// Copyright 2019 Google LLC // SPDX-License-Identifier: Apache-2.0 // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #undef HWY_TARGET_INCLUDE #define HWY_TARGET_INCLUDE "tests/arithmetic_test.cc" #include "hwy/foreach_target.h" // IWYU pragma: keep #include "hwy/highway.h" #include "hwy/tests/test_util-inl.h" HWY_BEFORE_NAMESPACE(); namespace hwy { namespace HWY_NAMESPACE { struct TestPlusMinus { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v2 = Iota(d, T{2}); const auto v3 = Iota(d, T{3}); const auto v4 = Iota(d, T{4}); const size_t N = Lanes(d); auto lanes = AllocateAligned(N); HWY_ASSERT(lanes); for (size_t i = 0; i < N; ++i) { lanes[i] = static_cast((2 + i) + (3 + i)); } HWY_ASSERT_VEC_EQ(d, lanes.get(), Add(v2, v3)); HWY_ASSERT_VEC_EQ(d, Set(d, T{2}), Sub(v4, v2)); for (size_t i = 0; i < N; ++i) { lanes[i] = static_cast((2 + i) + (4 + i)); } auto sum = v2; sum = Add(sum, v4); // sum == 6,8.. HWY_ASSERT_VEC_EQ(d, Load(d, lanes.get()), sum); sum = Sub(sum, v4); HWY_ASSERT_VEC_EQ(d, v2, sum); } }; struct TestPlusMinusOverflow { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Iota(d, T(1)); const auto vMax = Iota(d, LimitsMax()); const auto vMin = Iota(d, LimitsMin()); // Check that no UB triggered. // "assert" here is formal - to avoid compiler dropping calculations HWY_ASSERT_VEC_EQ(d, Add(v1, vMax), Add(vMax, v1)); HWY_ASSERT_VEC_EQ(d, Add(vMax, vMax), Add(vMax, vMax)); HWY_ASSERT_VEC_EQ(d, Sub(vMin, v1), Sub(vMin, v1)); HWY_ASSERT_VEC_EQ(d, Sub(vMin, vMax), Sub(vMin, vMax)); } }; HWY_NOINLINE void TestAllPlusMinus() { ForAllTypes(ForPartialVectors()); ForIntegerTypes(ForPartialVectors()); } struct TestUnsignedSaturatingArithmetic { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vi = Iota(d, T{1}); const auto vm = Set(d, LimitsMax()); HWY_ASSERT_VEC_EQ(d, Add(v0, v0), SaturatedAdd(v0, v0)); HWY_ASSERT_VEC_EQ(d, Add(v0, vi), SaturatedAdd(v0, vi)); HWY_ASSERT_VEC_EQ(d, Add(v0, vm), SaturatedAdd(v0, vm)); HWY_ASSERT_VEC_EQ(d, vm, SaturatedAdd(vi, vm)); HWY_ASSERT_VEC_EQ(d, vm, SaturatedAdd(vm, vm)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, v0)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, vi)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(vi, vi)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(vi, vm)); HWY_ASSERT_VEC_EQ(d, Sub(vm, vi), SaturatedSub(vm, vi)); } }; struct TestSignedSaturatingArithmetic { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vpm = Set(d, LimitsMax()); // Ensure all lanes are positive, even if Iota wraps around const auto vi = Or(And(Iota(d, 0), vpm), Set(d, T{1})); const auto vn = Sub(v0, vi); const auto vnm = Set(d, LimitsMin()); HWY_ASSERT_MASK_EQ(d, MaskTrue(d), Gt(vi, v0)); HWY_ASSERT_MASK_EQ(d, MaskTrue(d), Lt(vn, v0)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedAdd(v0, v0)); HWY_ASSERT_VEC_EQ(d, vi, SaturatedAdd(v0, vi)); HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(v0, vpm)); HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(vi, vpm)); HWY_ASSERT_VEC_EQ(d, vpm, SaturatedAdd(vpm, vpm)); HWY_ASSERT_VEC_EQ(d, v0, SaturatedSub(v0, v0)); HWY_ASSERT_VEC_EQ(d, Sub(v0, vi), SaturatedSub(v0, vi)); HWY_ASSERT_VEC_EQ(d, vn, SaturatedSub(vn, v0)); HWY_ASSERT_VEC_EQ(d, vnm, SaturatedSub(vnm, vi)); HWY_ASSERT_VEC_EQ(d, vnm, SaturatedSub(vnm, vpm)); } }; struct TestSaturatingArithmeticOverflow { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Iota(d, T(1)); const auto vMax = Iota(d, LimitsMax()); const auto vMin = Iota(d, LimitsMin()); // Check that no UB triggered. // "assert" here is formal - to avoid compiler dropping calculations HWY_ASSERT_VEC_EQ(d, SaturatedAdd(v1, vMax), SaturatedAdd(vMax, v1)); HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMax, vMax), SaturatedAdd(vMax, vMax)); HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMin, vMax), SaturatedAdd(vMin, vMax)); HWY_ASSERT_VEC_EQ(d, SaturatedAdd(vMin, vMin), SaturatedAdd(vMin, vMin)); HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, v1), SaturatedSub(vMin, v1)); HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, vMax), SaturatedSub(vMin, vMax)); HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMax, vMin), SaturatedSub(vMax, vMin)); HWY_ASSERT_VEC_EQ(d, SaturatedSub(vMin, vMin), SaturatedSub(vMin, vMin)); } }; HWY_NOINLINE