const auto sL = And(state, mask); const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero const auto gf4L = TableLookupBytes(LoadDup128(du, basisL), sL); const auto gf4U = TableLookupBytes(LoadDup128(du, basisU), sU); state = Xor(gf4L, gf4U); } // Inversion in GF(2^4). Elements 0 represent "infinity" (division by 0) and // cause TableLookupBytesOr0 to return 0. alignas(16) static constexpr uint8_t kZetaInv[16] = { 0x80, 7, 11, 15, 6, 10, 4, 1, 9, 8, 5, 2, 12, 14, 13, 3}; alignas(16) static constexpr uint8_t kInv[16] = { 0x80, 1, 8, 13, 15, 6, 5, 14, 2, 12, 11, 10, 9, 3, 7, 4}; const auto tbl = LoadDup128(du, kInv); const auto sL = And(state, mask); // L=low nibble, U=upper const auto sU = ShiftRight<4>(state); // byte shift => upper bits are zero const auto sX = Xor(sU, sL); const auto invL = TableLookupBytes(LoadDup128(du, kZetaInv), sL); const auto invU = TableLookupBytes(tbl, sU); const auto invX = TableLookupBytes(tbl, sX); const auto outL = Xor(sX, TableLookupBytesOr0(tbl, Xor(invL, invU))); const auto outU = Xor(sU, TableLookupBytesOr0(tbl, Xor(invL, invX))); const auto affL = TableLookupBytesOr0(affine_tblL, outL); const auto affU = TableLookupBytesOr0(affine_tblU, outU); return Xor(affL, affU); } template // u8 HWY_INLINE V SubBytes(V state) { const DFromV du; // Linear skew (cannot bake 0x63 bias into the table because out* indices // may have the infinity flag set). alignas(16) static constexpr uint8_t kAffineL[16] = { 0x00, 0xC7, 0xBD, 0x6F, 0x17, 0x6D, 0xD2, 0xD0, 0x78, 0xA8, 0x02, 0xC5, 0x7A, 0xBF, 0xAA, 0x15}; alignas(16) static constexpr uint8_t kAffineU[16] = { 0x00, 0x6A, 0xBB, 0x5F, 0xA5, 0x74, 0xE4, 0xCF, 0xFA, 0x35, 0x2B, 0x41, 0xD1, 0x90, 0x1E, 0x8E}; return Xor(SubBytesMulInverseAndAffineLookup(state, LoadDup128(du, kAffineL), LoadDup128(du, kAffineU)), Set(du, uint8_t{0x63})); } template // u8 HWY_INLINE V InvSubBytes(V state) { const DFromV du; alignas(16) static constexpr uint8_t kGF2P4InvToGF2P8InvL[16]{ 0x00, 0x40, 0xF9, 0x7E, 0x53, 0xEA, 0x87, 0x13, 0x2D, 0x3E, 0x94, 0xD4, 0xB9, 0x6D, 0xAA, 0xC7}; alignas(16) static constexpr uint8_t kGF2P4InvToGF2P8InvU[16]{ 0x00, 0x1D, 0x44, 0x93, 0x0F, 0x56, 0xD7, 0x12, 0x9C, 0x8E, 0xC5, 0xD8, 0x59, 0x81, 0x4B, 0xCA}; // Apply the inverse affine transformation const auto b = Xor(Xor3(Or(ShiftLeft<1>(state), ShiftRight<7>(state)), Or(ShiftLeft<3>(state), ShiftRight<5>(state)), Or(ShiftLeft<6>(state), ShiftRight<2>(state))), Set(du, uint8_t{0x05})); // The GF(2^8) multiplicative inverse is computed as follows: // - Changing the polynomial basis to GF(2^4) // - Computing the GF(2^4) multiplicative inverse // - Converting the GF(2^4) multiplicative inverse to the GF(2^8) // multiplicative inverse through table lookups using the // kGF2P4InvToGF2P8InvL and kGF2P4InvToGF2P8InvU tables return SubBytesMulInverseAndAffineLookup( b, LoadDup128(du, kGF2P4InvToGF2P8InvL), LoadDup128(du, kGF2P4InvToGF2P8InvU)); } } // namespace detail #endif // HWY_TARGET != HWY_SCALAR // "Include guard": skip if native AES instructions are available. #if (defined(HWY_NATIVE_AES) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_AES #undef HWY_NATIVE_AES #else #define HWY_NATIVE_AES #endif // (Must come after HWY_TARGET_TOGGLE, else we don't reset it for scalar) #if HWY_TARGET != HWY_SCALAR namespace detail { template // u8 HWY_API V ShiftRows(const V state) { const DFromV du; alignas(16) static constexpr uint8_t kShiftRow[16] = { 0, 5, 10, 15, // transposed: state is column major 4, 9, 14, 3, // 8, 13, 2, 7, // 12, 1, 6, 11}; const auto shift_row = LoadDup128(du, kShiftRow); return TableLookupBytes(state, shift_row); } template // u8 HWY_API V InvShiftRows(const V state) { const DFromV du; alignas(16) static constexpr uint8_t kShiftRow[16] = { 0, 13, 10, 7, // transposed: state is column major 4, 1, 14, 11, // 8, 5, 2, 15, // 12, 9, 6, 3}; const auto shift_row = LoadDup128(du, kShiftRow); return TableLookupBytes(state, shift_row); } template // u8 HWY_API V GF2P8Mod11BMulBy2(V v) { const DFromV du; const RebindToSigned di; // can only do signed comparisons const auto msb = Lt(BitCast(di, v), Zero(di)); const auto overflow = BitCast(du, IfThenElseZero(msb, Set(di, int8_t{0x1B}))); return Xor(Add(v, v), overflow); // = v*2 in GF(2^8). } template // u8 HWY_API V MixColumns(const V state) { const DFromV du; // For each column, the rows are the sum of GF(2^8) matrix multiplication by: // 2 3 1 1 // Let s := state*1, d := state*2, t := state*3. // 1 2 3 1 // d are on diagonal, no permutation needed. // 1 1 2 3 // t1230 indicates column indices of threes for the 4 rows. // 3 1 1 2 // We also need to compute s2301 and s3012 (=1230 o 2301). alignas(16) static constexpr uint8_t k2301[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; alignas(16) static constexpr uint8_t k1230[16] = { 1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8, 13, 14, 15, 12}; const auto d = GF2P8Mod11BMulBy2(state); // = state*2 in GF(2^8). const auto s2301 = TableLookupBytes(state, LoadDup128(du, k2301)); const auto d_s2301 = Xor(d, s2301); const auto t_s2301 = Xor(state, d_s2301); // t(s*3) = XOR-sum {s, d(s*2)} const auto t1230_s3012 = TableLookupBytes(t_s2301, LoadDup128(du, k1230)); return Xor(d_s2301, t1230_s3012); // XOR-sum of 4 terms } template // u8 HWY_API V InvMixColumns(const V state) { const DFromV du; // For each column, the rows are the sum of GF(2^8) matrix multiplication by: // 14 11 13 9 // 9 14 11 13 // 13 9 14 11 // 11 13 9 14 alignas(16) static constexpr uint8_t k2301[16] = { 2, 3, 0, 1, 6, 7, 4, 5, 10, 11, 8, 9, 14, 15, 12, 13}; alignas(16) static constexpr uint8_t k1230[16] = { 1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8, 13, 14, 15, 12}; const auto v1230 = LoadDup128(du, k1230); const auto sx2 = GF2P8Mod11BMulBy2(state); /* = state*2 in GF(2^8) */ const auto sx4 = GF2P8Mod11BMulBy2(sx2); /* = state*4 in GF(2^8) */ const auto sx8 = GF2P8Mod11BMulBy2(sx4); /* = state*8 in GF(2^8) */ const auto sx9 = Xor(sx8, state); /* = state*9 in GF(2^8) */ const auto sx11 = Xor(sx9, sx2); /* = state*11 in GF(2^8) */ const auto sx13 = Xor(sx9, sx4); /* = state*13 in GF(2^8) */ const auto sx14 = Xor3(sx8, sx4, sx2); /* = state*14 in GF(2^8) */ const auto sx13_0123_sx9_1230 = Xor(sx13, TableLookupBytes(sx9, v1230)); const auto sx14_0123_sx11_1230 = Xor(sx14, TableLookupBytes(sx11, v1230)); const auto sx13_2301_sx9_3012 = TableLookupBytes(sx13_0123_sx9_1230, LoadDup128(du, k2301)); return Xor(sx14_0123_sx11_1230, sx13_2301_sx9_3012); } } // namespace detail template // u8 HWY_API V AESRound(V state, const V round_key) { // Intel docs swap the first two steps, but it does not matter because // ShiftRows is a permutation and SubBytes is independent of lane index. state = detail::SubBytes(state); state = detail::ShiftRows(state); state = detail::MixColumns(state); state = Xor(state, round_key); // AddRoundKey return state; } template // u8 HWY_API V AESLastRound(V state, const V round_key) { // LIke AESRound, but without MixColumns. state = detail::SubBytes(state); state = detail::ShiftRows(state); state = Xor(state, round_key); // AddRoundKey return state; } template HWY_API V AESInvMixColumns(V state) { return detail::InvMixColumns(state); } template // u8 HWY_API V AESRoundInv(V state, const V round_key) { state = detail::InvSubBytes(state); state = detail::InvShiftRows(state); state = detail::InvMixColumns(state); state = Xor(state, round_key); // AddRoundKey return state; } template // u8 HWY_API V AESLastRoundInv(V state, const V round_key) { // Like AESRoundInv, but without InvMixColumns. state = detail::InvSubBytes(state); state = detail::InvShiftRows(state); state = Xor(state, round_key); // AddRoundKey return state; } template )> HWY_API V AESKeyGenAssist(V v) { alignas(16) static constexpr uint8_t kRconXorMask[16] = { 0, 0, 0, 0, kRcon, 0, 0, 0, 0, 0, 0, 0, kRcon, 0, 0, 0}; alignas(16) static constexpr uint8_t kRotWordShuffle[16] = { 4, 5, 6, 7, 5, 6, 7, 4, 12, 13, 14, 15, 13, 14, 15, 12}; const DFromV d; const auto sub_word_result = detail::SubBytes(v); const auto rot_word_result = TableLookupBytes(sub_word_result, LoadDup128(d, kRotWordShuffle)); return Xor(rot_word_result, LoadDup128(d, kRconXorMask)); } // Constant-time implementation inspired by // https://www.bearssl.org/constanttime.html, but about half the cost because we // use 64x64 multiplies and 128-bit XORs. template HWY_API V CLMulLower(V a, V b) { const DFromV d; static_assert(IsSame, uint64_t>(), "V must be u64"); const auto k1 = Set(d, 0x1111111111111111ULL); const auto k2 = Set(d, 0x2222222222222222ULL); const auto k4 = Set(d, 0x4444444444444444ULL); const auto k8 = Set(d, 0x8888888888888888ULL); const auto a0 = And(a, k1); const auto a1 = And(a, k2); const auto a2 = And(a, k4); const auto a3 = And(a, k8); const auto b0 = And(b, k1); const auto b1 = And(b, k2); const auto b2 = And(b, k4); const auto b3 = And(b, k8); auto m0 = Xor(MulEven(a0, b0), MulEven(a1, b3)); auto m1 = Xor(MulEven(a0, b1), MulEven(a1, b0)); auto m2 = Xor(MulEven(a0, b2), MulEven(a1, b1)); auto m3 = Xor(MulEven(a0, b3), MulEven(a1, b2)); m0 = Xor(m0, Xor(MulEven(a2, b2), MulEven(a3, b1))); m1 = Xor(m1, Xor(MulEven(a2, b3), MulEven(a3, b2))); m2 = Xor(m2, Xor(MulEven(a2, b0), MulEven(a3, b3))); m3 = Xor(m3, Xor(MulEven(a2, b1), MulEven(a3, b0))); return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8))); } template HWY_API V CLMulUpper(V a, V b) { const DFromV d; static_assert(IsSame, uint64_t>(), "V must be u64"); const auto k1 = Set(d, 0x1111111111111111ULL); const auto k2 = Set(d, 0x2222222222222222ULL); const auto k4 = Set(d, 0x4444444444444444ULL); const auto k8 = Set(d, 0x8888888888888888ULL); const auto a0 = And(a, k1); const auto a1 = And(a, k2); const auto a2 = And(a, k4); const auto a3 = And(a, k8); const auto b0 = And(b, k1); const auto b1 = And(b, k2); const auto b2 = And(b, k4); const auto b3 = And(b, k8); auto m0 = Xor(MulOdd(a0, b0), MulOdd(a1, b3)); auto m1 = Xor(MulOdd(a0, b1), MulOdd(a1, b0)); auto m2 = Xor(MulOdd(a0, b2), MulOdd(a1, b1)); auto m3 = Xor(MulOdd(a0, b3), MulOdd(a1, b2)); m0 = Xor(m0, Xor(MulOdd(a2, b2), MulOdd(a3, b1))); m1 = Xor(m1, Xor(MulOdd(a2, b3), MulOdd(a3, b2))); m2 = Xor(m2, Xor(MulOdd(a2, b0), MulOdd(a3, b3))); m3 = Xor(m3, Xor(MulOdd(a2, b1), MulOdd(a3, b0))); return Or(Or(And(m0, k1), And(m1, k2)), Or(And(m2, k4), And(m3, k8))); } #endif // HWY_NATIVE_AES #endif // HWY_TARGET != HWY_SCALAR // ------------------------------ PopulationCount // "Include guard": skip if native POPCNT-related instructions are available. #if (defined(HWY_NATIVE_POPCNT) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_POPCNT #undef HWY_NATIVE_POPCNT #else #define HWY_NATIVE_POPCNT #endif // This overload requires vectors to be at least 16 bytes, which is the case // for LMUL >= 2. #undef HWY_IF_POPCNT #if HWY_TARGET == HWY_RVV #define HWY_IF_POPCNT(D) \ hwy::EnableIf= 1 && D().MaxLanes() >= 16>* = nullptr #else // Other targets only have these two overloads which are mutually exclusive, so // no further conditions are required. #define HWY_IF_POPCNT(D) void* = nullptr #endif // HWY_TARGET == HWY_RVV template , HWY_IF_U8_D(D), HWY_IF_V_SIZE_GT_D(D, 8), HWY_IF_POPCNT(D)> HWY_API V PopulationCount(V v) { const D d; HWY_ALIGN constexpr uint8_t kLookup[16] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, }; const auto lo = And(v, Set(d, uint8_t{0xF})); const auto hi = ShiftRight<4>(v); const auto lookup = LoadDup128(d, kLookup); return Add(TableLookupBytes(lookup, hi), TableLookupBytes(lookup, lo)); } // RVV has a specialization that avoids the Set(). #if HWY_TARGET != HWY_RVV // Slower fallback for capped vectors. template , HWY_IF_U8_D(D), HWY_IF_V_SIZE_LE_D(D, 8)> HWY_API V PopulationCount(V v) { const D d; // See https://arxiv.org/pdf/1611.07612.pdf, Figure 3 const V k33 = Set(d, uint8_t{0x33}); v = Sub(v, And(ShiftRight<1>(v), Set(d, uint8_t{0x55}))); v = Add(And(ShiftRight<2>(v), k33), And(v, k33)); return And(Add(v, ShiftRight<4>(v)), Set(d, uint8_t{0x0F})); } #endif // HWY_TARGET != HWY_RVV template , HWY_IF_U16_D(D)> HWY_API V PopulationCount(V v) { const D d; const Repartition d8; const auto vals = BitCast(d, PopulationCount(BitCast(d8, v))); return Add(ShiftRight<8>(vals), And(vals, Set(d, uint16_t{0xFF}))); } template , HWY_IF_U32_D(D)> HWY_API V PopulationCount(V v) { const D d; Repartition d16; auto vals = BitCast(d, PopulationCount(BitCast(d16, v))); return Add(ShiftRight<16>(vals), And(vals, Set(d, uint32_t{0xFF}))); } #if HWY_HAVE_INTEGER64 template , HWY_IF_U64_D(D)> HWY_API V PopulationCount(V v) { const D d; Repartition d32; auto vals = BitCast(d, PopulationCount(BitCast(d32, v))); return Add(ShiftRight<32>(vals), And(vals, Set(d, 0xFFULL))); } #endif #endif // HWY_NATIVE_POPCNT // ------------------------------ 8-bit multiplication // "Include guard": skip if native 8-bit mul instructions are available. #if (defined(HWY_NATIVE_MUL_8) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE #ifdef HWY_NATIVE_MUL_8 #undef HWY_NATIVE_MUL_8 #else #define HWY_NATIVE_MUL_8 #endif // 8 bit and fits in wider reg: promote template HWY_API V operator*(const V a, const V b) { const DFromV d; const Rebind>, decltype(d)> dw; const RebindToUnsigned du; // TruncateTo result const RebindToUnsigned dwu; // TruncateTo input const VFromD mul = PromoteTo(dw, a) * PromoteTo(dw, b); // TruncateTo is cheaper than ConcatEven. return BitCast(d, TruncateTo(du, BitCast(dwu, mul))); } // 8 bit full reg: promote halves template HWY_API V operator*(const V a, const V b) { const DFromV d; const Half dh; const Twice> dw; const VFromD a0 = PromoteTo(dw, LowerHalf(dh, a)); const VFromD a1 = PromoteTo(dw, UpperHalf(dh, a)); const VFromD b0 = PromoteTo(dw, LowerHalf(dh, b)); const VFromD b1 = PromoteTo(dw, UpperHalf(dh, b)); const VFromD m0 = a0 * b0; const VFromD m1 = a1 * b1; return ConcatEven(d, BitCast(d, m1), BitCast(d, m0)); } #endif // HWY_NATIVE_MUL_8 // ------------------------------ 64-bit multiplication // "Include guard": skip if native 64-bit mul instructions are available. #if (defined(HWY_NATIVE_MUL_64) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE #ifdef HWY_NATIVE_MUL_64 #undef HWY_NATIVE_MUL_64 #else #define HWY_NATIVE_MUL_64 #endif // Single-lane i64 or u64 template HWY_API V operator*(V x, V y) { const DFromV d; using T = TFromD; using TU = MakeUnsigned; const TU xu = static_cast(GetLane(x)); const TU yu = static_cast(GetLane(y)); return Set(d, static_cast(xu * yu)); } template , HWY_IF_U64_D(D64), HWY_IF_V_SIZE_GT_D(D64, 8)> HWY_API V operator*(V x, V y) { RepartitionToNarrow d32; auto x32 = BitCast(d32, x); auto y32 = BitCast(d32, y); auto lolo = BitCast(d32, MulEven(x32, y32)); auto lohi = BitCast(d32, MulEven(x32, BitCast(d32, ShiftRight<32>(y)))); auto hilo = BitCast(d32, MulEven(BitCast(d32, ShiftRight<32>(x)), y32)); auto hi = BitCast(d32, ShiftLeft<32>(BitCast(D64{}, lohi + hilo))); return BitCast(D64{}, lolo + hi); } template , HWY_IF_I64_D(DI64), HWY_IF_V_SIZE_GT_D(DI64, 8)> HWY_API V operator*(V x, V y) { RebindToUnsigned du64; return BitCast(DI64{}, BitCast(du64, x) * BitCast(du64, y)); } #endif // HWY_NATIVE_MUL_64 // ------------------------------ MulAdd / NegMulAdd // "Include guard": skip if native int MulAdd instructions are available. #if (defined(HWY_NATIVE_INT_FMA) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_INT_FMA #undef HWY_NATIVE_INT_FMA #else #define HWY_NATIVE_INT_FMA #endif template HWY_API V MulAdd(V mul, V x, V add) { return Add(Mul(mul, x), add); } template HWY_API V NegMulAdd(V mul, V x, V add) { return Sub(add, Mul(mul, x)); } #endif // HWY_NATIVE_INT_FMA // ------------------------------ Compress* // "Include guard": skip if native 8-bit compress instructions are available. #if (defined(HWY_NATIVE_COMPRESS8) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_COMPRESS8 #undef HWY_NATIVE_COMPRESS8 #else #define HWY_NATIVE_COMPRESS8 #endif template HWY_API size_t CompressBitsStore(V v, const uint8_t* HWY_RESTRICT bits, D d, T* unaligned) { HWY_ALIGN T lanes[MaxLanes(d)]; Store(v, d, lanes); const Simd d8; T* HWY_RESTRICT pos = unaligned; HWY_ALIGN constexpr T table[2048] = { 0, 1, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 1, 0, 2, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 2, 0, 1, 3, 4, 5, 6, 7, /**/ 0, 2, 1, 3, 4, 5, 6, 7, // 1, 2, 0, 3, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 3, 0, 1, 2, 4, 5, 6, 7, /**/ 0, 3, 1, 2, 4, 5, 6, 7, // 1, 3, 0, 2, 4, 5, 6, 7, /**/ 0, 1, 3, 2, 4, 5, 6, 7, // 2, 3, 0, 1, 4, 5, 6, 7, /**/ 0, 2, 3, 1, 4, 5, 6, 7, // 1, 2, 3, 0, 4, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 4, 0, 1, 2, 3, 5, 6, 7, /**/ 0, 4, 1, 2, 3, 5, 6, 7, // 1, 4, 0, 2, 3, 5, 6, 7, /**/ 0, 1, 4, 2, 3, 5, 6, 7, // 2, 4, 0, 1, 3, 5, 6, 7, /**/ 0, 2, 4, 1, 3, 5, 6, 7, // 1, 2, 4, 0, 3, 5, 6, 7, /**/ 0, 1, 2, 4, 3, 5, 6, 7, // 3, 4, 0, 1, 2, 5, 6, 7, /**/ 0, 3, 4, 1, 2, 5, 6, 7, // 1, 3, 4, 0, 2, 5, 6, 7, /**/ 0, 1, 3, 4, 2, 5, 6, 7, // 2, 3, 4, 0, 1, 5, 6, 7, /**/ 0, 2, 3, 4, 1, 5, 6, 7, // 1, 2, 3, 4, 0, 5, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 5, 0, 1, 2, 3, 4, 6, 7, /**/ 0, 5, 1, 2, 3, 4, 6, 7, // 1, 5, 0, 2, 3, 4, 6, 7, /**/ 0, 1, 5, 2, 3, 4, 6, 7, // 2, 5, 0, 1, 3, 4, 6, 7, /**/ 0, 2, 5, 1, 3, 4, 6, 7, // 1, 2, 5, 0, 3, 4, 6, 7, /**/ 0, 1, 2, 5, 3, 4, 6, 7, // 3, 5, 0, 1, 2, 4, 6, 7, /**/ 0, 3, 5, 1, 2, 4, 6, 7, // 1, 3, 5, 0, 2, 4, 6, 7, /**/ 0, 1, 3, 5, 2, 4, 6, 7, // 2, 3, 5, 0, 1, 4, 6, 7, /**/ 0, 2, 3, 5, 1, 4, 6, 7, // 1, 2, 3, 5, 0, 4, 6, 7, /**/ 0, 1, 2, 3, 5, 4, 6, 7, // 4, 5, 0, 1, 2, 3, 6, 7, /**/ 0, 4, 5, 1, 2, 3, 6, 7, // 1, 4, 5, 0, 2, 3, 6, 7, /**/ 0, 1, 4, 5, 2, 3, 6, 7, // 2, 4, 5, 0, 1, 3, 6, 7, /**/ 0, 2, 4, 5, 1, 3, 6, 7, // 1, 2, 4, 5, 0, 3, 6, 7, /**/ 0, 1, 2, 4, 5, 3, 6, 7, // 3, 4, 5, 0, 1, 2, 6, 7, /**/ 0, 3, 4, 5, 1, 2, 6, 7, // 1, 3, 4, 5, 0, 2, 6, 7, /**/ 0, 1, 3, 4, 5, 2, 6, 7, // 2, 3, 4, 5, 0, 1, 6, 7, /**/ 0, 2, 3, 4, 5, 1, 6, 7, // 1, 2, 3, 4, 5, 0, 6, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 6, 0, 1, 2, 3, 4, 5, 7, /**/ 0, 6, 1, 2, 3, 4, 5, 7, // 1, 6, 0, 2, 3, 4, 5, 7, /**/ 0, 1, 6, 2, 3, 4, 5, 7, // 2, 6, 0, 1, 3, 4, 5, 7, /**/ 0, 2, 6, 1, 3, 4, 5, 7, // 1, 2, 6, 0, 3, 4, 5, 7, /**/ 0, 1, 2, 6, 3, 4, 5, 7, // 3, 6, 0, 1, 2, 4, 5, 7, /**/ 0, 3, 6, 1, 2, 4, 5, 7, // 1, 3, 6, 0, 2, 4, 5, 7, /**/ 0, 1, 3, 6, 2, 4, 5, 7, // 2, 3, 6, 0, 1, 4, 5, 7, /**/ 0, 2, 3, 6, 1, 4, 5, 7, // 1, 2, 3, 6, 0, 4, 5, 7, /**/ 0, 1, 2, 3, 6, 4, 5, 7, // 4, 6, 0, 1, 2, 3, 5, 7, /**/ 0, 4, 6, 1, 2, 3, 5, 7, // 1, 4, 6, 0, 2, 3, 5, 7, /**/ 0, 1, 4, 6, 2, 3, 5, 7, // 2, 4, 6, 0, 1, 3, 5, 7, /**/ 0, 2, 4, 6, 1, 3, 5, 7, // 1, 2, 4, 6, 0, 3, 5, 7, /**/ 0, 1, 2, 4, 6, 3, 5, 7, // 3, 4, 6, 0, 1, 2, 5, 7, /**/ 0, 3, 4, 6, 1, 2, 5, 7, // 1, 3, 4, 6, 0, 2, 5, 7, /**/ 0, 1, 3, 4, 6, 2, 5, 7, // 2, 3, 4, 6, 0, 1, 5, 7, /**/ 0, 2, 3, 4, 6, 1, 5, 7, // 1, 2, 3, 4, 6, 0, 5, 7, /**/ 0, 1, 2, 3, 4, 6, 5, 7, // 5, 6, 0, 1, 2, 3, 4, 7, /**/ 0, 5, 6, 1, 2, 3, 4, 7, // 1, 5, 6, 0, 2, 3, 4, 7, /**/ 0, 1, 5, 6, 2, 3, 4, 7, // 2, 5, 6, 0, 1, 3, 4, 7, /**/ 0, 2, 5, 6, 1, 3, 4, 7, // 1, 2, 5, 6, 0, 3, 4, 7, /**/ 0, 1, 2, 5, 6, 3, 4, 7, // 3, 5, 6, 0, 1, 2, 4, 7, /**/ 0, 3, 5, 6, 1, 2, 4, 7, // 1, 3, 5, 6, 0, 2, 4, 7, /**/ 0, 1, 3, 5, 6, 2, 4, 7, // 2, 3, 5, 6, 0, 1, 4, 7, /**/ 0, 2, 3, 5, 6, 1, 4, 7, // 1, 2, 3, 5, 6, 0, 4, 7, /**/ 0, 1, 2, 3, 5, 6, 4, 7, // 4, 5, 6, 0, 1, 2, 3, 7, /**/ 0, 4, 5, 6, 1, 2, 3, 7, // 1, 4, 5, 6, 0, 2, 3, 7, /**/ 0, 1, 4, 5, 6, 2, 3, 7, // 2, 4, 5, 6, 0, 1, 3, 7, /**/ 0, 2, 4, 5, 6, 1, 3, 7, // 1, 2, 4, 5, 6, 0, 3, 7, /**/ 0, 1, 2, 4, 5, 6, 3, 7, // 3, 4, 5, 6, 0, 1, 2, 7, /**/ 0, 3, 4, 5, 6, 1, 2, 7, // 1, 3, 4, 5, 6, 0, 2, 7, /**/ 0, 1, 3, 4, 5, 6, 2, 7, // 2, 3, 4, 5, 6, 0, 1, 7, /**/ 0, 2, 3, 4, 5, 6, 1, 7, // 1, 2, 3, 4, 5, 6, 0, 7, /**/ 0, 1, 2, 3, 4, 5, 6, 7, // 7, 0, 1, 2, 3, 4, 5, 6, /**/ 0, 7, 1, 2, 3, 4, 5, 6, // 1, 7, 0, 2, 3, 4, 5, 6, /**/ 0, 1, 7, 2, 3, 4, 5, 6, // 2, 7, 0, 1, 3, 4, 5, 6, /**/ 0, 2, 7, 1, 3, 4, 5, 6, // 1, 2, 7, 0, 3, 4, 5, 6, /**/ 0, 1, 2, 7, 3, 4, 5, 6, // 3, 7, 0, 1, 2, 4, 5, 6, /**/ 0, 3, 7, 1, 2, 4, 5, 6, // 1, 3, 7, 0, 2, 4, 5, 6, /**/ 0, 1, 3, 7, 2, 4, 5, 6, // 2, 3, 7, 0, 1, 4, 5, 6, /**/ 0, 2, 3, 7, 1, 4, 5, 6, // 1, 2, 3, 7, 0, 4, 5, 6, /**/ 0, 1, 2, 3, 7, 4, 5, 6, // 4, 7, 0, 1, 2, 3, 5, 6, /**/ 0, 4, 7, 1, 2, 3, 5, 6, // 1, 4, 7, 0, 2, 3, 5, 6, /**/ 0, 1, 4, 7, 2, 3, 5, 6, // 2, 4, 7, 0, 1, 3, 5, 6, /**/ 0, 2, 4, 7, 