void TestAllSaturatingArithmetic() { ForUnsignedTypes(ForPartialVectors()); ForSignedTypes(ForPartialVectors()); ForIntegerTypes(ForPartialVectors()); } struct TestAverage { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto v1 = Set(d, T{1}); const auto v2 = Set(d, T{2}); HWY_ASSERT_VEC_EQ(d, v0, AverageRound(v0, v0)); HWY_ASSERT_VEC_EQ(d, v1, AverageRound(v0, v1)); HWY_ASSERT_VEC_EQ(d, v1, AverageRound(v1, v1)); HWY_ASSERT_VEC_EQ(d, v2, AverageRound(v1, v2)); HWY_ASSERT_VEC_EQ(d, v2, AverageRound(v2, v2)); } }; HWY_NOINLINE void TestAllAverage() { const ForPartialVectors test; test(uint8_t()); test(uint16_t()); } struct TestAbs { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vp1 = Set(d, T{1}); const auto vn1 = Set(d, T{-1}); const auto vpm = Set(d, LimitsMax()); const auto vnm = Set(d, LimitsMin()); HWY_ASSERT_VEC_EQ(d, v0, Abs(v0)); HWY_ASSERT_VEC_EQ(d, vp1, Abs(vp1)); HWY_ASSERT_VEC_EQ(d, vp1, Abs(vn1)); HWY_ASSERT_VEC_EQ(d, vpm, Abs(vpm)); HWY_ASSERT_VEC_EQ(d, vnm, Abs(vnm)); } }; struct TestFloatAbs { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vp1 = Set(d, T{1}); const auto vn1 = Set(d, T{-1}); const auto vp2 = Set(d, static_cast(0.01)); const auto vn2 = Set(d, static_cast(-0.01)); HWY_ASSERT_VEC_EQ(d, v0, Abs(v0)); HWY_ASSERT_VEC_EQ(d, vp1, Abs(vp1)); HWY_ASSERT_VEC_EQ(d, vp1, Abs(vn1)); HWY_ASSERT_VEC_EQ(d, vp2, Abs(vp2)); HWY_ASSERT_VEC_EQ(d, vp2, Abs(vn2)); } }; HWY_NOINLINE void TestAllAbs() { ForSignedTypes(ForPartialVectors()); ForFloatTypes(ForPartialVectors()); } struct TestNeg { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); const auto vn = Set(d, T{-3}); const auto vp = Set(d, T{3}); HWY_ASSERT_VEC_EQ(d, v0, Neg(v0)); HWY_ASSERT_VEC_EQ(d, vp, Neg(vn)); HWY_ASSERT_VEC_EQ(d, vn, Neg(vp)); } }; struct TestNegOverflow { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto vn = Set(d, LimitsMin()); const auto vp = Set(d, LimitsMax()); HWY_ASSERT_VEC_EQ(d, Neg(vn), Neg(vn)); HWY_ASSERT_VEC_EQ(d, Neg(vp), Neg(vp)); } }; HWY_NOINLINE void TestAllNeg() { ForSignedTypes(ForPartialVectors()); ForFloatTypes(ForPartialVectors()); ForSignedTypes(ForPartialVectors()); } struct TestUnsignedMinMax { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v0 = Zero(d); // Leave headroom such that v1 < v2 even after wraparound. const auto mod = And(Iota(d, 0), Set(d, LimitsMax() >> 1)); const auto v1 = Add(mod, Set(d, T{1})); const auto v2 = Add(mod, Set(d, T{2})); HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2)); HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2)); HWY_ASSERT_VEC_EQ(d, v0, Min(v1, v0)); HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v0)); const auto vmin = Set(d, LimitsMin()); const auto vmax = Set(d, LimitsMax()); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin)); } }; struct TestSignedMinMax { template HWY_NOINLINE void operator()(T /*unused*/, D d) { // Leave headroom such that v1 < v2 even after wraparound. const auto mod = And(Iota(d, 0), Set(d, static_cast(LimitsMax() >> 1))); const auto v1 = Add(mod, Set(d, T{1})); const auto v2 = Add(mod, Set(d, T{2})); const auto v_neg = Sub(Zero(d), v1); HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2)); HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2)); HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg)); HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg)); const auto v0 = Zero(d); const auto vmin = Set(d, LimitsMin()); const auto vmax = Set(d, LimitsMax()); HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0)); HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin)); HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin)); } }; struct TestFloatMinMax { template HWY_NOINLINE void operator()(T /*unused*/, D d) { const auto v1 = Iota(d, 1); const auto v2 = Iota(d, 2); const auto v_neg = Iota(d, -T(Lanes(d))); HWY_ASSERT_VEC_EQ(d, v1, Min(v1, v2)); HWY_ASSERT_VEC_EQ(d, v2, Max(v1, v2)); HWY_ASSERT_VEC_EQ(d, v_neg, Min(v1, v_neg)); HWY_ASSERT_VEC_EQ(d, v1, Max(v1, v_neg)); const auto v0 = Zero(d); const auto vmin = Set(d, static_cast(-1E30)); const auto vmax = Set(d, static_cast(1E30)); HWY_ASSERT_VEC_EQ(d, vmin, Min(v0, vmin)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, v0)); HWY_ASSERT_VEC_EQ(d, v0, Max(v0, vmin)); HWY_ASSERT_VEC_EQ(d, v0, Max(vmin, v0)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmin, Min(vmax, vmin)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmin, vmax)); HWY_ASSERT_VEC_EQ(d, vmax, Max(vmax, vmin)); } }; HWY_NOINLINE void TestAllMinMax() { ForUnsignedTypes(ForPartialVectors()); ForSignedTypes(ForPartialVectors()); ForFloatTypes(ForPartialVectors()); } template static HWY_NOINLINE Vec Make128(D d, uint64_t hi, uint64_t lo) { alignas(16) uint64_t in[2]; in[0] = lo; in[1] = hi; return LoadDup128(d, in); } struct TestMinMax128 { template HWY_NOINLINE void operator()(T /*unused*/, D d) { using V = Vec; const size_t N = Lanes(d); auto a_lanes = AllocateAligned(N); auto b_lanes = AllocateAligned(N); auto min_lanes = AllocateAligned(N); auto max_lanes = AllocateAligned(N); RandomState rng; const V v00 = Zero(d); const V v01 = Make128(d, 0, 1); const V v10 = Make128(d, 1, 0); const V v11 = Add(v01, v10); // Same arg HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v00)); HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v01)); HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v10)); HWY_ASSERT_VEC_EQ(d, v11, Min128(d, v11, v11)); HWY_ASSERT_VEC_EQ(d, v00, Max128(d, v00, v00)); HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v01)); HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v10)); HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v11)); // First arg less HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v00, v01)); HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v01, v10)); HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v10, v11)); HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v00, v01)); HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v01, v10)); HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v10, v11)); // Second arg less HWY_ASSERT_VEC_EQ(d, v00, Min128(d, v01, v00)); HWY_ASSERT_VEC_EQ(d, v01, Min128(d, v10, v01)); HWY_ASSERT_VEC_EQ(d, v10, Min128(d, v11, v10)); HWY_ASSERT_VEC_EQ(d, v01, Max128(d, v01, v00)); HWY_ASSERT_VEC_EQ(d, v10, Max128(d, v10, v01)); HWY_ASSERT_VEC_EQ(d, v11, Max128(d, v11, v10)); // Also check 128-bit blocks are independent for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) { for (size_t i = 0; i < N; ++i) { a_lanes[i] = Random64(&rng); b_lanes[i] = Random64(&rng); } const V a = Load(d, a_lanes.get()); const V b = Load(d, b_lanes.get()); for (size_t i = 0; i < N; i += 2) { const bool lt = a_lanes[i + 1] == b_lanes[i + 1] ? (a_lanes[i] < b_lanes[i]) : (a_lanes[i + 1] < b_lanes[i + 1]); min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0]; min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1]; max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0]; max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1]; } HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128(d, a, b)); HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128(d, a, b)); } } }; HWY_NOINLINE void TestAllMinMax128() { ForGEVectors<128, TestMinMax128>()(uint64_t()); } struct TestMinMax128Upper { template HWY_NOINLINE void operator()(T /*unused*/, D d) { using V = Vec; const size_t N = Lanes(d); auto a_lanes = AllocateAligned(N); auto b_lanes = AllocateAligned(N); auto min_lanes = AllocateAligned(N); auto max_lanes = AllocateAligned(N); RandomState rng; const V v00 = Zero(d); const V v01 = Make128(d, 0, 1); const V v10 = Make128(d, 1, 0); const V v11 = Add(v01, v10); // Same arg HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v00, v00)); HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v01)); HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v10, v10)); HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v11, v11)); HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v00, v00)); HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v01, v01)); HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v10)); HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v11, v11)); // Equivalent