1, 3, 5, 6, // 1, 2, 4, 7, 0, 3, 5, 6, /**/ 0, 1, 2, 4, 7, 3, 5, 6, // 3, 4, 7, 0, 1, 2, 5, 6, /**/ 0, 3, 4, 7, 1, 2, 5, 6, // 1, 3, 4, 7, 0, 2, 5, 6, /**/ 0, 1, 3, 4, 7, 2, 5, 6, // 2, 3, 4, 7, 0, 1, 5, 6, /**/ 0, 2, 3, 4, 7, 1, 5, 6, // 1, 2, 3, 4, 7, 0, 5, 6, /**/ 0, 1, 2, 3, 4, 7, 5, 6, // 5, 7, 0, 1, 2, 3, 4, 6, /**/ 0, 5, 7, 1, 2, 3, 4, 6, // 1, 5, 7, 0, 2, 3, 4, 6, /**/ 0, 1, 5, 7, 2, 3, 4, 6, // 2, 5, 7, 0, 1, 3, 4, 6, /**/ 0, 2, 5, 7, 1, 3, 4, 6, // 1, 2, 5, 7, 0, 3, 4, 6, /**/ 0, 1, 2, 5, 7, 3, 4, 6, // 3, 5, 7, 0, 1, 2, 4, 6, /**/ 0, 3, 5, 7, 1, 2, 4, 6, // 1, 3, 5, 7, 0, 2, 4, 6, /**/ 0, 1, 3, 5, 7, 2, 4, 6, // 2, 3, 5, 7, 0, 1, 4, 6, /**/ 0, 2, 3, 5, 7, 1, 4, 6, // 1, 2, 3, 5, 7, 0, 4, 6, /**/ 0, 1, 2, 3, 5, 7, 4, 6, // 4, 5, 7, 0, 1, 2, 3, 6, /**/ 0, 4, 5, 7, 1, 2, 3, 6, // 1, 4, 5, 7, 0, 2, 3, 6, /**/ 0, 1, 4, 5, 7, 2, 3, 6, // 2, 4, 5, 7, 0, 1, 3, 6, /**/ 0, 2, 4, 5, 7, 1, 3, 6, // 1, 2, 4, 5, 7, 0, 3, 6, /**/ 0, 1, 2, 4, 5, 7, 3, 6, // 3, 4, 5, 7, 0, 1, 2, 6, /**/ 0, 3, 4, 5, 7, 1, 2, 6, // 1, 3, 4, 5, 7, 0, 2, 6, /**/ 0, 1, 3, 4, 5, 7, 2, 6, // 2, 3, 4, 5, 7, 0, 1, 6, /**/ 0, 2, 3, 4, 5, 7, 1, 6, // 1, 2, 3, 4, 5, 7, 0, 6, /**/ 0, 1, 2, 3, 4, 5, 7, 6, // 6, 7, 0, 1, 2, 3, 4, 5, /**/ 0, 6, 7, 1, 2, 3, 4, 5, // 1, 6, 7, 0, 2, 3, 4, 5, /**/ 0, 1, 6, 7, 2, 3, 4, 5, // 2, 6, 7, 0, 1, 3, 4, 5, /**/ 0, 2, 6, 7, 1, 3, 4, 5, // 1, 2, 6, 7, 0, 3, 4, 5, /**/ 0, 1, 2, 6, 7, 3, 4, 5, // 3, 6, 7, 0, 1, 2, 4, 5, /**/ 0, 3, 6, 7, 1, 2, 4, 5, // 1, 3, 6, 7, 0, 2, 4, 5, /**/ 0, 1, 3, 6, 7, 2, 4, 5, // 2, 3, 6, 7, 0, 1, 4, 5, /**/ 0, 2, 3, 6, 7, 1, 4, 5, // 1, 2, 3, 6, 7, 0, 4, 5, /**/ 0, 1, 2, 3, 6, 7, 4, 5, // 4, 6, 7, 0, 1, 2, 3, 5, /**/ 0, 4, 6, 7, 1, 2, 3, 5, // 1, 4, 6, 7, 0, 2, 3, 5, /**/ 0, 1, 4, 6, 7, 2, 3, 5, // 2, 4, 6, 7, 0, 1, 3, 5, /**/ 0, 2, 4, 6, 7, 1, 3, 5, // 1, 2, 4, 6, 7, 0, 3, 5, /**/ 0, 1, 2, 4, 6, 7, 3, 5, // 3, 4, 6, 7, 0, 1, 2, 5, /**/ 0, 3, 4, 6, 7, 1, 2, 5, // 1, 3, 4, 6, 7, 0, 2, 5, /**/ 0, 1, 3, 4, 6, 7, 2, 5, // 2, 3, 4, 6, 7, 0, 1, 5, /**/ 0, 2, 3, 4, 6, 7, 1, 5, // 1, 2, 3, 4, 6, 7, 0, 5, /**/ 0, 1, 2, 3, 4, 6, 7, 5, // 5, 6, 7, 0, 1, 2, 3, 4, /**/ 0, 5, 6, 7, 1, 2, 3, 4, // 1, 5, 6, 7, 0, 2, 3, 4, /**/ 0, 1, 5, 6, 7, 2, 3, 4, // 2, 5, 6, 7, 0, 1, 3, 4, /**/ 0, 2, 5, 6, 7, 1, 3, 4, // 1, 2, 5, 6, 7, 0, 3, 4, /**/ 0, 1, 2, 5, 6, 7, 3, 4, // 3, 5, 6, 7, 0, 1, 2, 4, /**/ 0, 3, 5, 6, 7, 1, 2, 4, // 1, 3, 5, 6, 7, 0, 2, 4, /**/ 0, 1, 3, 5, 6, 7, 2, 4, // 2, 3, 5, 6, 7, 0, 1, 4, /**/ 0, 2, 3, 5, 6, 7, 1, 4, // 1, 2, 3, 5, 6, 7, 0, 4, /**/ 0, 1, 2, 3, 5, 6, 7, 4, // 4, 5, 6, 7, 0, 1, 2, 3, /**/ 0, 4, 5, 6, 7, 1, 2, 3, // 1, 4, 5, 6, 7, 0, 2, 3, /**/ 0, 1, 4, 5, 6, 7, 2, 3, // 2, 4, 5, 6, 7, 0, 1, 3, /**/ 0, 2, 4, 5, 6, 7, 1, 3, // 1, 2, 4, 5, 6, 7, 0, 3, /**/ 0, 1, 2, 4, 5, 6, 7, 3, // 3, 4, 5, 6, 7, 0, 1, 2, /**/ 0, 3, 4, 5, 6, 7, 1, 2, // 1, 3, 4, 5, 6, 7, 0, 2, /**/ 0, 1, 3, 4, 5, 6, 7, 2, // 2, 3, 4, 5, 6, 7, 0, 1, /**/ 0, 2, 3, 4, 5, 6, 7, 1, // 1, 2, 3, 4, 5, 6, 7, 0, /**/ 0, 1, 2, 3, 4, 5, 6, 7}; for (size_t i = 0; i < Lanes(d); i += 8) { // Each byte worth of bits is the index of one of 256 8-byte ranges, and its // population count determines how far to advance the write position. const size_t bits8 = bits[i / 8]; const auto indices = Load(d8, table + bits8 * 8); const auto compressed = TableLookupBytes(LoadU(d8, lanes + i), indices); StoreU(compressed, d8, pos); pos += PopCount(bits8); } return static_cast(pos - unaligned); } template HWY_API size_t CompressStore(V v, M mask, D d, T* HWY_RESTRICT unaligned) { uint8_t bits[HWY_MAX(size_t{8}, MaxLanes(d) / 8)]; (void)StoreMaskBits(d, mask, bits); return CompressBitsStore(v, bits, d, unaligned); } template HWY_API size_t CompressBlendedStore(V v, M mask, D d, T* HWY_RESTRICT unaligned) { HWY_ALIGN T buf[MaxLanes(d)]; const size_t bytes = CompressStore(v, mask, d, buf); BlendedStore(Load(d, buf), FirstN(d, bytes), d, unaligned); return bytes; } // For reasons unknown, HWY_IF_T_SIZE_V is a compile error in SVE. template , HWY_IF_T_SIZE(T, 1)> HWY_API V Compress(V v, const M mask) { const DFromV d; HWY_ALIGN T lanes[MaxLanes(d)]; (void)CompressStore(v, mask, d, lanes); return Load(d, lanes); } template , HWY_IF_T_SIZE(T, 1)> HWY_API V CompressBits(V v, const uint8_t* HWY_RESTRICT bits) { const DFromV d; HWY_ALIGN T lanes[MaxLanes(d)]; (void)CompressBitsStore(v, bits, d, lanes); return Load(d, lanes); } template , HWY_IF_T_SIZE(T, 1)> HWY_API V CompressNot(V v, M mask) { return Compress(v, Not(mask)); } #endif // HWY_NATIVE_COMPRESS8 // ------------------------------ Expand // "Include guard": skip if native 8/16-bit Expand/LoadExpand are available. // Note that this generic implementation assumes <= 128 bit fixed vectors; // the SVE and RVV targets provide their own native implementations. #if (defined(HWY_NATIVE_EXPAND) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE #ifdef HWY_NATIVE_EXPAND #undef HWY_NATIVE_EXPAND #else #define HWY_NATIVE_EXPAND #endif namespace detail { #if HWY_IDE template HWY_INLINE uint64_t BitsFromMask(M /* mask */) { return 0; } #endif // HWY_IDE template HWY_INLINE Vec128 IndicesForExpandFromBits(uint64_t mask_bits) { static_assert(N <= 8, "Should only be called for half-vectors"); const Simd du8; HWY_DASSERT(mask_bits < 0x100); alignas(16) static constexpr uint8_t table[2048] = { // PrintExpand8x8Tables 128, 128, 128, 128, 128, 128, 128, 128, // 0, 128, 128, 128, 128, 128, 128, 128, // 128, 0, 128, 128, 128, 128, 128, 128, // 0, 1, 128, 128, 128, 128, 128, 128, // 128, 128, 0, 128, 128, 128, 128, 128, // 0, 128, 1, 128, 128, 128, 128, 128, // 128, 0, 1, 128, 128, 128, 128, 128, // 0, 1, 2, 128, 128, 128, 128, 128, // 128, 128, 128, 0, 128, 128, 128, 128, // 0, 128, 128, 1, 128, 128, 128, 128, // 128, 0, 128, 1, 128, 128, 128, 128, // 0, 1, 128, 2, 128, 128, 128, 128, // 128, 128, 0, 1, 128, 128, 128, 128, // 0, 128, 1, 2, 128, 128, 128, 128, // 128, 0, 1, 2, 128, 128, 128, 128, // 0, 1, 2, 3, 128, 128, 128, 128, // 128, 128, 128, 128, 0, 128, 128, 128, // 0, 128, 128, 128, 1, 128, 128, 128, // 128, 0, 128, 128, 1, 128, 128, 128, // 0, 1, 128, 128, 2, 128, 128, 128, // 128, 128, 0, 128, 1, 128, 128, 128, // 0, 128, 1, 128, 2, 128, 128, 128, // 128, 0, 1, 128, 2, 128, 128, 128, // 0, 1, 2, 128, 3, 128, 128, 128, // 128, 128, 128, 0, 1, 128, 128, 128, // 0, 128, 128, 1, 2, 128, 128, 128, // 128, 0, 128, 1, 2, 128, 128, 128, // 0, 1, 128, 2, 3, 128, 128, 128, // 128, 128, 0, 1, 2, 128, 128, 128, // 0, 128, 1, 2, 3, 128, 128, 128, // 128, 0, 1, 2, 3, 128, 128, 128, // 0, 1, 2, 3, 4, 128, 128, 128, // 128, 128, 128, 128, 128, 0, 128, 128, // 0, 128, 128, 128, 128, 1, 128, 128, // 128, 0, 128, 128, 128, 1, 128, 128, // 0, 1, 128, 128, 128, 2, 128, 128, // 128, 128, 0, 128, 128, 1, 128, 128, // 0, 128, 1, 128, 128, 2, 128, 128, // 128, 0, 1, 128, 128, 2, 128, 128, // 0, 1, 2, 128, 128, 3, 128, 128, // 128, 128, 128, 0, 128, 1, 128, 128, // 0, 128, 128, 1, 128, 2, 128, 128, // 128, 0, 128, 1, 128, 2, 128, 128, // 0, 1, 128, 2, 128, 3, 128, 128, // 128, 128, 0, 1, 128, 2, 128, 128, // 0, 128, 1, 2, 128, 3, 128, 128, // 128, 0, 1, 2, 128, 3, 128, 128, // 0, 1, 2, 3, 128, 4, 128, 128, // 128, 128, 128, 128, 0, 1, 128, 128, // 0, 128, 128, 128, 1, 2, 128, 128, // 128, 0, 128, 128, 1, 2, 128, 128, // 0, 1, 128, 128, 2, 3, 128, 128, // 128, 128, 0, 128, 1, 2, 128, 128, // 0, 128, 1, 128, 2, 3, 128, 128, // 128, 0, 1, 128, 2, 3, 128, 128, // 0, 1, 2, 128, 3, 4, 128, 128, // 128, 128, 128, 0, 1, 2, 128, 128, // 0, 128, 128, 1, 2, 3, 128, 128, // 128, 0, 128, 1, 2, 3, 128, 128, // 0, 1, 128, 2, 3, 4, 128, 128, // 128, 128, 0, 1, 2, 3, 128, 128, // 0, 128, 1, 2, 3, 4, 128, 128, // 128, 0, 1, 2, 3, 4, 128, 128, // 0, 1, 2, 3, 4, 5, 128, 128, // 128, 128, 128, 128, 128, 128, 0, 128, // 0, 128, 128, 128, 128, 128, 1, 128, // 128, 0, 128, 128, 128, 128, 1, 128, // 0, 1, 128, 128, 128, 128, 2, 128, // 128, 128, 0, 128, 128, 128, 1, 128, // 0, 128, 1, 128, 128, 128, 2, 128, // 128, 0, 1, 128, 128, 128, 2, 128, // 0, 1, 2, 128, 128, 128, 3, 128, // 128, 128, 128, 0, 128, 128, 1, 128, // 0, 128, 128, 1, 128, 128, 2, 128, // 128, 0, 128, 1, 128, 128, 2, 128, // 0, 1, 128, 2, 128, 128, 3, 128, // 128, 128, 0, 1, 128, 128, 2, 128, // 0, 128, 1, 2, 128, 128, 3, 128, // 128, 0, 1, 2, 128, 128, 3, 128, // 0, 1, 2, 3, 128, 128, 4, 128, // 128, 128, 128, 128, 0, 128, 1, 128, // 0, 128, 128, 128, 1, 128, 2, 128, // 128, 0, 128, 128, 1, 128, 2, 128, // 0, 1, 128, 128, 2, 128, 3, 128, // 128, 128, 0, 128, 1, 128, 2, 128, // 0, 128, 1, 128, 2, 128, 3, 128, // 128, 0, 1, 128, 2, 128, 3, 128, // 0, 1, 2, 128, 3, 128, 4, 128, // 128, 128, 128, 0, 1, 128, 2, 128, // 0, 128, 128, 1, 2, 128, 3, 128, // 128, 0, 128, 1, 2, 128, 3, 128, // 0, 1, 128, 2, 3, 128, 4, 128, // 128, 128, 0, 1, 2, 128, 3, 128, // 0, 128, 1, 2, 3, 128, 4, 128, // 128, 0, 1, 2, 3, 128, 4, 128, // 0, 1, 2, 3, 4, 128, 5, 128, // 128, 128, 128, 128, 128, 0, 1, 128, // 0, 128, 128, 128, 128, 1, 2, 128, // 128, 0, 128, 128, 128, 1, 2, 128, // 0, 1, 128, 128, 128, 2, 3, 128, // 128, 128, 0, 128, 128, 1, 2, 128, // 0, 128, 1, 128, 128, 2, 3, 128, // 128, 0, 1, 128, 128, 2, 3, 128, // 0, 1, 2, 128, 128, 3, 4, 128, // 128, 128, 128, 0, 128, 1, 2, 128, // 0, 128, 128, 1, 128, 2, 3, 128, // 128, 0, 128, 1, 128, 2, 3, 128, // 0, 1, 128, 2, 128, 3, 4, 128, // 128, 128, 0, 1, 128, 2, 3, 128, // 0, 128, 1, 2, 128, 3, 4, 128, // 128, 0, 1, 2, 128, 3, 4, 128, // 0, 1, 2, 3, 128, 4, 5, 128, // 128, 128, 128, 128, 0, 1, 2, 128, // 0, 128, 128, 128, 1, 2, 3, 128, // 128, 0, 128, 128, 1, 2, 3, 128, // 0, 1, 128, 128, 2, 3, 4, 128, // 128, 128, 0, 128, 1, 2, 3, 128, // 0, 128, 1, 128, 2, 3, 4, 128, // 128, 0, 1, 128, 2, 3, 4, 128, // 0, 1, 2, 128, 3, 4, 5, 128, // 128, 128, 128, 0, 1, 2, 3, 128, // 0, 128, 128, 1, 2, 3, 4, 128, // 128, 0, 128, 1, 2, 3, 4, 128, // 0, 1, 128, 2, 3, 4, 5, 128, // 128, 128, 0, 1, 2, 3, 4, 128, // 0, 128, 1, 2, 3, 4, 5, 128, // 128, 0, 1, 2, 3, 4, 5, 128, // 0, 1, 2, 3, 4, 5, 6, 128, // 128, 128, 128, 128, 128, 128, 128, 0, // 0, 128, 128, 128, 128, 128, 128, 1, // 128, 0, 128, 128, 128, 128, 128, 1, // 0, 1, 128, 128, 128, 128, 128, 2, // 128, 128, 0, 128, 128, 128, 128, 1, // 0, 128, 1, 128, 128, 128, 128, 2, // 128, 0, 1, 128, 128, 128, 128, 2, // 0, 1, 2, 128, 128, 128, 128, 3, // 128, 128, 128, 0, 128, 128, 128, 1, // 0, 128, 128, 1, 128, 128, 128, 2, // 128, 0, 128, 1, 128, 128, 128, 2, // 0, 1, 128, 2, 128, 128, 128, 3, // 128, 128, 0, 1, 128, 128, 128, 2, // 0, 128, 1, 2, 128, 128, 128, 3, // 128, 0, 1, 2, 128, 128, 128, 3, // 0, 1, 2, 3, 128, 128, 128, 4, // 128, 128, 128, 128, 0, 128, 128, 1, // 0, 128, 128, 128, 1, 128, 128, 2, // 128, 0, 128, 128, 1, 128, 128, 2, // 0, 1, 128, 128, 2, 128, 128, 3, // 128, 128, 0, 128, 1, 128, 128, 2, // 0, 128, 1, 128, 2, 128, 128, 3, // 128, 0, 1, 128, 2, 128, 128, 3, // 0, 1, 2, 128, 3, 128, 128, 4, // 128, 128, 128, 0, 1, 128, 128, 2, // 0, 128, 128, 1, 2, 128, 128, 3, // 128, 0, 128, 1, 2, 128, 128, 3, // 0, 1, 128, 2, 3, 128, 128, 4, // 128, 128, 0, 1, 2, 128, 128, 3, // 0, 128, 1, 2, 3, 128, 128, 4, // 128, 0, 1, 2, 3, 128, 128, 4, // 0, 1, 2, 3, 4, 128, 128, 5, // 128, 128, 128, 128, 128, 0, 128, 1, // 0, 128, 128, 128, 128, 1, 128, 2, // 128, 0, 128, 128, 128, 1, 128, 2, // 0, 1, 128, 128, 128, 2, 128, 3, // 128, 128, 0, 128, 128, 1, 128, 2, // 0, 128, 1, 128, 128, 2, 128, 3, // 128, 0, 1, 128, 128, 2, 128, 3, // 0, 1, 2, 128, 128, 3, 128, 4, // 128, 128, 128, 0, 128, 1, 128, 2, // 0, 128, 128, 1, 128, 2, 128, 3, // 128, 0, 128, 1, 128, 2, 128, 3, // 0, 1, 128, 2, 128, 3, 128, 4, // 128, 128, 0, 1, 128, 2, 128, 3, // 0, 128, 1, 2, 128, 3, 128, 4, // 128, 0, 1, 2, 128, 3, 128, 4, // 0, 1, 2, 3, 128, 4, 128, 5, // 128, 128, 128, 128, 0, 1, 128, 2, // 0, 128, 128, 128, 1, 2, 128, 3, // 128, 0, 128, 128, 1, 2, 128, 3, // 0, 1, 128, 128, 2, 3, 128, 4, // 128, 128, 0, 128, 1, 2, 128, 3, // 0, 128, 1, 128, 2, 3, 128, 4, // 128, 0, 1, 128, 2, 3, 128, 4, // 0, 1, 2, 128, 3, 4, 128, 5, // 128, 128, 128, 0, 1, 2, 128, 3, // 0, 128, 128, 1, 2, 3, 128, 4, // 128, 0, 128, 1, 2, 3, 128, 4, // 0, 1, 128, 2, 3, 4, 128, 5, // 128, 128, 0, 1, 2, 3, 128, 4, // 0, 128, 1, 2, 3, 4, 128, 5, // 128, 0, 1, 2, 3, 4, 128, 5, // 0, 1, 2, 3, 4, 5, 128, 6, // 128, 128, 128, 128, 128, 128, 0, 1, // 0, 128, 128, 128, 128, 128, 1, 2, // 128, 0, 128, 128, 128, 128, 1, 2, // 0, 1, 128, 128, 128, 128, 2, 3, // 128, 128, 0, 128, 128, 128, 1, 2, // 0, 128, 1, 128, 128, 128, 2, 3, // 128, 0, 1, 128, 128, 128, 2, 3, // 0, 1, 2, 128, 128, 128, 3, 4, // 128, 128, 128, 0, 128, 128, 1, 2, // 0, 128, 128, 1, 128, 128, 2, 3, // 128, 0, 128, 1, 128, 128, 2, 3, // 0, 1, 128, 2, 128, 128, 3, 4, // 128, 128, 0, 1, 128, 128, 2, 3, // 0, 128, 1, 2, 128, 128, 3, 4, // 128, 0, 1, 2, 128, 128, 3, 4, // 0, 1, 2, 3, 128, 128, 4, 5, // 128, 128, 128, 128, 0, 128, 1, 2, // 0, 128, 128, 128, 1, 128, 2, 3, // 128, 0, 128, 128, 1, 128, 2, 3, // 0, 1, 128, 128, 2, 128, 3, 4, // 128, 128, 0, 128, 1, 128, 2, 3, // 0, 128, 1, 128, 2, 128, 3, 4, // 128, 0, 1, 128, 2, 128, 3, 4, // 0, 1, 2, 128, 3, 128, 4, 5, // 128, 128, 128, 0, 1, 128, 2, 3, // 0, 128, 128, 1, 2, 128, 3, 4, // 128, 0, 128, 1, 2, 128, 3, 4, // 0, 1, 128, 2, 3, 128, 4, 5, // 128, 128, 0, 1, 2, 128, 3, 4, // 0, 128, 1, 2, 3, 128, 4, 5, // 128, 0, 1, 2, 3, 128, 4, 5, // 0, 1, 2, 3, 4, 128, 5, 6, // 128, 128, 128, 128, 128, 0, 1, 2, // 0, 128, 128, 128, 128, 1, 2, 3, // 128, 0, 128, 128, 128, 1, 2, 3, // 0, 1, 128, 128, 128, 2, 3, 4, // 128, 128, 0, 128, 128, 1, 2, 3, // 0, 128, 1, 128, 128, 2, 3, 4, // 128, 0, 1, 128, 128, 2, 3, 4, // 0, 1, 2, 128, 128, 3, 4, 5, // 128, 128, 128, 0, 128, 1, 2, 3, // 0, 128, 128, 1, 128, 2, 3, 4, // 128, 0, 