but not equal (chooses second arg) HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v00, v01)); HWY_ASSERT_VEC_EQ(d, v11, Min128Upper(d, v10, v11)); HWY_ASSERT_VEC_EQ(d, v00, Min128Upper(d, v01, v00)); HWY_ASSERT_VEC_EQ(d, v10, Min128Upper(d, v11, v10)); HWY_ASSERT_VEC_EQ(d, v00, Max128Upper(d, v01, v00)); HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v11, v10)); HWY_ASSERT_VEC_EQ(d, v01, Max128Upper(d, v00, v01)); HWY_ASSERT_VEC_EQ(d, v11, Max128Upper(d, v10, v11)); // First arg less HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v01, v10)); HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v01, v10)); // Second arg less HWY_ASSERT_VEC_EQ(d, v01, Min128Upper(d, v10, v01)); HWY_ASSERT_VEC_EQ(d, v10, Max128Upper(d, v10, v01)); // Also check 128-bit blocks are independent for (size_t rep = 0; rep < AdjustedReps(1000); ++rep) { for (size_t i = 0; i < N; ++i) { a_lanes[i] = Random64(&rng); b_lanes[i] = Random64(&rng); } const V a = Load(d, a_lanes.get()); const V b = Load(d, b_lanes.get()); for (size_t i = 0; i < N; i += 2) { const bool lt = a_lanes[i + 1] < b_lanes[i + 1]; min_lanes[i + 0] = lt ? a_lanes[i + 0] : b_lanes[i + 0]; min_lanes[i + 1] = lt ? a_lanes[i + 1] : b_lanes[i + 1]; max_lanes[i + 0] = lt ? b_lanes[i + 0] : a_lanes[i + 0]; max_lanes[i + 1] = lt ? b_lanes[i + 1] : a_lanes[i + 1]; } HWY_ASSERT_VEC_EQ(d, min_lanes.get(), Min128Upper(d, a, b)); HWY_ASSERT_VEC_EQ(d, max_lanes.get(), Max128Upper(d, a, b)); } } }; HWY_NOINLINE void TestAllMinMax128Upper() { ForGEVectors<128, TestMinMax128Upper>()(uint64_t()); } struct TestIntegerAbsDiff { template static inline T ScalarAbsDiff(T a, T b) { using TW = MakeSigned>; const TW diff = static_cast(a) - static_cast(b); return static_cast((diff >= 0) ? diff : -diff); } template static inline T ScalarAbsDiff(T a, T b) { if (a >= b) { return a - b; } else { return b - a; } } template HWY_NOINLINE void operator()(T /*unused*/, D d) { const size_t N = Lanes(d); auto in_lanes_a = AllocateAligned(N); auto in_lanes_b = AllocateAligned(N); auto out_lanes = AllocateAligned(N); constexpr size_t shift_amt_mask = sizeof(T) * 8 - 1; for (size_t i = 0; i < N; ++i) { // Need to mask out shift_amt as i can be greater than or equal to // the number of bits in T if T is int8_t, uint8_t, int16_t, or uint16_t. const auto shift_amt = i & shift_amt_mask; in_lanes_a[i] = static_cast((static_cast(i) ^ 1u) << shift_amt); in_lanes_b[i] = static_cast(static_cast(i) << shift_amt); out_lanes[i] = ScalarAbsDiff(in_lanes_a[i], in_lanes_b[i]); } const auto a = Load(d, in_lanes_a.get()); const auto b = Load(d, in_lanes_b.get()); const auto expected = Load(d, out_lanes.get()); HWY_ASSERT_VEC_EQ(d, expected, AbsDiff(a, b)); HWY_ASSERT_VEC_EQ(d, expected, AbsDiff(b, a)); } }; HWY_NOINLINE void TestAllIntegerAbsDiff() { ForPartialVectors()(int8_t()); ForPartialVectors()(uint8_t()); ForPartialVectors()(int16_t()); ForPartialVectors()(uint16_t()); ForPartialVectors()(int32_t()); ForPartialVectors()(uint32_t()); #if HWY_HAVE_INTEGER64 ForPartialVectors()(int64_t()); ForPartialVectors()(uint64_t()); #endif } // NOLINTNEXTLINE(google-readability-namespace-comments) } // namespace HWY_NAMESPACE } // namespace hwy HWY_AFTER_NAMESPACE(); #if HWY_ONCE namespace hwy { HWY_BEFORE_TEST(HwyArithmeticTest); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllPlusMinus); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllSaturatingArithmetic); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllAverage); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllAbs); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllNeg); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax128); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllMinMax128Upper); HWY_EXPORT_AND_TEST_P(HwyArithmeticTest, TestAllIntegerAbsDiff); } // namespace hwy #endif