128, 1, 128, 2, 3, 4, // 0, 1, 128, 2, 128, 3, 4, 5, // 128, 128, 0, 1, 128, 2, 3, 4, // 0, 128, 1, 2, 128, 3, 4, 5, // 128, 0, 1, 2, 128, 3, 4, 5, // 0, 1, 2, 3, 128, 4, 5, 6, // 128, 128, 128, 128, 0, 1, 2, 3, // 0, 128, 128, 128, 1, 2, 3, 4, // 128, 0, 128, 128, 1, 2, 3, 4, // 0, 1, 128, 128, 2, 3, 4, 5, // 128, 128, 0, 128, 1, 2, 3, 4, // 0, 128, 1, 128, 2, 3, 4, 5, // 128, 0, 1, 128, 2, 3, 4, 5, // 0, 1, 2, 128, 3, 4, 5, 6, // 128, 128, 128, 0, 1, 2, 3, 4, // 0, 128, 128, 1, 2, 3, 4, 5, // 128, 0, 128, 1, 2, 3, 4, 5, // 0, 1, 128, 2, 3, 4, 5, 6, // 128, 128, 0, 1, 2, 3, 4, 5, // 0, 128, 1, 2, 3, 4, 5, 6, // 128, 0, 1, 2, 3, 4, 5, 6, // 0, 1, 2, 3, 4, 5, 6, 7}; return LoadU(du8, table + mask_bits * 8); } } // namespace detail // Half vector of bytes: one table lookup template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { const DFromV d; const uint64_t mask_bits = detail::BitsFromMask(mask); const Vec128 indices = detail::IndicesForExpandFromBits(mask_bits); return BitCast(d, TableLookupBytesOr0(v, indices)); } // Full vector of bytes: two table lookups template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { const Full128 d; const RebindToUnsigned du; const Half duh; const Vec128 vu = BitCast(du, v); const uint64_t mask_bits = detail::BitsFromMask(mask); const uint64_t maskL = mask_bits & 0xFF; const uint64_t maskH = mask_bits >> 8; // We want to skip past the v bytes already consumed by idxL. There is no // instruction for shift-reg by variable bytes. Storing v itself would work // but would involve a store-load forwarding stall. We instead shuffle using // loaded indices. multishift_epi64_epi8 would also help, but if we have that, // we probably also have native 8-bit Expand. alignas(16) static constexpr uint8_t iota[32] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}; const VFromD shift = LoadU(du, iota + PopCount(maskL)); const VFromD vL = LowerHalf(duh, vu); const VFromD vH = LowerHalf(duh, TableLookupBytesOr0(vu, shift)); const VFromD idxL = detail::IndicesForExpandFromBits<8>(maskL); const VFromD idxH = detail::IndicesForExpandFromBits<8>(maskH); const VFromD expandL = TableLookupBytesOr0(vL, idxL); const VFromD expandH = TableLookupBytesOr0(vH, idxH); return BitCast(d, Combine(du, expandH, expandL)); } template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { const DFromV d; const RebindToUnsigned du; const Rebind du8; const uint64_t mask_bits = detail::BitsFromMask(mask); // Storing as 8-bit reduces table size from 4 KiB to 2 KiB. We cannot apply // the nibble trick used below because not all indices fit within one lane. alignas(16) static constexpr uint8_t table[2048] = { // PrintExpand16x8ByteTables 128, 128, 128, 128, 128, 128, 128, 128, // 0, 128, 128, 128, 128, 128, 128, 128, // 128, 0, 128, 128, 128, 128, 128, 128, // 0, 2, 128, 128, 128, 128, 128, 128, // 128, 128, 0, 128, 128, 128, 128, 128, // 0, 128, 2, 128, 128, 128, 128, 128, // 128, 0, 2, 128, 128, 128, 128, 128, // 0, 2, 4, 128, 128, 128, 128, 128, // 128, 128, 128, 0, 128, 128, 128, 128, // 0, 128, 128, 2, 128, 128, 128, 128, // 128, 0, 128, 2, 128, 128, 128, 128, // 0, 2, 128, 4, 128, 128, 128, 128, // 128, 128, 0, 2, 128, 128, 128, 128, // 0, 128, 2, 4, 128, 128, 128, 128, // 128, 0, 2, 4, 128, 128, 128, 128, // 0, 2, 4, 6, 128, 128, 128, 128, // 128, 128, 128, 128, 0, 128, 128, 128, // 0, 128, 128, 128, 2, 128, 128, 128, // 128, 0, 128, 128, 2, 128, 128, 128, // 0, 2, 128, 128, 4, 128, 128, 128, // 128, 128, 0, 128, 2, 128, 128, 128, // 0, 128, 2, 128, 4, 128, 128, 128, // 128, 0, 2, 128, 4, 128, 128, 128, // 0, 2, 4, 128, 6, 128, 128, 128, // 128, 128, 128, 0, 2, 128, 128, 128, // 0, 128, 128, 2, 4, 128, 128, 128, // 128, 0, 128, 2, 4, 128, 128, 128, // 0, 2, 128, 4, 6, 128, 128, 128, // 128, 128, 0, 2, 4, 128, 128, 128, // 0, 128, 2, 4, 6, 128, 128, 128, // 128, 0, 2, 4, 6, 128, 128, 128, // 0, 2, 4, 6, 8, 128, 128, 128, // 128, 128, 128, 128, 128, 0, 128, 128, // 0, 128, 128, 128, 128, 2, 128, 128, // 128, 0, 128, 128, 128, 2, 128, 128, // 0, 2, 128, 128, 128, 4, 128, 128, // 128, 128, 0, 128, 128, 2, 128, 128, // 0, 128, 2, 128, 128, 4, 128, 128, // 128, 0, 2, 128, 128, 4, 128, 128, // 0, 2, 4, 128, 128, 6, 128, 128, // 128, 128, 128, 0, 128, 2, 128, 128, // 0, 128, 128, 2, 128, 4, 128, 128, // 128, 0, 128, 2, 128, 4, 128, 128, // 0, 2, 128, 4, 128, 6, 128, 128, // 128, 128, 0, 2, 128, 4, 128, 128, // 0, 128, 2, 4, 128, 6, 128, 128, // 128, 0, 2, 4, 128, 6, 128, 128, // 0, 2, 4, 6, 128, 8, 128, 128, // 128, 128, 128, 128, 0, 2, 128, 128, // 0, 128, 128, 128, 2, 4, 128, 128, // 128, 0, 128, 128, 2, 4, 128, 128, // 0, 2, 128, 128, 4, 6, 128, 128, // 128, 128, 0, 128, 2, 4, 128, 128, // 0, 128, 2, 128, 4, 6, 128, 128, // 128, 0, 2, 128, 4, 6, 128, 128, // 0, 2, 4, 128, 6, 8, 128, 128, // 128, 128, 128, 0, 2, 4, 128, 128, // 0, 128, 128, 2, 4, 6, 128, 128, // 128, 0, 128, 2, 4, 6, 128, 128, // 0, 2, 128, 4, 6, 8, 128, 128, // 128, 128, 0, 2, 4, 6, 128, 128, // 0, 128, 2, 4, 6, 8, 128, 128, // 128, 0, 2, 4, 6, 8, 128, 128, // 0, 2, 4, 6, 8, 10, 128, 128, // 128, 128, 128, 128, 128, 128, 0, 128, // 0, 128, 128, 128, 128, 128, 2, 128, // 128, 0, 128, 128, 128, 128, 2, 128, // 0, 2, 128, 128, 128, 128, 4, 128, // 128, 128, 0, 128, 128, 128, 2, 128, // 0, 128, 2, 128, 128, 128, 4, 128, // 128, 0, 2, 128, 128, 128, 4, 128, // 0, 2, 4, 128, 128, 128, 6, 128, // 128, 128, 128, 0, 128, 128, 2, 128, // 0, 128, 128, 2, 128, 128, 4, 128, // 128, 0, 128, 2, 128, 128, 4, 128, // 0, 2, 128, 4, 128, 128, 6, 128, // 128, 128, 0, 2, 128, 128, 4, 128, // 0, 128, 2, 4, 128, 128, 6, 128, // 128, 0, 2, 4, 128, 128, 6, 128, // 0, 2, 4, 6, 128, 128, 8, 128, // 128, 128, 128, 128, 0, 128, 2, 128, // 0, 128, 128, 128, 2, 128, 4, 128, // 128, 0, 128, 128, 2, 128, 4, 128, // 0, 2, 128, 128, 4, 128, 6, 128, // 128, 128, 0, 128, 2, 128, 4, 128, // 0, 128, 2, 128, 4, 128, 6, 128, // 128, 0, 2, 128, 4, 128, 6, 128, // 0, 2, 4, 128, 6, 128, 8, 128, // 128, 128, 128, 0, 2, 128, 4, 128, // 0, 128, 128, 2, 4, 128, 6, 128, // 128, 0, 128, 2, 4, 128, 6, 128, // 0, 2, 128, 4, 6, 128, 8, 128, // 128, 128, 0, 2, 4, 128, 6, 128, // 0, 128, 2, 4, 6, 128, 8, 128, // 128, 0, 2, 4, 6, 128, 8, 128, // 0, 2, 4, 6, 8, 128, 10, 128, // 128, 128, 128, 128, 128, 0, 2, 128, // 0, 128, 128, 128, 128, 2, 4, 128, // 128, 0, 128, 128, 128, 2, 4, 128, // 0, 2, 128, 128, 128, 4, 6, 128, // 128, 128, 0, 128, 128, 2, 4, 128, // 0, 128, 2, 128, 128, 4, 6, 128, // 128, 0, 2, 128, 128, 4, 6, 128, // 0, 2, 4, 128, 128, 6, 8, 128, // 128, 128, 128, 0, 128, 2, 4, 128, // 0, 128, 128, 2, 128, 4, 6, 128, // 128, 0, 128, 2, 128, 4, 6, 128, // 0, 2, 128, 4, 128, 6, 8, 128, // 128, 128, 0, 2, 128, 4, 6, 128, // 0, 128, 2, 4, 128, 6, 8, 128, // 128, 0, 2, 4, 128, 6, 8, 128, // 0, 2, 4, 6, 128, 8, 10, 128, // 128, 128, 128, 128, 0, 2, 4, 128, // 0, 128, 128, 128, 2, 4, 6, 128, // 128, 0, 128, 128, 2, 4, 6, 128, // 0, 2, 128, 128, 4, 6, 8, 128, // 128, 128, 0, 128, 2, 4, 6, 128, // 0, 128, 2, 128, 4, 6, 8, 128, // 128, 0, 2, 128, 4, 6, 8, 128, // 0, 2, 4, 128, 6, 8, 10, 128, // 128, 128, 128, 0, 2, 4, 6, 128, // 0, 128, 128, 2, 4, 6, 8, 128, // 128, 0, 128, 2, 4, 6, 8, 128, // 0, 2, 128, 4, 6, 8, 10, 128, // 128, 128, 0, 2, 4, 6, 8, 128, // 0, 128, 2, 4, 6, 8, 10, 128, // 128, 0, 2, 4, 6, 8, 10, 128, // 0, 2, 4, 6, 8, 10, 12, 128, // 128, 128, 128, 128, 128, 128, 128, 0, // 0, 128, 128, 128, 128, 128, 128, 2, // 128, 0, 128, 128, 128, 128, 128, 2, // 0, 2, 128, 128, 128, 128, 128, 4, // 128, 128, 0, 128, 128, 128, 128, 2, // 0, 128, 2, 128, 128, 128, 128, 4, // 128, 0, 2, 128, 128, 128, 128, 4, // 0, 2, 4, 128, 128, 128, 128, 6, // 128, 128, 128, 0, 128, 128, 128, 2, // 0, 128, 128, 2, 128, 128, 128, 4, // 128, 0, 128, 2, 128, 128, 128, 4, // 0, 2, 128, 4, 128, 128, 128, 6, // 128, 128, 0, 2, 128, 128, 128, 4, // 0, 128, 2, 4, 128, 128, 128, 6, // 128, 0, 2, 4, 128, 128, 128, 6, // 0, 2, 4, 6, 128, 128, 128, 8, // 128, 128, 128, 128, 0, 128, 128, 2, // 0, 128, 128, 128, 2, 128, 128, 4, // 128, 0, 128, 128, 2, 128, 128, 4, // 0, 2, 128, 128, 4, 128, 128, 6, // 128, 128, 0, 128, 2, 128, 128, 4, // 0, 128, 2, 128, 4, 128, 128, 6, // 128, 0, 2, 128, 4, 128, 128, 6, // 0, 2, 4, 128, 6, 128, 128, 8, // 128, 128, 128, 0, 2, 128, 128, 4, // 0, 128, 128, 2, 4, 128, 128, 6, // 128, 0, 128, 2, 4, 128, 128, 6, // 0, 2, 128, 4, 6, 128, 128, 8, // 128, 128, 0, 2, 4, 128, 128, 6, // 0, 128, 2, 4, 6, 128, 128, 8, // 128, 0, 2, 4, 6, 128, 128, 8, // 0, 2, 4, 6, 8, 128, 128, 10, // 128, 128, 128, 128, 128, 0, 128, 2, // 0, 128, 128, 128, 128, 2, 128, 4, // 128, 0, 128, 128, 128, 2, 128, 4, // 0, 2, 128, 128, 128, 4, 128, 6, // 128, 128, 0, 128, 128, 2, 128, 4, // 0, 128, 2, 128, 128, 4, 128, 6, // 128, 0, 2, 128, 128, 4, 128, 6, // 0, 2, 4, 128, 128, 6, 128, 8, // 128, 128, 128, 0, 128, 2, 128, 4, // 0, 128, 128, 2, 128, 4, 128, 6, // 128, 0, 128, 2, 128, 4, 128, 6, // 0, 2, 128, 4, 128, 6, 128, 8, // 128, 128, 0, 2, 128, 4, 128, 6, // 0, 128, 2, 4, 128, 6, 128, 8, // 128, 0, 2, 4, 128, 6, 128, 8, // 0, 2, 4, 6, 128, 8, 128, 10, // 128, 128, 128, 128, 0, 2, 128, 4, // 0, 128, 128, 128, 2, 4, 128, 6, // 128, 0, 128, 128, 2, 4, 128, 6, // 0, 2, 128, 128, 4, 6, 128, 8, // 128, 128, 0, 128, 2, 4, 128, 6, // 0, 128, 2, 128, 4, 6, 128, 8, // 128, 0, 2, 128, 4, 6, 128, 8, // 0, 2, 4, 128, 6, 8, 128, 10, // 128, 128, 128, 0, 2, 4, 128, 6, // 0, 128, 128, 2, 4, 6, 128, 8, // 128, 0, 128, 2, 4, 6, 128, 8, // 0, 2, 128, 4, 6, 8, 128, 10, // 128, 128, 0, 2, 4, 6, 128, 8, // 0, 128, 2, 4, 6, 8, 128, 10, // 128, 0, 2, 4, 6, 8, 128, 10, // 0, 2, 4, 6, 8, 10, 128, 12, // 128, 128, 128, 128, 128, 128, 0, 2, // 0, 128, 128, 128, 128, 128, 2, 4, // 128, 0, 128, 128, 128, 128, 2, 4, // 0, 2, 128, 128, 128, 128, 4, 6, // 128, 128, 0, 128, 128, 128, 2, 4, // 0, 128, 2, 128, 128, 128, 4, 6, // 128, 0, 2, 128, 128, 128, 4, 6, // 0, 2, 4, 128, 128, 128, 6, 8, // 128, 128, 128, 0, 128, 128, 2, 4, // 0, 128, 128, 2, 128, 128, 4, 6, // 128, 0, 128, 2, 128, 128, 4, 6, // 0, 2, 128, 4, 128, 128, 6, 8, // 128, 128, 0, 2, 128, 128, 4, 6, // 0, 128, 2, 4, 128, 128, 6, 8, // 128, 0, 2, 4, 128, 128, 6, 8, // 0, 2, 4, 6, 128, 128, 8, 10, // 128, 128, 128, 128, 0, 128, 2, 4, // 0, 128, 128, 128, 2, 128, 4, 6, // 128, 0, 128, 128, 2, 128, 4, 6, // 0, 2, 128, 128, 4, 128, 6, 8, // 128, 128, 0, 128, 2, 128, 4, 6, // 0, 128, 2, 128, 4, 128, 6, 8, // 128, 0, 2, 128, 4, 128, 6, 8, // 0, 2, 4, 128, 6, 128, 8, 10, // 128, 128, 128, 0, 2, 128, 4, 6, // 0, 128, 128, 2, 4, 128, 6, 8, // 128, 0, 128, 2, 4, 128, 6, 8, // 0, 2, 128, 4, 6, 128, 8, 10, // 128, 128, 0, 2, 4, 128, 6, 8, // 0, 128, 2, 4, 6, 128, 8, 10, // 128, 0, 2, 4, 6, 128, 8, 10, // 0, 2, 4, 6, 8, 128, 10, 12, // 128, 128, 128, 128, 128, 0, 2, 4, // 0, 128, 128, 128, 128, 2, 4, 6, // 128, 0, 128, 128, 128, 2, 4, 6, // 0, 2, 128, 128, 128, 4, 6, 8, // 128, 128, 0, 128, 128, 2, 4, 6, // 0, 128, 2, 128, 128, 4, 6, 8, // 128, 0, 2, 128, 128, 4, 6, 8, // 0, 2, 4, 128, 128, 6, 8, 10, // 128, 128, 128, 0, 128, 2, 4, 6, // 0, 128, 128, 2, 128, 4, 6, 8, // 128, 0, 128, 2, 128, 4, 6, 8, // 0, 2, 128, 4, 128, 6, 8, 10, // 128, 128, 0, 2, 128, 4, 6, 8, // 0, 128, 2, 4, 128, 6, 8, 10, // 128, 0, 2, 4, 128, 6, 8, 10, // 0, 2, 4, 6, 128, 8, 10, 12, // 128, 128, 128, 128, 0, 2, 4, 6, // 0, 128, 128, 128, 2, 4, 6, 8, // 128, 0, 128, 128, 2, 4, 6, 8, // 0, 2, 128, 128, 4, 6, 8, 10, // 128, 128, 0, 128, 2, 4, 6, 8, // 0, 128, 2, 128, 4, 6, 8, 10, // 128, 0, 2, 128, 4, 6, 8, 10, // 0, 2, 4, 128, 6, 8, 10, 12, // 128, 128, 128, 0, 2, 4, 6, 8, // 0, 128, 128, 2, 4, 6, 8, 10, // 128, 0, 128, 2, 4, 6, 8, 10, // 0, 2, 128, 4, 6, 8, 10, 12, // 128, 128, 0, 2, 4, 6, 8, 10, // 0, 128, 2, 4, 6, 8, 10, 12, // 128, 0, 2, 4, 6, 8, 10, 12, // 0, 2, 4, 6, 8, 10, 12, 14}; // Extend to double length because InterleaveLower will only use the (valid) // lower half, and we want N u16. const Twice du8x2; const Vec128 indices8 = ZeroExtendVector(du8x2, Load(du8, table + mask_bits * 8)); const Vec128 indices16 = BitCast(du, InterleaveLower(du8x2, indices8, indices8)); // TableLookupBytesOr0 operates on bytes. To convert u16 lane indices to byte // indices, add 0 to even and 1 to odd byte lanes. const Vec128 byte_indices = Add(indices16, Set(du, 0x0100)); return BitCast(d, TableLookupBytesOr0(v, byte_indices)); } template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { const DFromV d; const RebindToUnsigned du; const uint64_t mask_bits = detail::BitsFromMask(mask); alignas(16) static constexpr uint32_t packed_array[16] = { // PrintExpand64x4Nibble - same for 32x4. 0x0000ffff, 0x0000fff0, 0x0000ff0f, 0x0000ff10, 0x0000f0ff, 0x0000f1f0, 0x0000f10f, 0x0000f210, 0x00000fff, 0x00001ff0, 0x00001f0f, 0x00002f10, 0x000010ff, 0x000021f0, 0x0000210f, 0x00003210}; // For lane i, shift the i-th 4-bit index down to bits [0, 2). const Vec128 packed = Set(du, packed_array[mask_bits]); alignas(16) static constexpr uint32_t shifts[4] = {0, 4, 8, 12}; Vec128 indices = packed >> Load(du, shifts); // AVX2 _mm256_permutexvar_epi32 will ignore upper bits, but IndicesFromVec // checks bounds, so clear the upper bits. indices = And(indices, Set(du, N - 1)); const Vec128 expand = TableLookupLanes(BitCast(du, v), IndicesFromVec(du, indices)); // TableLookupLanes cannot also zero masked-off lanes, so do that now. return IfThenElseZero(mask, BitCast(d, expand)); } template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { // Same as Compress, just zero out the mask=false lanes. return IfThenElseZero(mask, Compress(v, mask)); } // For single-element vectors, this is at least as fast as native. template HWY_API Vec128 Expand(Vec128 v, Mask128 mask) { return IfThenElseZero(mask, v); } // ------------------------------ LoadExpand template HWY_API VFromD LoadExpand(MFromD mask, D d, const TFromD* HWY_RESTRICT unaligned) { return Expand(LoadU(d, unaligned), mask); } #endif // HWY_NATIVE_EXPAND // ------------------------------ TwoTablesLookupLanes template using IndicesFromD = decltype(IndicesFromVec(D(), Zero(RebindToUnsigned()))); // RVV/SVE have their own implementations of // TwoTablesLookupLanes(D d, VFromD a, VFromD b, IndicesFromD idx) #if HWY_TARGET != HWY_RVV && HWY_TARGET != HWY_SVE && \ HWY_TARGET != HWY_SVE2 && HWY_TARGET != HWY_SVE_256 && \ HWY_TARGET != HWY_SVE2_128 template HWY_API VFromD TwoTablesLookupLanes(D /*d*/, VFromD a, VFromD b, IndicesFromD idx) { return TwoTablesLookupLanes(a, b, idx); } #endif // ------------------------------ Reverse2, Reverse4, Reverse8 (8-bit) #if (defined(HWY_NATIVE_REVERSE2_8) == defined(HWY_TARGET_TOGGLE)) || HWY_IDE #ifdef HWY_NATIVE_REVERSE2_8 #undef HWY_NATIVE_REVERSE2_8 #else #define HWY_NATIVE_REVERSE2_8 #endif #undef HWY_PREFER_ROTATE // Platforms on which RotateRight is likely faster than TableLookupBytes. // RVV and SVE anyway have their own implementation of this. #if HWY_TARGET == HWY_SSE2 || HWY_TARGET <= HWY_AVX3 || \ HWY_TARGET == HWY_WASM || HWY_TARGET == HWY_PPC8 #define HWY_PREFER_ROTATE 1 #else #define HWY_PREFER_ROTATE 0 #endif template HWY_API VFromD Reverse2(D d, VFromD v) { // Exclude AVX3 because its 16-bit RotateRight is actually 3 instructions. #if HWY_PREFER_ROTATE && HWY_TARGET > HWY_AVX3 const Repartition du16; return BitCast(d, RotateRight<8>(BitCast(du16, v))); #else alignas(16) static constexpr TFromD kShuffle[16] = { 1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14}; return TableLookupBytes(v, LoadDup128(d, kShuffle)); #endif } template HWY_API VFromD Reverse4(D d, VFromD v) { #if HWY_PREFER_ROTATE const Repartition du16; return BitCast(d, Reverse2(du16, BitCast(du16, Reverse2(d, v)))); #else alignas(16) static constexpr uint8_t kShuffle[16] = { 3, 2, 1, 0, 7, 6, 5, 4, 11, 10, 9, 8, 15, 14, 13, 12}; const Repartition du8; return TableLookupBytes(v, BitCast(d, LoadDup128(du8, kShuffle))); #endif } template HWY_API VFromD Reverse8(D d, VFromD v) { #if HWY_PREFER_ROTATE const Repartition du32; return BitCast(d, Reverse2(du32, BitCast(du32, Reverse4(d, v)))); #else alignas(16) static constexpr uint8_t kShuffle[16] = { 7, 6, 5, 4, 3, 2, 1, 0, 15, 14, 13, 12, 11, 10, 9, 8}; const Repartition du8; return TableLookupBytes(v, BitCast(d, LoadDup128(du8, kShuffle))); #endif } #endif // HWY_NATIVE_REVERSE2_8 // ------------------------------ ReverseLaneBytes #if (defined(HWY_NATIVE_REVERSE_LANE_BYTES) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_REVERSE_LANE_BYTES #undef HWY_NATIVE_REVERSE_LANE_BYTES #else #define HWY_NATIVE_REVERSE_LANE_BYTES #endif template HWY_API V ReverseLaneBytes(V v) { const DFromV d; const Repartition du8; return BitCast(d, Reverse2(du8, BitCast(du8, v))); } template HWY_API V ReverseLaneBytes(V v) { const DFromV d; const Repartition du8; return BitCast(d, Reverse4(du8, BitCast(du8, v))); } template HWY_API V ReverseLaneBytes(V v) { const DFromV d; const Repartition du8; return BitCast(d, Reverse8(du8, BitCast(du8, v))); } #endif // HWY_NATIVE_REVERSE_LANE_BYTES // ------------------------------ ReverseBits // On these targets, we emulate 8-bit shifts using 16-bit shifts and therefore // require at least two lanes to BitCast to 16-bit. We avoid Highway's 8-bit // shifts because those would add extra masking already taken care of by // UI8ReverseBitsStep. Note that AVX3_DL/AVX3_ZEN4 support GFNI and use it to // implement ReverseBits, so this code is not used there. #undef HWY_REVERSE_BITS_MIN_BYTES #if ((HWY_TARGET >= HWY_AVX3 && HWY_TARGET <= HWY_SSE2) || \ HWY_TARGET == HWY_WASM || HWY_TARGET == HWY_WASM_EMU256) #define HWY_REVERSE_BITS_MIN_BYTES 2 #else #define HWY_REVERSE_BITS_MIN_BYTES 1 #endif #if (defined(HWY_NATIVE_REVERSE_BITS_UI8) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_REVERSE_BITS_UI8 #undef HWY_NATIVE_REVERSE_BITS_UI8 #else #define HWY_NATIVE_REVERSE_BITS_UI8 #endif namespace detail { template , HWY_REVERSE_BITS_MIN_BYTES - 1)> HWY_INLINE V UI8ReverseBitsStep(V v) { const DFromV d; const RebindToUnsigned du; #if HWY_REVERSE_BITS_MIN_BYTES == 2 const Repartition d_shift; #else const RebindToUnsigned d_shift; #endif const auto v_to_shift = BitCast(d_shift, v); const auto shl_result = BitCast(d, ShiftLeft(v_to_shift)); const auto shr_result = BitCast(d, ShiftRight(v_to_shift)); const auto shr_result_mask = BitCast(d, Set(du, static_cast(kShrResultMask))); return Or(And(shr_result, shr_result_mask), AndNot(shr_result_mask, shl_result)); } #if HWY_REVERSE_BITS_MIN_BYTES == 2 template , 1)> HWY_INLINE V UI8ReverseBitsStep(V v) { return V{UI8ReverseBitsStep(Vec128{v.raw}) .raw}; } #endif } // namespace detail template HWY_API V ReverseBits(V v) { auto result = detail::UI8ReverseBitsStep<1, 0x55>(v); result = detail::UI8ReverseBitsStep<2, 0x33>(result); result = detail::UI8ReverseBitsStep<4, 0x0F>(result); return result; } #endif // HWY_NATIVE_REVERSE_BITS_UI8 #if (defined(HWY_NATIVE_REVERSE_BITS_UI16_32_64) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_REVERSE_BITS_UI16_32_64 #undef HWY_NATIVE_REVERSE_BITS_UI16_32_64 #else #define HWY_NATIVE_REVERSE_BITS_UI16_32_64 #endif template HWY_API V ReverseBits(V v) { const DFromV d; const Repartition du8; return ReverseLaneBytes(BitCast(d, ReverseBits(BitCast(du8, v)))); } #endif // HWY_NATIVE_REVERSE_BITS_UI16_32_64 // ================================================== Operator wrapper // SVE* and RVV currently cannot define operators and have already defined // (only) the corresponding functions such as Add. #if (defined(HWY_NATIVE_OPERATOR_REPLACEMENTS) == defined(HWY_TARGET_TOGGLE)) #ifdef HWY_NATIVE_OPERATOR_REPLACEMENTS #undef HWY_NATIVE_OPERATOR_REPLACEMENTS #else #define HWY_NATIVE_OPERATOR_REPLACEMENTS #endif template HWY_API V Add(V a, V b) { return a + b; } template HWY_API V Sub(V a, V b) { return a - b; } template HWY_API V Mul(V a, V b) { return a * b; } template HWY_API V Div(V a, V b) { return a / b; } template V Shl(V a, V b) { return a << b; } template V Shr(V a, V b) { return a >> b; } template HWY_API auto Eq(V a, V b) -> decltype(a == b) { return a == b; } template HWY_API auto Ne(V a, V b) -> decltype(a == b) { return a != b; } template HWY_API auto Lt(V a, V b) -> decltype(a == b) { return a < b; } template HWY_API auto Gt(V a, V b) -> decltype(a == b) { return a > b; } template HWY_API auto Ge(V a, V b) -> decltype(a == b) { return a >= b; } template HWY_API auto Le(V a, V b) -> decltype(a == b) { return a <= b; } #endif // HWY_NATIVE_OPERATOR_REPLACEMENTS // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace hwy HWY_AFTER_NAMESPACE();